首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The homology model of protein Rv2579 from Mycobacterium tuberculosis H37Rv was compared with the crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26, and this analysis revealed that 6 of 19 amino acid residues which form an active site and entrance tunnel are different in LinB and Rv2579. To characterize the effect of replacement of these six amino acid residues, mutations were introduced cumulatively into the six amino acid residues of LinB. The sixfold mutant, which was supposed to have the active site of Rv2579, exhibited haloalkane dehalogenase activity with the haloalkanes tested, confirming that Rv2579 is a member of the haloalkane dehalogenase protein family.  相似文献   

2.
3.
1,2,3-Trichloropropane (TCP) is a highly toxic and recalcitrant compound. Haloalkane dehalogenases are bacterial enzymes that catalyze the cleavage of a carbon-halogen bond in a wide range of organic halogenated compounds. Haloalkane dehalogenase LinB from Sphingobium japonicum UT26 has, for a long time, been considered inactive with TCP, since the reaction cannot be easily detected by conventional analytical methods. Here we demonstrate detection of the weak activity (k(cat) = 0.005 s(-1)) of LinB with TCP using X-ray crystallography and microcalorimetry. This observation makes LinB a useful starting material for the development of a new biocatalyst toward TCP by protein engineering. Microcalorimetry is proposed to be a universal method for the detection of weak enzymatic activities. Detection of these activities is becoming increasingly important for engineering novel biocatalysts using the scaffolds of proteins with promiscuous activities.  相似文献   

4.
The technical formulation of hexachlorocyclohexane (HCH) mainly consists of the insecticidal γ-isomer and noninsecticidal α-, β-, and δ-isomers, among which β-HCH is the most recalcitrant and has caused serious environmental problems. A γ-HCH-utilizing bacterial strain, Sphingobium sp. MI1205, was isolated from soil which had been contaminated with HCH isomers. This strain degraded β-HCH more rapidly than the well-characterized γ-HCH-utilizing strain Sphingobium japonicum UT26. In MI1205, β-HCH was converted to 2,3,5,6-tetrachlorocyclohexane-1,4-diol (TCDL) via 2,3,4,5,6-pentachlorocyclohexanol (PCHL). A haloalkane dehalogenase LinB (LinBMI) that is 98% identical (seven amino-acid differences among 296 amino acids) to LinB from UT26 (LinBUT) was identified as an enzyme responsible for the two-step conversion of β-HCH to TCDL. This property of LinBMI contrasted with that of LinBUT, which catalyzed only the first step conversion of β-HCH to PCHL. Site-directed mutagenesis and computer modeling suggested that two of the seven different amino acid residues (V134 and H247) forming a catalytic pocket of LinB are important for the binding of PCHL in an orientation suitable for the reaction in LinBMI. However, mutagenesis also indicated the involvement of other residues for the activity unique to LinBMI. Sequence analysis revealed that MI1205 possesses the IS6100-flanked cluster that contains two copies of the linB MI gene. This cluster is identical to the one located on the exogenously isolated plasmid pLB1, suggesting that MI1205 had recruited the linB genes by a horizontal transfer event.  相似文献   

5.
The secretion of N-linked glycosylated alpha-lactalbumin was much higher in the expression system of yeast Pichia pastoris carrying goat alpha-lactalbumin cDNA than in mammalian milk. This is possibly because of the presence of N-linked glycosylation signal sequences, Asn(45)-Asp(46)-Ser(47) and Asn(74)-Ile(75)-Ser(76), in wild-type alpha-lactalbumin. Attempts to elucidate the mechanism of the higher secretion of glycosylated alpha-lactalbumin in P. pastoris were made. Mutant N45D that deleted the N-linked glycosylation signal sequence at position 45 predominantly secreted nonglycosylated protein. On the other hand, mutant D46N with another N-glycosylation signal site at position 46 only secreted N-linked glycosylated alpha-lactalbumin, i.e. not the nonglycosylated protein. The total secreted amount of mutant N45D was greatly enhanced, while the secreted amounts of the wild-type and mutant D46N were very low, suggesting that the increase in the number of glycosylation sites greatly reduced the secretion of alpha-lactalbumin. It seems likely that the glycosylated alpha-lactalbumin may be degraded by the quality control system.  相似文献   

6.
Interleukin-1 receptor antagonist is an inhibitor of the pro-inflammatory action of interleukin-1. The gene encoding for interleukin-1 receptor antagonist (IL-1ra) was cloned into a Pichia pastoris expression vector pPICzalphaA (Invitrogen, USA) and transformed into P. pastoris strain SMD1168H. Multi-copy selection of the gene produced a high expressing strain of IL-1ra that produced 17mg/L of total secreted purified protein. The IL-1ra produced in P. pastoris was a mixture of glycosylated and non-glycosylated IL-1ra where 70% of the total protein was glycosylated. SP-Sepharose purification allowed for separation of the two expressed forms of IL-1ra, which permits biochemical investigation of glycosylated and non-glycosylated IL-1ra using one expression system. Mass spectrometric analysis revealed the expression of the full-length protein and that the glycosylated IL-1ra contained high mannose glycoforms that ranged from Man(9)GlcNAc(2) to Man(14)GlcNAc(2).  相似文献   

7.
Functional properties of glycosylated lysozyme secreted in Pichia pastoris   总被引:3,自引:0,他引:3  
Various mutant lysozymes having the N-glycosylation signal sequence, R21T (Asn(19)-Tyr(20)-Thr(21)), G49N (Asn(49)- Ser(50)-Thr(51)), R21T/G49N (Asn(19)-Tyr(20)-Thr(21)/Asn(49)-Ser(50)-Thr(51)), were secreted in the Pichia pastoris expression system. The secreted amounts of these mutant glycosylated lysozymes were almost the same as those of wild-type lysozyme (about 30 mg/liter). Glycosylation of the mutant lysozymes was confirmed by SDS-PAGE patterns, Endo-H treatment, TOF-MS analysis and chemical analysis. The composition of the carbohydrate chain attached to the single glycosylated lysozymes, R21T and G49N, was GlcNAc(2)Man(9-11), while that of the double glycosylated lysozyme, R21T/G49N, was GlcNAc(4)Man(27-32). The results of a CD analysis and lytic activity suggested that the conformation of the single glycosylated lysozymes had been conserved, while that of the double glycosylated lysozyme was less stable. The emulsifying properties of the lysozyme when glycosylated were greatly improved, being especially noteworthy in the double glycosylated lysozyme.  相似文献   

8.
The hydrolysis dechlorination mechanism of a chiral organochlorine pollutant, 1,2-dichloropropane (DCP), catalyzed by haloalkane dehalogenase LinB has been investigated by using a combined quantum mechanics/molecular mechanics method. LinB was confirmed to be enantioselective towards the catabolism of the racemic mixture. Based on the SN2 nucleophilic substitution mechanism, the dechlorination process was identified as the rate-determining step in LinB-catalyzed degradation of 1,2-dichloropropane, the Boltzmann-weighted average potential barrier of which is 18.8 kcal/mol for the (R)-isomer and 24.0 kcal/mol for the (S)-isomer. A particular water molecule near (S)-DCP in the reaction system can strongly disturb the dechlorination process, which can account for the enantioselectivity of LinB. Further electrostatic influence analysis indicates that proper mutation of Gly37 may improve the catalytic efficiency of LinB towards DCP.  相似文献   

9.
Glycosylated variants of beta-lactoglobulin (BLG) were produced in the methylotrophic yeast Pichia pastoris to mimic the glycosylation pattern of glycodelin, a homologue of BLG found in humans. Glycodelin has three sites for glycosylation, corresponding to amino acids 63-65 (S1), 85-87 (S2) and 28-30 (S3) of BLG. These three sites were engineered into BLG to produce the variants S2, S12 and S123, which carried one, two and three glycosylation sites, respectively. The oligosaccharides on these BLG variants ranged from (mannose)(9)(N-acetylglucosamine)(2) (Man(9)GN(2)) to Man(15)GN(2) and were of the alpha-linked high mannose type. The variant S123 exhibited highest levels of glycosylation, with the range of glycans being Man(9-14)GN(2). Digestion of S123 with alpha-1,2 linkage specific mannosidase resulted in a single product corresponding to Man(6)GN(2). These results indicated a glycosylation pattern consisting of a Man(5)GN(2) structure extended by 4-9 mannose residues attached mainly by alpha-1,2 linkages. The results also indicated extension of the Man(5)GN(2) structure by a single alpha-1,6-linked mannose. The N-linked glycosylation pathway in P.pastoris is significantly different from that in Saccharomyces cerevisiae, with the addition of shorter outer chains to the core and no alpha-1,3 outer extensions.  相似文献   

10.
Fabry disease is an X-linked inborn error of glycolipid metabolism caused by deficiency of the lysosomal enzyme alpha-galactosidase A. This enzyme is responsible for the hydrolysis of terminal alpha-galactoside linkages in various glycolipids. An improved method of production of recombinant alpha-galactosidase A for use in humans is needed in order to develop new approaches for enzyme therapy. Human alpha-galactosidase A for use in enzyme therapy has previously been obtained from human sources and from recombinant clones derived from human cells, CHO cells, and insect cells. In this report we describe the construction of clones of the methylotrophic yeast Pichia pastoris that produce recombinant human alpha-galactosidase A. Recombinant human alpha-galactosidase A is secreted by these Pichia clones and the level of production is more than 30-fold greater than that of previously used methods. Production was optimized using variations in temperature, pH, cDNA copy number, and other variables using shake flasks and a bioreactor. Expression of the human enzyme increased with increasing cDNA copy number at 25 degrees C, but not at the standard growth temperature of 30 degrees C. The recombinant alpha-galactosidase A was purified to homogeneity using ion exchange (POROS 20 CM, POROS 20 HQ) and hydrophobic (Toso-ether, Toso-butyl) chromatography with a BioCAD HPLC Workstation. Purified recombinant alpha-galactosidase A was taken up by fibroblasts derived from Fabry disease patients and normal enzyme levels could be restored under these conditions. Analysis of the carbohydrate present on the recombinant enzyme indicated the predominant presence of N-linked high-mannose structures rather than complex carbohydrates.  相似文献   

11.
We present the structure of LinB, a 33-kDa haloalkane dehalogenase from Sphingomonas paucimobilis UT26, at 0.95 A resolution. The data have allowed us to directly observe the anisotropic motions of the catalytic residues. In particular, the side-chain of the catalytic nucleophile, Asp108, displays a high degree of disorder. It has been modeled in two conformations, one similar to that observed previously (conformation A) and one strained (conformation B) that approached the catalytic base (His272). The strain in conformation B was mainly in the C(alpha)-C(beta)-C(gamma) angle (126 degrees ) that deviated by 13.4 degrees from the "ideal" bond angle of 112.6 degrees. On the basis of these observations, we propose a role for the charge state of the catalytic histidine in determining the geometry of the catalytic residues. We hypothesized that double-protonation of the catalytic base (His272) reduces the distance between the side-chain of this residue and that of the Asp108. The results of molecular dynamics simulations were consistent with the structural data showing that protonation of the His272 side-chain nitrogen atoms does indeed reduce the distance between the side-chains of the residues in question, although the simulations failed to demonstrate the same degree of strain in the Asp108 C(alpha)-C(beta)-C(gamma) angle. Instead, the changes in the molecular dynamics structures were distributed over several bond and dihedral angles. Quantum mechanics calculations on LinB with 1-chloro-2,2-dimethylpropane as a substrate were performed to determine which active site conformations and protonation states were most likely to result in catalysis. It was shown that His272 singly protonated at N(delta)(1) and Asp108 in conformation A gave the most exothermic reaction (DeltaH = -22 kcal/mol). With His272 doubly protonated at N(delta)(1) and N(epsilon)(2), the reactions were only slightly exothermic or were endothermic. In all calculations starting with Asp108 in conformation B, the Asp108 C(alpha)-C(beta)-C(gamma) angle changed during the reaction and the Asp108 moved to conformation A. The results presented here indicate that the positions of the catalytic residues and charge state of the catalytic base are important for determining reaction energetics in LinB.  相似文献   

12.
ABSTRACT: BACKGROUND: Sustainable utilization of plant biomass as renewable source for fuels and chemical building blocks requires a complex mixture of diverse enzymes, including hydrolases which comprise the largest class of lignocellulolytic enzymes. These enzymes need to be available in large amounts at a low price to allow sustainable and economic biotechnological processes. Over the past years Pichia pastoris has become an attractive host for the cost-efficient production and engineering of heterologous (eukaryotic) proteins due to several advantages. RESULTS: In this paper codon optimized genes and synthetic alcohol oxidase 1 promoter variants were used to generate Pichia pastoris strains which individually expressed cellobiohydrolase 1, cellobiohydrolase 2 and beta-mannanase from Trichoderma reesei and xylanase A from Thermomyces lanuginosus. For three of these enzymes even gram quantities of enzyme per liter were obtained by fed-batch cultivation. Additionally, we compared our achieved yields of secreted enzymes and the corresponding activities to literature data. CONCLUSION: In our experiments we could clearly see the importance of gene optimization and strain characterization for successfully improving secretion levels. We also give a basic guideline for understanding the interplay of promoter strength and gene dosage for a successful improvement of the secretory production of lignocellulolytic enzymes in Pichia pastoris.  相似文献   

13.
【目的】瑞替普酶(重组组织纤溶酶原激活物,rt PA)被认为是第三代安全有效的溶栓剂,以p PIC9K为载体,以3种不同表型的毕赤酵母(Pichia pastoris)为宿主,探索适合rt PA分泌型表达的最佳体系。【方法】以质粒p ET28a-rt PA为模板,设计特异性引物,PCR扩增目的基因rt PA,插入分泌型表达载体p PIC9K中,获得重组表达质粒p PIC9K-rt PA。重组质粒经限制性内切酶Sal I线性化后,电击转化至3种不同表型的P.pastoris(GS115、SMD1168、KM71)中进行组成型表达;重组表达体系进行甲醇诱导表达,对产物进行Western blot鉴定,并采用纤维蛋白平板溶圈法测定其活性。【结果】重组蛋白分子量约为43 k D;rt PA-GS115和rt PA-KM71均在39 k D处有特异性条带,且前者在32 k D处有轻微降解条带,而后者并无此现象;rt PA-SMD1168无降解现象,且rt PA-SMD1168比活性较rt PA-GS115高27%;rt PA-KM71表达量和活性均为最低。【结论】从重组蛋白生物活性出发,P.pastoris SD1168可作为rt PA的最佳表达体系,在控制宿主蛋白酶活性、减少产物降解的前提下,P.pastoris GS115也是rt PA表达的优选体系。  相似文献   

14.
Penicillin G amidase from Providencia rettgeri is a heterodimer of 92 kDa. We have previously expressed the Pr. rettgeri pac gene coding for this enzyme in Saccharomyces cerevisiae, and now we report the expression and characterization in the methylotrophic yeast Pichia pastoris. The recombinant catalytically active enzyme (rPAC(Pr)) was secreted from shake flask-grown P. pastoris cells into the medium at a level of approximately 0.18 U ml(-1). This yield of rPAC(Pr) was higher, by two orders of magnitude, than that obtained using a single-copy expression plasmid in S. cerevisiae. In addition, the secreted recombinant enzyme was entirely N-glycosylated. The recombinant PAC(Pr) was further characterized in terms of specific activity, kinetic parameters and thermostability. Except the significantly higher thermostability of the glycosylated rPAC(Pr) produced in P. pastoris, the other parameters were very similar to those of the corresponding non-glycosylated enzymes produced in bacteria or in S. cerevisiae. The higher thermostability of this recombinant enzyme has a clear industrial advantage.  相似文献   

15.
Haloalkane dehalogenase (Dh1A) from Xanthobacter autotrophicus GJ10 catalyzes the dehalogenation of short chain primary alkyl halides. Due to the high Km and low turnover, wild type Dh1A is not optimal for applications in bioremediation. We have developed an in vivo screen, based on a colorimetric pH indicator, to identify Dh1A mutant with improved catalytic activity. After screening 50,000 colonies, we identified a Dh1A mutant with a lower pH optimum. Sequence analysis of the mutant revealed a single substitution, alanine 149 to threonine, which is located close to the active site of Dh1A. Replacement of alanine 149 via site-directed mutagenesis with threonine, serine or cysteine retained the mutant phenotype. Other substitutions at position 149 show little or no activity.  相似文献   

16.
目的:构建以带自身启动子的蔗糖转化酶基因(suc2)为选择标记的载体,用于外源基因在巴斯德毕赤酵母中的正确分泌表达。方法:根据已发表的蔗糖转化酶基因序列设计并合成1对引物,应用PCR技术,以啤酒酵母INVSC1总DNA为模板,扩增出包含自身启动子和终止区序列的suc2基因。将该基因与毕赤酵母表达载体pPIC9K连接,构建了以suc2为选择标记的表达载体pPIC12K。将甘露聚糖酶基因man克隆入载体pPIC12K,用PEG/LiCl法转化毕赤酵母GS115菌株。以蔗糖为惟一碳源筛选转化子,利用底物平板检测筛选到的转化子中man基因的表达,并对重组表达菌株进行连续传代实验。结果:部分转化子周围产生明显的水解圈,证明甘露聚糖酶已经得到分泌表达;对重组表达菌株的连续传代实验证实了该表达载体具有良好的遗传稳定性。结论:以带自身启动子的suc2基因为选择标记的表达载体构建成功,并且这个新型表达载体能够对外源基因进行稳定有效的分泌表达。  相似文献   

17.
外源基因在巴氏毕赤酵母中的表达   总被引:5,自引:0,他引:5  
王征  董燕  王捷  郑文岭 《生命的化学》2003,23(2):107-110
近年来,巴氏毕赤酵母(Pichia pastoris)已经发展成为一种优良的外源基因表达系统得到越来越广泛的应用。  相似文献   

18.
转甲状腺素蛋白基因在酵母中的表达   总被引:8,自引:0,他引:8  
用限制酶BamHI将含人TTR基因的DNA片段(约493bp)从质粒 pSK-TTR上切下后并插入到分泌型载体pHIL-SI的BamHI位点上,经酶切鉴定重组质粒pHIL-SI-TTR上的TTR基因插入方向正确。将pHIL-SI-TTRDNA用BglII酶切后,转入真核表达系统——毕赤氏酵母。得到的转化子经摇瓶发酵,上清液用15%SDSPAGE检测,有TTRF的表达。经DEAESepheroseF.F离子交换柱和SephacrylS200分子筛层析,得到纯化的TTRF。体外实验表明TTRF对肝癌细胞有抑制作用。  相似文献   

19.
外源基因在毕赤酵母中表达的优化   总被引:1,自引:0,他引:1  
巴斯德毕赤酵母是近年来成功的外源基因表达系统,已表达出众多外源蛋白。它既能像原核生物一样快速生长高密度发酵,又能进行真核翻译后修饰,并且蛋白分泌量大,因此应用越来越广泛。如果对它的表达载体,转化诱导条件和目的基因内部结构,发酵条件等方面进行优化,能够进一步发挥它的优势,更好地表达需要的外源蛋白。本文就毕赤酵母表达系统表达优化进行总结综述。  相似文献   

20.
海藻糖合酶能够利用麦芽糖一步法转化生产海藻糖,其底物专一性较高,该酶体系生产工艺简单,不受底物麦芽糖浓度的影响,是工业生产海藻糖的首选。为获得具有生产海藻糖合酶能力的毕赤酵母表面展示载体,实验以筛选的Pseudomonas putide P06海藻糖合酶基因为模板,PCR扩增得到海藻糖合酶基因(tres,2064 bp),连接至pPICZαA质粒中,获得重组质粒pPICZαA-tres。以来自酿酒酵母的共价连接细胞壁的Pir系列蛋白的Pir1p成熟肽蛋白作为毕赤酵母表面展示的锚定蛋白,利用PCR技术扩增得到pir1p(847 bp),连接至重组质粒pPICZαA-tres中,获得重组质粒pPICZαA-tres-pir1p。将重组质粒电击转入毕赤酵母GS115中,利用α-factor信号肽将蛋白引导分泌至细胞壁展示于毕赤酵母表面。通过Zeocin抗性筛选,挑选出阳性克隆子并摇瓶发酵。发酵产物经离心、破碎并使用昆布多糖酶水解,洗脱,结果显示,SDS-聚丙烯酰胺凝胶电泳分析可见明显融合蛋白条带,表明海藻糖合酶已成功地锚定在毕赤酵母。将重组毕赤酵母使用pH 7.5的缓冲液清洗并重悬,与底物浓度为30%的麦芽糖在30℃~60℃水浴条件下作用2 h,反应产物利用HPLC检测,能够检测到酶学活性。在优化后的条件pH 7.5,50℃,表面展示海藻糖合酶酶活达到300.65 U/g。40℃~50℃酶活较稳定,保温60 min,残留酶活相对活力达75%以上;最适反应pH值为7.5,并在碱性环境下稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号