首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the binding of high-density lipoprotein (HDL3, d = 1.12-1.21 g/ml), and apolipoprotein E-deficient human and rat HDL, obtained by heparin-Sepharose affinity chromatography, to intact cells and membrane preparations of rat intestinal mucosal cells. Binding of 125I-labeled HDL3 to the basolateral plasma membranes was characterised by a saturable, specific process (Kd = 21 micrograms of HDL3 protein/ml, Bmax = 660 ng HDL3 protein/mg membrane protein) and E-deficient human HDL demonstrated a similar affinity for the binding site. The basolateral plasma membranes isolated from proximal and distal portion of rat small intestine showed similar binding affinities for HDL3, whereas the interaction of HDL with brush-border membranes was characterised by mainly nonspecific and nonsaturable binding. The binding of 125I-labeled HDL3 to basolateral plasma membranes was competitively inhibited by unlabeled HDL3 but less efficiently by unlabeled human LDL. The putative HDL receptor was not dependent on the presence of divalent cations but was markedly influenced by temperature and sensitive to pronase treatment. We have also demonstrated, using whole intestinal mucosal cells, that lysine and arginine-modified HDL3 inhibited binding of normal 125I-labeled HDL3 to the same extent as normal excess HDL3. These data suggest that basolateral plasma membranes of rat intestinal mucosal cells possess a specific receptor for HDL3 which contains mainly apolipoprotein A-I and A-II, and the mechanisms of recognition of HDL3 differ from those involved in binding to the B/E receptor.  相似文献   

2.
The present study in IEC-6 crypt-derived rat epithelial cells describes a retroendocytotic pathway for HDL3. These intestinal cells exhibited specific binding of apoE free HDL3 with a maximal binding capacity of 2980 ng/mg cell protein and a Kd of 36.4 micrograms/ml. Specific binding was competed for by HDL3 but not by LDL. Apparent internalisation of HDL3 was low, degradation was negligible and intact particles were resecreted into the medium within 2 h. Electron microscopic studies showed binding and internalisation of gold-labeled HDL3 in coated pit regions and transport in endosomes distinct from lysosomes to lipid droplets. De novo cholesterol synthesis from [14C]octanoate was enhanced nearly 2-fold by HDL3 and the surplus of newly formed cholesterol was recovered in the medium. It was concluded that intact HDL3 was bound specifically to intestinal cells and was resecreted through a process of retroendocytosis probably mediating efflux of cellular cholesterol.  相似文献   

3.
Human high density lipoprotein (HDL), devoid of apolipoproteins E or B, binds with high affinity and specificity to cultured cells derived from several tissues. In order to investigate the ligand specificity of the putative receptor, we have performed competitive inhibition studies to identify the components of high density lipoprotein that bind to cell surfaces of rat adrenal cortical cells and human skin fibroblasts. Radiolabeled HDL3 was displaced with unlabeled apolipoprotein-dimyristoylphosphatidylcholine recombinant particles containing AI, AII, CIII-1, and E apolipoproteins, but not by dimyristoylphosphatidylcholine complexed to albumin or by low density lipoprotein. Because exchange may readily occur between apolipoproteins in HDL and in recombinants this observation may not be truly representative of ligand competition. Further experiments using Fab fragments prepared from pure IgG to each apolipoprotein showed that binding of radioiodinated HDL to cells was suppressed following preincubation of HDL with Fab fragments raised against apolipoproteins AI or AII but not against apolipoproteins E or CIII-1 or albumin. In additional studies with apolipoprotein recombinants specific saturable binding was demonstrated between apo-AI or -AII recombinants and adrenocortical cells whereas binding of apo-CIII-2 was characterized by a large nonsaturable component which almost equaled the specific binding. The data, therefore, provide evidence for the involvement of the two major apolipoproteins (AI and AII) in HDL recognition by cellular receptors.  相似文献   

4.
Human 125I-labelled HDL3 is degraded by isolated rat intestinal mucosal cells. In our experimental conditions, lipoprotein degradation occurred by two different mechanisms. In one, lipoprotein was degraded within the cell, following binding and internalisation. In the other, degradation occurred in the medium, which seemed to contain protease activity released from cells during incubation. Though lipoprotein-deficient serum apparently interfered with degradation in the medium, bovine serum albumin had no such effect. The lysosomal inhibitor, chloroquine, reduced degradation by 60% without inhibiting HDL binding. Intestinal cell extracts contained at least two different proteases, with pH optima of 4.5 and 8.0, respectively. Comparing HDL and LDL degradation on a molar basis, more HDL particles were degraded by the cell-free extracts at pH 4.5. This degradation was activated by dithiothreitol and was inhibited by iodoacetic acid. From these observations we conclude that HDL3 is taken up by the rat intestinal mucosal cell through a specific binding site and subsequently degraded by a thiol-dependent protease in the lysosome.  相似文献   

5.
The bidirectional flux of unesterified cholesterol between cells and high density lipoprotein (HDL) was studied in relationship to the binding of HDL to cells. At 100 micrograms at HDL protein/ml, the rate constant for cholesterol efflux from rat Fu5AH hepatoma cells is 3 X 10(-3)/min (t1/2 for efflux of 3.9 h), whereas efflux from GM3468 human fibroblasts is 0.075/4 h (equivalent to a t1/2 for efflux of 37 h). The relatively slow efflux of cholesterol from fibroblasts in comparison to rat hepatoma cells was observed previously with micellar and vesicular phospholipid-containing acceptors, which promote efflux by a mechanism involving the diffusion of cholesterol in the aqueous phase between the plasma membrane and the acceptor particles. When plotted against the logarithm of HDL concentration, the isotherms for efflux are centered at 300 and 100 micrograms of HDL protein/ml with the hepatoma cells and fibroblasts, respectively. These concentrations are 8-150 times greater than the corresponding values for Kd of specific HDL binding (2 and 12 micrograms of protein/ml, for hepatoma cells and fibroblasts, respectively). The treatment of HDL with tetranitromethane reduces the lipoprotein's affinity for specific cell-surface binding sites by 80-90%. However, at HDL concentrations of 5-60 micrograms of protein/ml, this treatment does not significantly inhibit cholesterol efflux from hepatoma cells, and inhibits efflux from fibroblasts an average of about 15%. Over the same range of concentrations, nitration alters influx by amounts less than 30% in the two cell types. These effects on flux do not parallel the reduced affinity of nitrated HDL for specific cell-surface binding sites. In summary, the present results do not support the concept that cholesterol transfer is facilitated by the specific cell-surface binding of HDL, but are consistent with the aqueous diffusion model of cholesterol transfer between cells and lipoproteins.  相似文献   

6.
This study characterizes the interactions of various rat and human lipoproteins with the lipoprotein cell surface receptors of rat and human cells. Iodinated rat very low density lipoproteins (VLDL), rat chylomicron remnants, rat low density lipoproteins (LDL), and rat high density lipoproteins containing predominantly apoprotein E (HDL1) bound to high affinity cell surface receptors of cultured rat fibroblasts and smooth muscle cells. Rat VLDL and chylomicron remnants were most avidly bound; the B-containing LDL and the E-containing HDL1 displayed lesser but similar binding. Rat HDL (d = 1.125 to 1.21) exhibited weak receptor binding; however, after recentrifugation to remove apoprotein E, they were devoid of binding activity. Competitive binding studies at 4 degrees C confirmed these results for normal lipoproteins and indicated that VLDL (B-VLDL), LDL, and HDLc (cholesterol-rich HDL1) isolated from hypercholesterolemic rats had increased affinity for the rat receptors compared with their normal counterparts, the most pronounced change being in the LDL. The cell surface receptor pathway in rat fibroblasts and smooth muscle cells resembled the system described for human fibroblasts as follows: 1) lipoproteins containing either the B or E apoproteins interacted with the receptors; 2) receptor binding activity was abolished by acetoacetylation or reductive methylation of a limited number of lysine residues of the lipoproteins; 3) receptor binding initiated the process of internalization and degradation of the apo-B- and apo-E-containing lipoproteins; 4) the lipoprotein cholesterol was re-esterified as determined by [14C]oleate incorporation into the cellular cholesteryl esters; and 5) receptor-mediated uptake (receptor number) was lipoprotein cholesterol. An important difference between rat and human fibroblasts was the inability of human LDL to interact with the cell surface receptors of rat fibroblasts. Rat lipoproteins did, however, react with human fibroblasts. Furthermore, the rat VLDL were the most avidly bound of the rat lipoproteins to rat fibroblasts. When the direct binding of 125I-VLDL was subjected to Scatchard analysis, the very high affinity of rat VLDL was apparent (Kd = 1 X 10(-11) M). Moreover, compared with data for rat LDL, the data suggested each VLDL particle bound to four to nine lipoprotein receptors. This multiple receptor binding could explain the enhanced binding affinity of the rat VLDL. The Scatchard plot of rat 125I-VLDL revealed a biphasic binding curve in rat and human fibroblast cells and in rat smooth muscle cells, suggesting two populations of rat VLDL. These results indicate that rat cells have a receptor pathway similar to, but not identical with, the LDL pathway of human cells. Since human LDL bind poorly to rat cell receptors on cultured rat fibroblasts and smooth muscle cells, metabolic studies using human lipoproteins in rats must be interpreted cautiously.  相似文献   

7.
Rat adrenocortical cells take up high density lipoprotein cholesterol for use as steroidogenic substrate. To better understand this unique uptake process, we have first characterized HDL binding. Infusion of human 125I-labeled HDL into rats pretreated with 4-APP demonstrated that the adrenal and ovary accumulate HDL in a saturable fashion in vivo. Subsequent studies using isolated rat adrenocortical cells demonstrated that cellular uptake of HDL is comprised of two events. One event is characterized by reversible membrane binding and is complete by 60 min (t1/2 = 20 min). The second event is marked by irreversible apoprotein accumulation which continues for at least 3 hr. Reversibly bound material exhibits the same apoprotein distribution as unincubated HDL. Irreversible accumulation could not be attributed to internalization or lysosomal accumulation inasmuch as it also occurred with partially purified plasma membranes and was not enhanced by addition of chloroquine. Reversible binding of human HDL3 exhibited a saturable dependence on concentration (Kd = 27 micrograms protein/ml; N = 3.0 X 10(6) sites/cell) similar to that previously reported for rat liver, ovary, and testis. Cell accumulation of HDL decreased by over 80% at 4 degrees C compared to 37 degrees C, did not require calcium, and was not diminished by prior cell treatment with trypsin or pronase. These results indicate that rat adrenocortical cells possess plasma membrane recognition sites for HDL with different properties than those of the LDL receptor. Moreover, adrenal accumulation of HDL apoproteins does not lead to secondary lysosome formation.  相似文献   

8.
9.
The present investigation was designed to test the hypothesis that binding sites for high density lipoproteins (HDL3) on cell surfaces of peripheral tissues mediate cholesterol efflux from these cells. This hypothesis had been formulated to explain two observations: 1) HDL3 binding to peripheral cells and HDL3-mediated cholesterol efflux from these cells had both been found to saturate at similar unbound (free) HDL3 concentrations; and 2) both of these processes had been found to be similarly "up-regulated" by loading the cells with cholesterol. In the present study, however, we found that the "specific" binding of HDL3 to cholesterol-loaded human fibroblasts was saturated at a free HDL3 concentration of approximately 20 micrograms protein/ml, whereas efflux of cholesterol from these cells to HDL3 did not "saturate" even at a free HDL3 concentration of 2000 micrograms protein/ml. In addition, we found that the increase in cholesterol efflux caused by loading the fibroblasts with cholesterol was no greater when the acceptor particles were HDL3 than when albumin or phospholipid vesicles served as acceptors, despite a marked increase in HDL3 binding to these cells. Because HDL3 binding to these cells and HDL3-mediated cholesterol efflux from these cells do not saturate at similar free HDL3 concentrations, and because the cholesterol-induced increase in HDL3 binding is not accompanied by a similar increase in cholesterol efflux that is specific for HDL3, we conclude that the described HDL3 binding sites on human fibroblasts do not mediate cholesterol efflux.  相似文献   

10.
Serum lipoproteins control cell cholesterol content by regulating its uptake, biosynthesis, and excretion. Monolayers of cultured fibroblasts were used to study interactions with human high density (HDL) and low density (LDL) lipoproteins doubly labeled with [(3)H]cholesterol and (125)I in the apoprotein moiety. In the binding assay for LDL, the absence of specific LDL receptors in type II hypercholesterolemic fibroblasts was confirmed, whereas monolayers of virus-transformed human lung fibroblasts (VA-4) exhibited LDL binding characteristics essentially the same as normal lung fibroblasts. In the studies of HDL binding, specific HDL binding sites were demonstrated in normal and virus-transformed fibroblasts. In addition, type II hypercholesterolemic cells, despite the loss of LDL receptors, retained normal HDL binding sites. No significant competition was displayed between the two lipoprotein classes for their respective binding sites over a 5-fold concentration range. In VA-4 cells, the amount of lipoprotein required to saturate half the receptor sites was 3.5 micro g/ml (9 x 10(-9) M) for LDL and 9.1 micro g/ml (9 x 10(-8) M) for HDL. Pronase treatment reduced LDL binding by more than half but had no effect on HDL binding. Chloroquine, a lysomal enzyme inhibitor, stimulated net LDL uptake 3.5-fold by increasing internalized LDL but had essentially no effect on HDL uptake. Further experiments were conducted using doubly labeled lipoproteins to characterize the interaction of LDL and HDL with cells. While the cholesterol and protein moieties of LDL were incorporated into cells at similar rates, the uptake of the cholesterol moiety of HDL was 5 to 10 times more rapid than that of the protein component. Furthermore, the apoprotein component of LDL is extensively degraded following exposure, whereas the apoprotein moiety of HDL retains its macromolecular chromatographic characteristics. These results indicate that HDL and LDL bind to cultured cells at separate sites and that further processing of the two lipoprotein classes appears to take place by fundamentally different mechanisms.-Wu, J-D., J. Butler, and J. M. Bailey. Lipid metabolism in cultured cells XVIII. Comparative uptake of low density and high density lipoproteins by normal, hypercholesterolemic, and tumor virus-transformed human fibroblasts.  相似文献   

11.
Addition of high density lipoprotein 3 (HDL3) isolated from human plasma of d greater than 1.125 g/ml which had been preincubated for 24 h at 37 degrees C enhanced steroidogenesis by cultured rat adrenal cells only 38% as well as HDL3 isolated from unincubated plasma. Loss of steroidogenic activity due to preincubation was associated with a decrease in the percent HDL3 cholesterol remaining unesterified. Inhibition of lecithin-cholesterol acyltransferase activity by heating (60 degrees C, 1 h) or addition of dithionitrobenzoic acid (1.4 mM) prevented esterification of cholesterol in HDL and also prevented loss of steroidogenic activity. Although incubation of plasma of d greater than 1.125 g/ml prior to isolation caused cholesterol esterification, there was no change in the ratio of total cholesterol to protein in HDL, size and shape of the HDL particle as assayed by measurement of sedimentation velocity, nor affinity for the putative HDL receptor. Addition of unesterified cholesterol to preincubated HDL restored steroidogenic activity. These results indicate that unesterified cholesterol in HDL is preferentially used as substrate for rat adrenal steroidogenesis. The effects of nonlipoprotein serum proteins on HDL action in the adrenal were also examined. The ability of HDL3 to enhance rat adrenal steroidogenesis was not significantly less in serum-free media than in media supplemented with lipoprotein-poor fetal calf serum or human plasma of d greater than 1.21 g/ml, suggesting that rat adrenal uptake of HDL cholesterol does not depend on participation of plasma enzymes or transport proteins.  相似文献   

12.
13.
Binding of 125I-low density lipoprotein (LDL) and 125I-high density lipoprotein (HDL) was determined in cultured human fibroblasts from a normal subject and two subjects with homozygous familial hypercholesterolemia (HFH). Binding was assayed at 0 degree C to minimize the internalization of labeled lipoproteins. The binding of LDL and of HDL were compared following interventions reported to affect LDL binding in normal fibroblast. LDL binding to normal cells increased two to three fold 24 hours after transfer from medium containing whole fetal calf serum to medium containing lipoprotein-deficient fetal calf serum. This increase was completely blocked in the presence of cycloheximide (200 microgram/ml) or 7-ketocholesterol (2.5 microgram/ml). This increased capacity of normal fibroblasts to bind LDL could be reduced 70-80% by a subsequent 18-hour incubation with cholesterol (50 microgram/ml) or 7-ketocholesterol (2.5 microgram/ml). In contrast, no significant change in HDL binding to normal fibroblasts was observed after any of these interventions. HFH cells to show any significant change in either LDL binding or HDL binding following these interventions. These results suggest that HDL binding sites on normal fibroblasts are for the most part distinct from LDL binding sites. They also support the conclusion that LDL binding sites on HFH cells are for the most part qualitatively different from those on normal cells.  相似文献   

14.
Several studies have shown that high-density lipoprotein stimulates steroidogenesis in rat tissues which have been treated with pituitary hormones. To determine whether these hormones can directly affect receptors for high-density lipoprotein, we have incubated cultured rat adrenal cortical cells with 125I-labeled human HDL3 and studied the effect of corticotrophin on the binding, internalization and degradation of this lipoprotein. ACTH stimulated all these parameters of HDL metabolism in a dose-dependent manner with maximal stimulation occurring between 10 and 20 mU/ml. The effect was temperature-dependent and showed target cell specificity. Although the hormone stimulated binding and internalization 5-6-fold, degradation of HDL3 was substantially less (2-fold) than anticipated. This suggests that the lipoprotein was taken up by vesicles resembling receptosomes which escape fusion with lysosomes; thus degradation of entrapped particles does not occur, while transfer of cholesterol for steroidogenesis is unaffected.  相似文献   

15.
Francis GA  Tsujita M  Terry TL 《Biochemistry》1999,38(49):16315-16322
Aortic smooth muscle cells (SMC) from several animal species have been reported to resist depletion of cellular cholesterol by the major apolipoprotein of HDL, apoAI. Resistance of SMC to this protective action of apoAI, if present in humans, could contribute to the overaccumulation of arterial wall cholesterol seen in atherosclerosis. We investigated the ability of human aortic medial SMC to bind and be depleted of cholesterol and phospholipids by apoAI. In contrast to rat aortic SMC, but similar to human fibroblasts, human SMC were readily depleted of cholesterol by apoAI, measured by a marked depletion of intracellular cholesterol available for esterification, and an increase in cholesterol efflux to the medium. Human SMC were also actively depleted of the phospholipids phosphatidylcholine and sphingomyelin by apoAI. In contrast, rat SMC released only a small fraction of these cellular phospholipids to apoAI-containing medium. (125)I-labeled apoAI bound with high affinity and specificity to human SMC, but failed to bind to rat SMC. Similar levels of expression of class B, type I scavenger receptor (SR-BI) and caveolin in human and rat SMC suggested these proteins do not account for the differences in apoAI binding or lipid efflux seen in these cells. An enhancer of apolipoprotein-mediated cholesterol efflux, tyrosyl radical-oxidized HDL, markedly amplified the depletion of cholesterol available for esterification in human SMC compared to HDL, but had no enhanced effect in rat SMC. These results show that human SMC bind and are readily depleted of cellular lipids by apoAI, and suggest that apoAI-mediated cholesterol efflux from arterial SMC may contribute significantly to the circulating pool of HDL cholesterol in vivo. The marked difference in apoAI binding to human and rat arterial SMC provides an excellent model to study the nature of the apoAI-cell binding interaction.  相似文献   

16.
This study compares the specificities of selective uptake and transfer mediated by plasma cholesteryl ester transfer protein (CETP) for various species of cholesteryl esters in high density lipoproteins (HDL). [3H]Cholesterol was esterified with a series of variable chain length saturated acids and a series of variably unsaturated 18-carbon acids. These were incorporated into synthetic HDL particles along with 125I-labeled apoA-I as a tracer of HDL particles and [14C]cholesteryl oleate as an internal standard for normalization between preparations. Selective uptake by Y1-BS1 mouse adrenal cortical tumor cells was most extensively studied, but uptake by human HepG2 hepatoma cells and fibroblasts of human, rat, and rabbit origin were also examined. Acyl chain specificities for selective uptake and for CETP-mediated transfer were conversely related; selective uptake by all cell types decreased with increasing acyl chain length and increased with the extent of unsaturation of C18 chains. In contrast, CETP-mediated transfer increased with acyl chain length, and decreased with unsaturation of C18 chains. The specificities of human and rabbit CETP were also compared, and were found to differ little. Associated experiments showed that HDL-associated triglycerides, traced by [3H]glyceryl trioleyl ether, were selectively taken up but at a lesser rate than cholesteryl esters. The mechanism of this uptake appears to be the same as for selective uptake of cholesteryl esters.  相似文献   

17.
Partial (60%) resection of rat small bowel was performed in order to obtain a model of intestinal mucosal hyperplasia for studying specific insulin binding. The affinity, but not the binding capacity, of insulin receptors in the adaptive mucosa decreased three and seven days following enterectomy. This modification took place only in crypt cells but not in mature villous cells. Since plasma insulin levels were not altered by the surgical manipulation, the observed decrease of insulin binding could not be related to regulation by insulin concentration. These results do not support a trophic role of insulin on intestinal mucosa and appear to be more a consequence of the hyperactive status of proliferation and differentiation at the mucosat level.  相似文献   

18.
Rat small intestinal epithelial cells and human colon adenocarcinoma cells cultured on Matrigel expressed the differentiation specific enzyme, sucrase-isomaltase, as determined by indirect immunofluorescence. Rat small intestinal epithelial cells, rat colonocytes, and human colon adenocarcinoma cells developed an altered morphology when cultured on Matrigel and became apoptotic within 24-48 h. Benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin caused a 2- and 5-fold induction, respectively, of ethoxyresorufin-o-deethylase activity in rat small intestinal epithelial cells cultured on Matrigel. Benzo[a]pyrene- or 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced ethoxyresorufin-o-deethylase activity in rat small intestinal epithelial cells cultured on plastic was not detected. 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment caused a 14-fold induction of transfected, rat CYP1A1-promoter-luciferase activity in rat small intestinal epithelial cells cultured on Matrigel. Benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment induced ethoxyresorufin-o-deethylase activity by 6- and 1.6-fold, respectively in rat colonocytes cultured on Matrigel. Induction of ethoxyresorufin-o-deethylase activity was not observed in rat colonocytes cultured on plastic. CYP1A1-promoter-luciferase activity was induced 3-fold by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat colonocytes cultured on Matrigel. Induction of CYP1A1-promoter-luciferase activity in rat small intestinal epithelial cells or rat colonocytes cultured on plastic was not observed. Ethoxyresorufin-o-deethylase activity in human colon adenocarcinoma cells, cultured on either plastic or Matrigel, was induced 7-fold by benzo[a]pyrene. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced ethoxyresorufin-o-deethylase activity was 2-fold greater in human colon adenocarcinoma cells cultured on Matrigel compared to cells cultured on plastic. Extracellular matrix-mediated differentiation and apoptosis of intestinal cells provide in vitro systems for study of the regulation of CYP1A1 expression, carcinogen activation in the gut and mechanism(s) of apoptosis of colon cancer cells.  相似文献   

19.
Apoprotein E-free high density lipoproteins (HDL) bind to various cells and cell membrane preparations with properties typical of ligand-receptor interactions. This specific binding can be inhibited by treatment of HDL with tetranitromethane (TNM). During treatment of HDL with TNM, in addition to the expected nitration of tyrosine residues, cross-linking of lipids to apoproteins and of apoproteins to each other occurs. We have recently shown that cross-linking of phospholipids to apoproteins is not responsible for the inhibition of binding (1987. Chacko, G. K., et al. J. Lipid Res. 28: 332-337). To determine the role of cross-linking of apoproteins to each other in the inhibition, we used the bifunctional reagent dimethylsuberimidate (DMS) to cross-link the apoproteins in HDL3. Over 80% of apoproteins in DMS-HDL3 were cross-linked, as analyzed by SDS-polyacrylamide gel electrophoresis. DMS-HDL3 was similar to control HDL3 in its lipid composition. Gel filtration chromatography did not reveal any significant difference in size between DMS-HDL3 and control HDL3. As determined by competitive binding with 125I-labeled HDL3, DMS-HDL3 was almost completely unable to bind specifically to rat liver plasma membranes and human skin fibroblasts. It is concluded from these results that TNM inhibits the specific binding of HDL3 to membranes by a mechanism that involves cross-linking of apoproteins to each other in HDL3 particles. This observation implies that the specific binding of HDL3 to cells may depend on the native quaternary structure of apoproteins in the HDL particle. Because of its reduced ability to bind to the specific binding sites, DMS-HDL3 may be useful for studies related to the functional aspects of HDL binding sites.  相似文献   

20.
Neuronal nicotinic receptors (nAChRs) are expressed in the brain but also in the peripheral tissues including the adrenal medulla. However, it is unclear which nAChRs are present in the human adrenal medulla. In the study, receptor binding assay, Western blot and RT-PCR have been performed to investigate the expression of nAChRs in adrenal medulla from human, rat and mouse. The results showed that in human adult adrenal medulla, mRNAs for nAChR alpha3, alpha4, alpha5, alpha7, beta2, beta3, and beta4 subunits but not beta2 in the fetal human adrenal medulla were expressed. Saturation binding of [3H]epibatidine showed two binding sites in human aged adrenal medulla. The specific binding of [3H]epibatidine (0.1 nM) was significantly higher in human fetal compared to human aged adrenal medulla. mRNAs for the alpha3, alpha4, alpha5, alpha7, beta2, and beta4 subunits but not the beta3 were detectable in adult rat and mouse adrenal medulla. No differences in gene-expression of the nAChRs were observed between new born, adult and aged rat adrenal medulla. Saturation binding of [3H]epibatidine showed only one binding site in rat adrenal medulla. Lower protein levels for the nAChR subunits were observed in the rat adrenal medulla compared to rat brain. There was lower protein levels of the nAChRs in aged rat adrenal medulla compared to the young rats. Sub-chronic treatment of nicotine to rats did not influence level of the nAChRs in the adrenal medulla. In conclusion, the expression of nAChRs in adrenal medulla is age- related and species dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号