首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Using an intrauterine pressure transducer to telemeter uterine pressure a method has been devised to assess the sensitivity of the uterus to intra-aortic PGF infusions. Intra-aortic infusion of 1–10 μg PGF/min into the 21–24 Day Pregnant rabbit has little effect on uterine contractility. A continuous intra-aortic infusion of 1 μg PGF/h was found to result in a gradual increase of sensitivity to PGF even after cessation of the continuous infusion.  相似文献   

2.
The influence of VIP, a potent vasodilator, on central hemodynamics, splanchnic blood flow and glucose metabolism was studied in six healthy subjects. Teflon catheters were inserted into an artery, a femoral vein and a right-sided hepatic vein. A Swan-Ganz catheter was introduced percutaneously and its tip placed in the pulmonary artery. Determinations of cardiac output, systemic, pulmonary arterial and hepatic venous pressures as well as splanchnic blood flow were made in the basal state and at the end of two consecutive 45 min periods of VIP infusion at 5 and 10 ng/kg/min, respectively. Arterial blood samples for analysis of glucose, FFA, insulin and glucagon were drawn at timed intervals. VIP infusion at 5 ng/kg/min resulted in an increase in cardiac output (55%) and heart rate (25%) as well as a reduction in mean systemic arterial pressure (15%) and vascular resistance (45%). With the higher rate of VIP infusion heart rate tended to rise further while cardiac output and arterial pressure remained unchanged. At 15 min after the end of VIP infusion the above variables had returned to basal levels. Splanchnic blood flow and free hepatic venous pressure did not change significantly. Arterial concentrations of glucose, FFA, insulin and glucagon increased during VIP infusion. At 15 min after the end of infusion the glucose levels were still significantly higher than basal (20%). Net splanchnic glucose output did not change in response to VIP infusion. It is concluded that VIP exerts a potent vasodilatory effect resulting in augmented cardiac output and lowered systemic blood pressure and vascular resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Sodium nitroprusside (SNP) has been commonly used as a vasodilator agent for deliberate hypotension with general anesthesia. The purpose of this study was to observe whether cerebral blood flow (CBF) was significantly reduced when SNP infusion was accomplished to decrease peripheral blood flows with systemic hypotension. We conducted the experiments in 15 pentobarbital-anesthetized dogs. CBF was measured in 7 dogs using a venous outflow method. Hindlimb blood flow (HBF) serving as a representative of the peripheral circulations was obtained by flow measurement in the femoral artery in 8 dogs. The systemic arteral pressure (SAP) was decreased stepwise (approximately 5 mmHg for each step) by adjusting the SNP infusion rate. During the systemic hypotension, the CBF remained fairly constant despite a marked decline in the mean SAP to 40 mmHg. The calculated cerebral vascular resistance was progressively decreased with the systemic hypotension. On the contrary, a reduction in the HBF was observed accompanying the fall in SAP. When the mean SAP was decreased to 50 mmHg, the HBF was only 46.3 +/- 7.6% of the control value. The calculated hindlimb vascular resistance was slightly elevated during the whole course of SNP-induced hypotension. The results reveal the disparity between the brain and hindlimb in the resistance and flow responses to SNP-induced hypotension. The constancy of CBF subserves adequate brain perfusion when deliberate hypotension is conducted for surgery in the peripheral organs.  相似文献   

4.
Cardiac output, heart rate, stroke volume, pressures in the brachial artery, right ventricle and pulmonary artery, forearm blood flow, and arterial concentration of FFA, lactate and glucose were measured in healthy male volunteers during i–v infusion of PGE1, PGE2, PGF or 15-methyl PGF in increasing doses. In accordance with previous findings PGE1 and PGE2 increased cardiac output by a vasodilating effect in the systemic and pulmonary vascular bed, probably in combination with an inotropic effect on the heart.15-methyl PGF had essentially the same cardiovascular effects as PGF. They induced a slight increase in cardiac output due to effects on heart rate, while systemic vascular resistance was unchanged. Forearm vascular resistance increased and pressures in the pulmonary circulation rose, indicating a vasoconstriction in these vascular beds.Glucose concentrations were not affected nor were lactate concentrations, except for a slight decrease of unclear significance in the group receiving 15-methyl PGF. FFA increased slowly in the same manner as seen spontaneously in fasting individuals. These data do not indicate direct metabolic effects of the prostaglandins studied when given i–v.  相似文献   

5.
The time related hemodynamic responses to forskolin-elicited increases in cAMP were studied in the near-term fetus. Catheters and electrodes were inserted into 6 fetal sheep to measure arterial, venous and thoracic pressures, electrocorticogram, and electrocardiogram. At gestational day 134, experiments were performed to determine the effect of forskolin infusion (400 micrograms/ml at 1.03 ml/min for 5 min) on fetal blood pressure, coronary and cerebral blood flow and resistance. Blood flow measurements were made using 15 microns microspheres labelled with radioactive isotopes during the control period and at 0, 5, 10, 15, and 45 min after forskolin infusion. Forskolin infusion was always initiated during a high-voltage electrocortical epoch and was given twice in each animal. In each case, forskolin caused electrocortical activity to change from high-voltage state to an intermediate voltage state. Blood pressure fell significantly by the end of the infusion period and returned to control levels 10 min later. Fetal heart rate and coronary blood flow were immediately elevated by forskolin (P less than 0.01) whereas cerebral blood flow did not increase until 5 min later (P less than 0.01). Cerebral blood flow was still elevated (P less than 0.05) 45 min after the end of forskolin infusion, whereas coronary blood flow had returned to control levels. Both cerebral and coronary vascular resistance fell significantly in response to forskolin infusion (P less than 0.01). This effect lasted at least 15 min and had returned to control levels 45 min after forskolin had been terminated.  相似文献   

6.
We compared the effect of tropical application of PGF2a on cerebral arterioles in cats and rats equipped with an acutely implanted cranial window. Arterial diameter was measured using a microscope and image splitting device. PGF2a in a concentration ranging from 10?7 to 10?5 M had no effect on large (≥ 100 μm) or small (< 100 μm) cat pial arterioles, but induced a dose dependent constriction of rat pial arterioles with a maximum constriction fo 76% of control diameter. Dilation of cat large cerebral arterioles by topically applied PGE2 was not affected by simultaneous application of PGF2a and PGE2 induced dilation of small arterioles was decreased 3% by PGF2a. While we and others have previosuly shown that both cat and rat brain can synthesize PGF2a, it appears that PGF2a is not likely to normally be a major modulator of cerebral arteriolar resistance in all species.  相似文献   

7.
Midazolam is a water-soluble benzodiazepine used for anesthetic induction. Its effects on the cerebral circulation are still controversial. We evaluated the effects of midazolam on the cerebral blood flow (CBF), cerebral vascular resistance (CVR), and cerebral oxygen consumption (CMRO2) in dogs (n = 6) using the cerebral venous outflow method. CVR was calculated as the quotient of mean arterial pressure (MAP) and CBF, CMRO2 was obtained from the measurements of CBF and arterio-venous O2 difference (A-V dO2). Midazolam was administered in sequential i.v. doses of 0.5, 1.0, and 2.0 mg/kg by bolus injection with an interval of 20 min. This agent significantly reduced the MAP, CBF and CMRO2, but did not affect the CVR. The maximal decreases in MAP, CBF, and CMRO2 from the control levels averaged 14.8%, 12.2%, and 9.3%, respectively, by 0.5 mg/kg; 18.9% 18.6% and 12.1% by 1.0 mg/kg; and 23.6%, 18.7% and 16.1% by 2.0 mg/kg. Although the increments in doses further depressed that MAP, CBF and CMRO2, the dose-dependent effects were slight. Only the values of reduction in CMRO2 were significantly different between the doses of 0.5 and 2.0 mg/kg. Therefore, a dose of 0.5 mg/kg produced nearly the maximal effects. The results indicate that midazolam causes a mild reduction (10-25%) in arterial pressure, brain perfusion and cerebral oxygenation. Cerebral vascular resistance is not significantly changed.  相似文献   

8.
We tested the hypothesis that the changes in venous tone induced by changes in arterial blood oxygen or carbon dioxide require intact cardiovascular reflexes. Mongrel dogs were anesthetized with sodium pentobarbital and paralyzed with veruronium bromide. Cardiac output and central blood volume were measured by indocyanine green dilution. Mean circulatory filling pressure, an index of venous tone at constant blood volume, was estimated from the central venous pressure during transient electrical fibrillation of the heart. With intact reflexes, hypoxia (arterial PaO2 = 38 mmHg), hypercapnia (PaCO2 = 72 mmHg), or hypoxic hypercapnia (PaO2 = 41; PaCO2 = 69 mmHg) (1 mmHg = 133.32 Pa) significantly increased the mean circulatory filling pressure and cardiac output. Hypoxia, but not normoxic hypercapnia, increased the mean systemic arterial pressure and maintained the control level of total peripheral resistance. With reflexes blocked with hexamethonium and atropine, systemic arterial pressure supported with a constant infusion of norepinephrine, and the mean circulatory filling pressure restored toward control with 5 mL/kg blood, each experimental gas mixture caused a decrease in total peripheral resistance and arterial pressure, while the mean circulatory filling pressure and cardiac output were unchanged or increased slightly. We conclude that hypoxia, hypercapnia, and hypoxic hypercapnia have little direct influence on vascular capacitance, but with reflexes intact, there is a significant reflex increase in mean circulatory filling pressure.  相似文献   

9.
The hemodynamic effects of PGF, PGE2, and norepinephrine injected into the umbilical arterial circulation were compared in nine fetal lambs in utero. Umbilical blood flow was measured with radioactive microspheres and an electromagnetic flow transducer implanted on the distal aorta of the fetus after ligation of external iliac arteries and other accessible distal aortic branches.PGF and norepinephrine increased fetal arterial pressure and umbilical blood flow while umbilical vascular resistance increased slightly (PGF) or not at all (norepinephrine). PGE2 increased fetal arterial pressure, decreased umbilical blood flow, and exerted a profound active vasoconstrictor effect on the fetal placental bed. Our data taken together with the observations of others suggest that prostaglandins may play a role in the circulatory adaptations of the fetus at birth and that PGE2 in high concentrations is likely to have deleterious hemodynamic consequences in the fetus in utero.  相似文献   

10.
The effect of prostaglandin I2 (prostacyclin) on renal and intrarenal hemodynamics and function was studied in mongrel dogs to elucidate the role of this novel prostaglandin in renal physiology. Starting at a dose of 10?8 g/kg/min, PGI2 decreased renal vascular resistance and redistributed the blood flow away from the outer cortex (zone 1) and towards the juxtamedullary cortex (zone 4). At 3 × 10?8 g/kg/min, the renal vascular resistance decreased even further, but at this dose the mean arterial blood pressure also declined 13% indicating recirculation of this prostaglandin. PGI2 infusion at a vasodilatory dose resulted in natriuresis and kaliuresis. With a decline in filtration fraction, these changes were most likely secondary to the hemodynamic effects of this prostaglandin. Unlike PGE2, PGI2 had no direct effect on free water clearance indicating lack of activity at the collecting duct. PGI2 may be the important renal prostaglandin involved in modulating renal vascular resistance and intrarenal hemodynamics as well as influencing systemic blood pressure.  相似文献   

11.
We investigated the effects of a new pyridoquinazoline thromboxane synthetase inhibitor infused before administering endotoxin into 18 anesthetized sheep with lung lymph fistulas. In normal sheep increasing plasma Ro 23-3423 concentrations were associated with increased plasma levels of 6-keto-PGF, a reduced systemic vascular resistance (SVR, r = −0.80) and systemic arterial pressure (SAP, r = −0.92), the mean SAP falling from 80 to 50 mm Hg at the 20 and 30 mg/kg doses. Endotoxin infused into normal sheep caused transient pulmonary vasoconstriction associated with increased TxB2 and 6-keto-PGF levels while vasoconstriction and TxB2 increase were significantly inhibited by pretreatment with Ro 23-3423 in a dose-dependent manner. When compared to controls, plasma and lymph levels of 6-keto-PGF, PGF and PGE2 after endotoxin infusion were increased several-fold by administering Ro 23-3423 up to plasma levels of 10 μg/ml. Doses over 30 mg/kg with blood levels above 10 μg/ml reduced plasma and lymph levels of 6-keto-PGF, PGF and PGE2, suggesting cyclooxygenase blockade at this dose. The peak 6-keto-PGF levels at 60 min after endotoxin infusion in sheep with Ro-23-3423 levels below 10 μg/ml were associated with the greatest systemic hypotension due to a reduced SVR (r = −0.86). After endotoxin infusion the leukotrienes B4, C4, D4 and E4 in lung lymph were assayed by radioimmunoassay and high pressure liquid chromatography and remained at baseline values.  相似文献   

12.
Studies were conducted to determine the effect of iodine infusion on the luteal function of goats, as evident by blood progesterone concentration, and on plasma PGF2a levels. Ten cycling mixed breed goats were synchronized for estrus by PGF2a (5 mg) and given a single intrauterine iodine infusion on day 5 and on day 15 of the estrous cycle.Iodine infusion on day 5 (group II) resulted in shorter estrous length (8.2 days) and a 7-fold increase in plasma PGF2a concentration as compared to control animals (group I) given distilled water infusion. Similar infusion on day 15 (group III), on the other hand, failed to alter the estrcus cycle length but induced a moderate increase in PGF2a concentration which lasted only for a brief period. The progesterone levels declined concomitantly as PGF2a levels rose after iodine infusion in group II animals but failed to decline until after 24 hours in group III animals.The studies indicate that the endometrium reacts to the chemical stimuli and releases PGF2a which, in turn, alters the luteal function.  相似文献   

13.
The main purpose of the present study was to examine the relationships between measures of fitness [estimated peak oxygen consumption (V(O2) peak) and handgrip strength] and forearm vascular function in 55 young (22.6 +/- 3.5 yr) adults. In addition, the present study considered methodological and technical aspects regarding the examination of the venous system using mercury in-Silastic strain-gauge plethysmography (MSGP). Forearm venous capacitance and outflow were examined using five different [7, 14, 21, 28, and 35 mmHg < diastolic blood pressure (DBP)] venous occlusion pressures and after a 5- and 10-min period of venous occlusion. A pressure of 7 mmHg < DBP and a period of 10 min venous occlusion produced the greatest (P < 0.05) venous capacitance and outflow, without altering arterial indexes. Reproducibility of forearm arterial and venous indexes were evaluated at rest and after 5 min of upper arm arterial occlusion at 240 mmHg on three different occasions within 10 days with the interclass correlation coefficient ranging from 0.70 and 0.94. Estimated V(O2) peak correlated with postocclusion arterial inflow (r = 0.54, P = 0.012) and resting venous outflow (r = 0.56, P = 0.016). Finally, handgrip strength was associated with venous capacitance (r = 0.57, P = 0.007) and outflow (r = 0.67, P = 0.001). These results indicate that the examination of forearm vascular function using MSGP is reproducible. Moreover, the data show the importance of careful consideration of the selection of venous occlusion pressure and period when implementing these measures in longitudinal trials. Finally, the associations between fitness and venous measures suggest a link between venous function and exercise performance.  相似文献   

14.
Potential interactions between PGD2 and PGF in the mesenteric and renal vascular beds were investigated in the anesthetized dog. Regional blood flows were measured with electromagnetic flow probes. PGD2, PGF and Norepinephrine (NE) were injected as a bolus directly into the appropriate artery, and responses to these agents were obtained before, during and after infusion of either PGD2 or PGF into the left ventricle. In each case, the infused prostaglandin caused vascular effects of its own. Left ventricular infusion of PGD2 reduced responses to local injections of PGD2 in the intestine, and a similar effect was observed for PGF, suggesting significant receptor or receptor-like interactions for each of the prostanoids. However, systemic infusion of prostaglandin F (20–100 ng/kg/min) had no effect on renal or mesenteric vascular responses to local injection of prostaglandin D2. Similarly, PGD2 administration (100 ng/kg/min) did not affect responses to PGF in the intestine. The present results therefore suggest that these prostaglandins, i.e., D2 and F, act through separate receptors in the mesenteric and renal vascular beds. In addition, increased prostaglandin F levels produced by infusion of F reduced mesenteric but not renal blood flow, suggesting that redistribution of cardiac output might participate in side effects often observed with clinical use of this prostaglandin, such as nausea and abdominal pain.  相似文献   

15.
The objective of this study was to determine the effect of systemic MgSO4 infusion on subendocardial and subepicardial perfusion. Seventeen spontaneously breathing piglets were examined. Myocardial perfusion was measured using radiolabeled microspheres at baseline, 30 and 60 min after either MgSO4 (80 mg/kg) or saline infusion. Blood pressure, heart rate, and cardiac output were also measured at these time intervals. Comparison of the magnesiuminduced changes in systemic blood pressure and on subendocardial and subepicardial perfusion at 30 and 60 min with values obtained with saline solution at 30 and 60 min, yielded no statistically significant difference (Tables 1–3). The ratio of subendocardial/subepicardial blood flow and subendocardial and subepicardial coronary vascular resistance at 30 and 60 min revealed no statistically significant differences between the magnesium and the control group (Table 3). There were no statistically significant difference in cardiac output and heart rate during any of the measured periods (Table 2). Our results suggest that the administration of MgSO4 does not alter the ratio of subendocardial/subepicardial blood flow and the ratio of subendocardial/subepicardial coronary vascular resistance.  相似文献   

16.
The bovine pulmonary vascular response to alpha- and beta-agonists was studied using an awake intact calf model. Pulmonary arterial pressure, pulmonary arterial wedge pressure, left atrial pressure, systemic arterial pressure, and cardiac output were measured in response to 3 min infusions of isoproterenol (beta-agonist; 0.12, 0.24, 0.48, 0.9, and 1.8 micrograms X kg-1 X min-1) and phenylephrine (alpha-agonist, 0.15, 0.30, 0.60, 1.15, and 2.30 micrograms X kg-1 X min-1). Phenylephrine caused an increase in vascular resistance in the pulmonary arterial and venous compartments. The slope of the resistance in response to phenylephrine was greater in the pulmonary arterial than pulmonary venous circulation. Isoproterenol resulted in a dose-dependent decrease in vascular resistance in the pulmonary arteries and veins. The vascular resistance was decreased to the same level in the pulmonary arteries and veins although the arteries showed a greater percent change. In addition, isoproterenol infusion resulted in a transient decrease in arterial pH and increase in values for packed cell volume and haemoglobin.  相似文献   

17.
The thromboxane receptor antagonist EP 092 inhibits the acute pulmonary vascular response to endotoxin in the anaesthetized, closed-chest sheep. The increase in the TXB2 level in arterial blood was not suppressed by EP 092. Intravenous infusion of the thromboxane mimetic 11,9-epoxymethano PGH2, but not PGF, raises pulmonary artery pressure and lowers arterial pO2 similar to the endotoxin. Isolated strips of lobar pulmonary veins but not lobar arteries are contracted by low concentrations of 11,9-epoxymethano PGH2 - the effects are potently inhibited by EP 092.  相似文献   

18.
The lung may release prostacyclin (PGI2) in response to humoral or mechanical stimuli. We measured 6 keto-PGF1 alpha as an index of PGI2 production during serotonin (5-HT) infusion, elevated venous pressure (Pv), or increased blood flow (Q) in the isolated canine lower left lung lobe (LLL). Lobar vascular resistance (LVR) was partitioned into arterial (Ra), middle (Rm), and venous (Rv) components by arterial and venous occlusions. The infusion of 55-210 micrograms/min 5-HT (n = 9) was associated with concomitant increases in PGI2 production and dose-related increases in pulmonary arterial pressure (Pa) and LVR. 5-HT increased Ra at each infusion rate, whereas Rm was not changed and Rv was increased only at the highest infusion rate. When Pa was increased by stepwise elevations in Pv from 3.7 to 19.1 cmH2O (n = 8) or by increases in Q from 250 to 507 ml/min (n = 5) to match the Pa increase observed during 5-HT infusion, PGI2 production was not altered. Increases in Pv reduced LVR largely by decreasing Ra, whereas increases in Q reduced LVR without changing Ra, Rm, or Rv. Infusion of 5-HT when Pa was held constant by reduction in blood flow (n = 6) did not increase PGI2. Thus infusion of 5-HT at a normal blood flow rate increased PGI2 formation in the isolated blood-perfused dog lung lobe. The results also suggest that sustained mechanical effects related to increased venous pressure or elevated blood flow are not associated with a sustained elevation of PGI2 formation.  相似文献   

19.
In previous studies we have shown that platelet-activating factor (PAF) is a potent vasoactive substance with deleterious effects on coronary blood flow (CBF) and myocardial performance. The present student further investigates the effects of PAF during its sustained intracoronary infusion in the blood-perfused domestic pig (n=16). PAF infusion (1–9nmol/min) produced triphasic changes in CBF (n=7): an initial brief phase of coronary dilation (14 ± 2%) above baseline), followed by severe reduction in CBF due to increase in coronary vascular resistance and a third phase of escape that was characterized by return of CBF towards baseline in spite of continuing PAF infusion. In 9 remaining pigs PAF infusion had a biphasic response: the first phase of coronary dilation rapidly turned into severe coronary constriction accompanied by severe systemic hypotension and death within a few min. PAF infusion caused a profound rise in systemic arterial and coronary venous thromboxane B2 levels, while 6-keto-PGF and leukotriene C4-immunoreactivity levels were not changed. Indomethacin completely blocked the rise in thromboxane level during PAF infusion and abolished the constrictor effect of PAF on the coronary vessels. These data suggest that PAF might play a detrimental role on the coronary circulation and cardiac function, primarily through thromboxane A2 mediated mechanism.  相似文献   

20.
Prostacyclin (PGI2), prostaglandin E2 (PGE2) and prostaglandin F2∝ (PGF2∝) were tested here in unanesthetized male Sprague-Dawley rats for their effects on the cardiovascular system as mediated by the Central nervous system. Cannulae were chronically implanted into the third cerebral ventricle, femoral arteries and femoral veins of rats. Both PGE2 and PGF2∝ induced increased arterial blood pressure and tachycardia by an action on the central nervous system. The changes seen with PGE2 were larger than those observed with PGF2∝. Only transient depressor effects were seen with PGI2 and these changes appeared to be due to the leakage of the substance into the peripheral vascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号