首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Hormone-responsive genes rely on complex regulatory elements known as hormone response units to integrate various regulatory signals. Characterization of the steroid-dependent regulatory element (SDRE) in the check ovalbumin gene (--892 to --796) suggests that it functions as a hormone response unit. Previous studies using gel mobility shift assays and several types of footprinting analyses demonstrated that proteins bind to this entire element in vitro even in the absence of steroid hormones. However, the genomic footprinting experiments described herein indicate that the binding of three different proteins or protein complexes to the SDRE requires estrogen and corticosterone, suggesting that the chromatin structure of this site is restricted in vivo. Transfection experiments using linker scanning and point mutations support the contention that the binding of these three complexes is essential for induction of the ovalbumin gene by steroid hormones. In addition, functional analyses suggest that a fourth complex is also necessary for maximal induction. These and other data suggest that the SDRE functions as a hormone response unit to coordinate signals generated by two steroid hormones.  相似文献   

6.
7.
8.
9.
10.
11.
The role of estrogen receptor on ovalbumin mRNA induction by steroid hormones was investigated in primary cultures of oviduct cells from estrogen-stimulated immature chicks of genetically selected high- and low-albumen egg laying lines (H- and L-lines). In experiment 1,the extent of ovalbumin mRNA induction and changes in estrogen and progesterone receptors were compared between the oviduct cells from H- and L-lines with or without steroid hormones in the culture medium. In experiment 2, the effect of estrogen receptor gene transfection on the induction of ovalbumin mRNA was studied in the oviduct cells from the L-line chicks. The results showed a close correlation of the changes in ovalbumin mRNA with the numbers of nuclear and total estrogen receptors in the oviduct cells but not with the numbers of nuclear and total progesterone receptors. Estrogen receptor gene transfection induced ovalbumin mRNA to a moderate extent in the absence of the steroid hormones. To our surprise, however, estrogen receptor gene transfection apparently suppressed the ovalbumin mRNA responsiveness to estrogen to a considerable extent. It was concluded, therefore, that the extent of estrogen receptor expression might not be primarily responsible for the differences in responsiveness to steroid hormones of oviduct cells from genetically selected H- and L-line chickens.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号