首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thrombomodulin (TM) forms a 1:1 complex with thrombin. Whereas thrombin alone cleaves fibrinogen to make the fibrin clot, the thrombin-TM complex cleaves protein C to initiate the anticoagulant pathway. The fourth and fifth EGF-like domains of TM together form the minimal fragment with anticoagulant cofactor activity. A short linker connects the fourth and fifth EGF-like domains of TM, and Met 388 in the middle of the linker interacts with both domains. Several different structures of TMEGF45 variants are now available, and these show that mutation of Met 388 alters the structure of the fifth domain, as well as the connectivity of the two domains. To probe this phenomenon more thoroughly, NMR backbone dynamics experiments have been carried out on the individual fourth and fifth domains as well as on the wild type, the Met 388 Leu mutant, and the variant in which Met 388 is oxidized. The results presented here show that changes at Met 388 cause significant changes in backbone dynamics in both the fourth and fifth EGF-like domains of TM. Backbone dynamics within the small loop of the fourth domain Tyr 358 correlate with anticoagulant cofactor activity. Backbone dynamics of the thrombin-binding residues Tyr 413 and Ile 414 are inversely correlated with thrombin binding. The preordering of the backbone of Tyr 413 and Ile 414 only occurs in the two-domain fragments, revealing a role for the fourth domain in thrombin binding as well as in anticoagulant cofactor activity.  相似文献   

2.
Thrombomodulin (TM) is an endothelial cell surface glycoprotein that is responsible for switching the catalytic activity of thrombin away from fibrinogen cleavage (pro-coagulant) and towards protein C cleavage (anticoagulant). Although TM is a large protein, only the fourth and fifth epidermal growth factor-like (EGF-like) domains are required for anticoagulant function. These two domains must work together, and the linker between the two domains contains a single methionine residue, Met 388. Oxidation of Met 388 is deleterious for TM activity. Structural studies, both X-ray and NMR, of wild type and variants at position 388 show that Met 388 provides a key linkage between the two domains. Oxidation of the methionine has consequences for the structure of the fifth domain, which binds to thrombin. Oxidation also appears to disrupt the interdomain contacts resulting in structural and dynamic changes. The functional consequences of oxidation of Met 388 include decreased anticoagulant activity. Oxidative stress from several causes is reflected in lower serum levels of activated protein C and a higher thrombotic tendency, and this is thought to be linked to the oxidation of Met 388 in TM. Thus, TM structure and function are altered in a subtle but functionally critical way upon oxidation of Met 388.  相似文献   

3.
A glycosylated fragment of thrombomodulin containing two epidermal growth factor-like domains (TMEGF45) was analyzed by NMR. The 4th-domains structure of this two-domain fragment is similar to that of the individual domain previously determined. The 5th-domain, which has uncrossed disulfide bonds, is not as well determined in the two-domain fragment than the individual domain previously solved. The flexibility of the 5th-domain is consistent with low heteronuclear NOEs. In the individual 5th-domain, Met 388 was disordered, and key thrombin binding residues formed a hydrophobic core. By contrast, in TMEGF45, Met 388 is in the 5th-domain core, positioned by Phe 376 from the 4th-domain. As a result, key thrombin binding residues that were in the core of the individual domain are expelled. Upon thrombin binding, chemical shifts of two residues in the 4th-domain, the three interdomain linker residues, and nearly all of the 5th-domain are perturbed. Thus, TMEGF45 binds thrombin by an induced fit mechanism involving a flexible 5th-domain.  相似文献   

4.
Koeppe JR  Seitova A  Mather T  Komives EA 《Biochemistry》2005,44(45):14784-14791
Thrombomodulin (TM) forms a 1:1 complex with thrombin. Whereas thrombin alone cleaves fibrinogen to make the fibrin clot, the thrombin-TM complex cleaves protein C to initiate the anticoagulant pathway. Crystallographic investigations of the complex between thrombin and TMEGF456 did not show any changes in the thrombin active site. Therefore, research has focused recently on how TM may provide a docking site for the protein C substrate. Previous work, however, showed that when the thrombin active site was occupied with substrate analogues labeled with fluorophores, the fluorophores responded differently to active (TMEGF1-6) versus inactive (TMEGF56) fragments of TM. To investigate this further, we have carried out amide H/(2)H exchange experiments on thrombin in the presence of active (TMEGF45) and inactive (TMEGF56) fragments of TM. Both on-exchange and off-exchange experiments show changes in the thrombin active site loops, some of which are observed only when the active TM fragment is bound. These results are consistent with the previously observed fluorescence changes and point to a mechanism by which TM changes the thrombin substrate specificity in favor of protein C cleavage.  相似文献   

5.
The kinetics of solvent accessibility at the protein-protein interface between thrombin and a fragment of thrombomodulin, TMEGF45, have been monitored by amide hydrogen/deuterium (H/2H) exchange detected by MALDI-TOF mass spectrometry. The interaction is rapid and reversible, requiring development of theory and experimental methods to distinguish H/2H exchange due to solvent accessibility at the interface from H/2H exchange due to complex dissociation. Association and dissociation rate constants were measured by surface plasmon resonance and amide H/2H exchange rates were measured at different pH values and concentrations of TMEGF45. When essentially 100% of the thrombin was bound to TMEGF45, two segments of thrombin became completely solvent-inaccessible, as evidenced by the pH insensitivity of the amide H/2H exchange rates. These segments form part of anion-binding exosite I and contain the residues for which alanine substitution abolishes TM binding. Several other regions of thrombin showed slowing of amide exchange upon TMEGF45 binding, but the exchange remained pH-dependent, suggesting that these regions of thrombin were rendered only partially solvent-inaccessible by TMEGF45 binding. These partially inaccessible regions of thrombin form both surface and buried contacts into the active site of thrombin and contain residues implicated in allosteric changes in thrombin upon TM binding.  相似文献   

6.
A number of alanine and more conservative mutants of residues in the fourth domain of thrombomodulin (TM) were prepared and assayed for protein C activation and for thrombin binding. Several of the alanine mutations appeared to cause misfolding or structural defects as assessed by poor expression and/or NMR HSQC experiments, while more conservative mutations at the same site appeared to allow correct folding and preserved activity. Several of the conservative mutants bound more weakly to thrombin despite the fact that the fourth domain does not directly contact thrombin in the crystal structure of the thrombin-TM complex. A few of the mutant TM fragments bound thrombin with an affinity similar to that of the wild type but exhibited decreases in k cat for protein C activation. These mutants were also less able to cause a change in the steady state fluorescence of fluorescein-EGR-chloromethylketone bound to the active site of thrombin. These results suggest that some residues within the fourth domain of TM may primarily interact with protein C but others are functionally important for altering the way TM interacts with thrombin. Residues in the fourth domain that primarily affect k cat for protein C activation may do this by changing the active site of thrombin.  相似文献   

7.
8.
To elucidate the binding sites for thrombin and protein C in the six epidermal growth factor (EGF) domains of human thrombomodulin, recombinant mutant proteins were expressed in COS-1 cells. Mutant protein EGF456, which contains the fourth, fifth, and sixth EGF domains from the NH2 terminus of thrombomodulin, showed complete cofactor activity in thrombin-catalyzed protein C activation, as did intact thrombomodulin or elastase-digested thrombomodulin. EGF56, containing the fifth and sixth EGF domains, did not have cofactor activity; but EGF45, containing the fourth and fifth EGF domains, had about one-tenth of the cofactor activity of EGF456. Thrombin binding to attached recombinant thrombomodulin (D123) was inhibited by EGF45 as well as by EGF56. A synthetic peptide (ECPEGYILDDGFICTDIDE), corresponding to Glu-408 to Glu-426 in the fifth EGF domain, inhibited thrombin binding to attached thrombomodulin (D123) with an apparent Ki of 95 microM. At Ca2+ concentrations of 0.25-0.3 mM, intact protein C was maximally activated by thrombin in the presence of EGF45, EGF456, or EGF1-6, which contains the first to sixth EGF domains; but such maximum cofactor activity was not observed when gamma-carboxyglutamic acid-domainless protein C was used. These findings suggest that: 1) thrombin binds to the latter half of the fifth EGF domain; and 2) protein C binds to the fourth EGF domain of thrombomodulin through Ca2+ ions.  相似文献   

9.
Conformations of the prototypic UCP-1 (uncoupling protein-1) and its TM (transmembrane) and ML (matrix-loop) domains were studied by CD spectroscopy. Recombinant, untagged mouse UCP-1 and a hexahistidine-tagged version of the protein were obtained in high purity following their overexpression in Escherichia coli. The TM and ML domains of hamster UCP-1 were chemically synthesized. Conformations of both recombinant UCP-1 proteins were dominantly helical (40-50%) in digitonin micelles. Binding of the purine nucleotides GDP and GTP to UCP-1, detected in the near-UV CD region, supported the existence of the functional form of the protein in digitonin micelles. All individual TM and ML peptides, except the third ML domain, adopted helical structures in aqueous trifluoroethanol, which implies that, in addition to six TM segments, at least two of the ML domains of the UCP-1 can form helical structures in membrane interface regions. TM and ML domains interacted with vesicles composed of the main phospholipids of the inner membrane of mitochondria, phosphatidylcholine, phosphatidylethanolamine and cardiolipin, to adopt dominantly beta- and/or unordered conformations. Mixtures of UCP-1 peptide domains spontaneously associated in aqueous, phospholipid vesicles and digitonin micelle environments to form ordered conformations, which exhibited common features with the conformations of the full-length proteins. Thermal denaturations of UCP-1 and its nine-peptide-domain assembly in digitonin were co-operative but not reversible. Assembly of six TM domains in lipid bilayers formed ion-conducting units with possible helical bundle conformations. Consequently, covalent connection between peptide domains, tight domain interactions and TM potential are essential for the formation of the functional conformation of UCP-1.  相似文献   

10.
Thrombin inhibition by cyclic peptides from thrombomodulin.   总被引:4,自引:3,他引:1       下载免费PDF全文
Peptides corresponding to the loop regions of the fourth, fifth, and sixth epidermal growth factor (EGF)-like domains of thrombomodulin (TM) have been synthesized and assayed for thrombin inhibition, as indicated by both inhibition of thrombin-mediated fibrinogen clotting and inhibition of the association of thrombin with TM that results in protein C activation. Peptides from the fifth EGF-like domain showed significant inhibition of fibrinogen clotting and protein C activation, whereas peptides from the fourth and sixth EGF-like domains were weak inhibitors in both assays. Two structural features were important for inhibitory potency of the peptides from the fifth EGF-like domain: cyclization by a disulfide bond and attachment of the "tail" amino acids C-terminal to the disulfide loop. Linear control peptides did not significantly inhibit clotting or protein C activation. The C-terminal loop alone, the "tail" peptide, or a mixture of the two were at least 10-fold less potent inhibitors of clotting or protein C activation. A more constrained peptide analog was designed by deletion of an isoleucine within the C5-C6 disulfide loop, TM52-1 + 5C. This analog was a better inhibitor in both assay systems, having a Ki for protein C activation of 26 microM.  相似文献   

11.
Normal tissue radiation injury is associated with loss of vascular thromboresistance, notably because of deficient levels of endothelial thrombomodulin (TM). TM is located on the luminal surface of most endothelial cells and has critical anticoagulant and anti-inflammatory functions. Chemical oxidation of a specific methionine residue (Met388) at the thrombin-binding site in TM reduces its main functional activity, i.e., the ability to activate protein C. We examined whether exposure to ionizing radiation affects TM in a similar manner. Full-length recombinant human TM, a construct of epidermal growth factor-like domains 4-6, which are involved in protein C activation, and a synthetic peptide containing the methionine of interest were exposed to gamma radiation in a cell-free system, i.e., a system not confounded by TM turnover or ectodomain shedding. The influence of radiation on functional activity was assessed with the protein C activation assay; formation of a TM-thrombin complex was assessed with surface plasmon resonance (Biacore), and oxidation of Met388 was assessed by HPLC and confirmed by mass spectroscopy. Exposure to radiation caused a dose-dependent reduction in protein C activation, impaired TM-thrombin complex formation, and oxidation of Met388. These results demonstrate that ionizing radiation adversely affects the TM molecule. Our findings may have relevance to normal tissue toxicity in clinical radiation therapy as well as to the development of radiation syndromes in the non-therapeutic radiation exposure setting.  相似文献   

12.
Thrombomodulin (TM) functions as a cofactor to enhance the rate of protein C activation by thrombin approximately 1000-fold. The molecular mechanism by which TM improves the catalytic efficiency of thrombin toward protein C is not known. Molecular modeling of the protein C activation based on the crystal structure of thrombin in complex with the epidermal growth factor-like domains 4, 5, and 6 of TM (TM456) predicts that the binding of TM56 to exosite 1 of thrombin positions TM4 so that a negatively charged region on this domain juxtaposes a positively charged region of protein C. It has been hypothesized that electrostatic interactions between these oppositely charged residues of TM4 and protein C facilitate a proper docking of the substrate into the catalytic pocket of thrombin. To test this hypothesis, we have constructed several mutants of TM456 and protein C in which charges of the putative interacting residues on both TM4 (Asp/Glu) and protein C (Lys/Arg) have been reversed. Results of TM-dependent protein C activation studies by such a compensatory mutagenesis approach support the molecular model that TM4 interacts with the basic exosite of protein C.  相似文献   

13.
Bao H  Kasten SA  Yan X  Hiromasa Y  Roche TE 《Biochemistry》2004,43(42):13442-13451
Pyruvate dehydrogenase kinase 2 (PDK2) activity is stimulated by NADH and NADH plus acetyl-CoA via the reduction and reductive acetylation of the lipoyl groups of the dihydrolipoyl acetyltransferase (E2) component. Elevated K(+) and Cl(-) were needed for significant stimulation. Stimulation substantially increased both k(cat) and the K(m) for ATP; the fractional stimulation increased with the level of ATP. With an E2 structure lacking the pyruvate dehydrogenase (E1) binding domain, stimulation of PDK2 was retained, the K(m) for E1 decreased, and the equilibrium dissociation constant for ATP increased but remained much lower than the K(m) for ATP. Stimulation of PDK2 activity greatly reduced the fraction of bound ADP. These results fit an ordered reaction mechanism with ATP binding before E1 and stimulation increasing the rate of dissociation of ADP. Conversion of all of the lipoyl groups in the E2 60mer to the oxidized form (E2(ox)) greatly reduced k(cat) and the K(m) of PDK2 for ATP. Retention over an extended period of time of a low portion of reduced lipoyl groups maintains E2 in a state that supported much higher PDK2 activity than short-term (5 min) reduction of a large portion of lipoyl groups of E2(ox), but reduction of E2(ox) produced a larger fold stimulation. Reduction and to a greater extent reductive acetylation increased PDK2 binding to E2; conversion to E2(ox) did not significantly hinder binding. We suggest that passing even limited reducing equivalents among lipoyl groups maintains E2 lipoyl domains in a conformation that aids kinase function.  相似文献   

14.
The bacterial histidine autokinase CheA contains a histidine phosphotransfer (Hpt) domain that accepts a phosphate from the catalytic domain and donates the phosphate to either target response regulator protein, CheY or CheB. The Hpt domain forms a helix-bundle structure with a conserved four-helix bundle motif and a variable fifth helix. Observation of two nearly equally populated conformations in the crystal structure of a Hpt domain fragment of CheA from Thermotoga maritima containing only the first four helices suggests more mobility in a tightly packed helix bundle structure than previously thought. In order to examine how the structures of Hpt domain homologs may differ from each other particularly in the conformation of the last helix, and whether an alternative conformation exists in the intact Hpt domain in solution, we have solved a high-resolution, solution structure of the CheA Hpt from T. maritima and characterized the backbone dynamics of this protein. The structure contains a four-helix bundle characteristic of histidine phosphotransfer domains. The position and orientation of the fifth helix resembles those in known Hpt domain crystal and solution structures in other histidine kinases. The alternative conformation that was reported in the crystal structure of the CheA Hpt from T. maritima missing the fifth helix is not detected in the solution structure, suggesting a role for the fifth helix in providing stabilizing forces to the overall structure.  相似文献   

15.
Monoclonal antibodies for human thrombomodulin, a cofactor for thrombin-catalyzed activation of protein C, were prepared and their epitopes characterized. All six antibodies (MFTM-1-MFTM-6) bound to an elastase-digested active fragment of thrombomodulin, which contains six consecutive EGF domains. Binding of thrombomodulin to these antibodies did not depend on Ca2+ concentration. MFTM-4, MFTM-5, and MFTM-6 strongly inhibited protein C activation by thrombin and thrombomodulin. MFTM-4 and MFTM-5 inhibited thrombin binding to fixed thrombomodulin and bound to a recombinant mutant EGF456 protein, which contained the fourth, fifth, and sixth EGF domains of thrombomodulin. However, MFTM-6 did not inhibit thrombin binding to thrombomodulin and did not bind to EGF456 protein. Binding of thrombomodulin to fixed MFTM-4 or MFTM-5 was competitively inhibited by a recombinant mutant EGF45 protein which contained the fifth and sixth EGF-domains. These results suggest that epitopes of MFTM-4 and MFTM-5 are located in the fifth EGF domain of thrombomodulin. Thus, the binding site for thrombin is located in the fifth EGF domain. These results also suggest that an epitope for MFTM-6 is located at a region near the binding site for gamma-carboxyglutamic acid residues of protein C via Ca2+ on thrombomodulin.  相似文献   

16.
Gao J  Yao Y  Squier TC 《Biophysical journal》2001,80(4):1791-1801
Oxidation of either Met(145) or Met(146) in wheat germ calmodulin (CaM) to methionine sulfoxide prevents the CaM-dependent activation of the plasma membrane (PM) Ca-ATPase (D. Yin, K. Kuczera, and T. C. Squier, 2000, Chem. Res. Toxicol. 13:103-110). To investigate the structural basis for the inhibition of the PM-Ca-ATPase by oxidized CaM (CaM(ox)), we have used circular dichroism (CD) and fluorescence spectroscopy to resolve conformational differences within the complex between CaM and the PM-Ca-ATPase. The similar excited-state lifetime and solvent accessibility of the fluorophore N-1-pyrenyl-maleimide covalently bound to Cys(26) in unoxidized CaM and CaM(ox) indicates that the globular domains within CaM(ox) assume a native-like structure following association with the PM-Ca-ATPase. However, in comparison with oxidized CaM there are increases in the 1) molar ellipticity in the CD spectrum and 2) conformational heterogeneity between the opposing globular domains for CaM(ox) bound to the CaM-binding sequence of the PM-Ca-ATPase. Furthermore, CaM(ox) binds to the PM-Ca-ATPase with high affinity at a distinct, but overlapping, site to that normally occupied by unoxidized CaM. These results suggest that alterations in binding interactions between CaM(ox) and the PM-Ca-ATPase block important structural transitions within the CaM-binding sequence of the PM-Ca-ATPase that are normally associated with enzyme activation.  相似文献   

17.
The Fc region has two highly conserved methionine residues, Met 33 (C(H)3 domain) and Met 209 (C(H)3 domain), which are important for the Fc's structure and biological function. To understand the effect of methionine oxidation on the structure and stability of the human IgG1 Fc expressed in Escherichia coli, we have characterized the fully oxidized Fc using biophysical (DSC, CD, and NMR) and bioanalytical (SEC and RP-HPLC-MS) methods. Methionine oxidation resulted in a detectable secondary and tertiary structural alteration measured by circular dichroism. This is further supported by the NMR data. The HSQC spectral changes indicate the structures of both C(H)2 and C(H)3 domains are affected by methionine oxidation. The melting temperature (Tm) of the C(H)2 domain of the human IgG1 Fc was significantly reduced upon methionine oxidation, while the melting temperature of the C(H)3 domain was only affected slightly. The change in the C(H)2 domain T m depended on the extent of oxidation of both Met 33 and Met 209. This was confirmed by DSC analysis of methionine-oxidized samples of two site specific methionine mutants. When incubated at 45 degrees C, the oxidized Fc exhibited an increased aggregation rate. In addition, the oxidized Fc displayed an increased deamidation (at pH 7.4) rate at the Asn 67 and Asn 96 sites, both located on the C(H)2 domain, while the deamidation rates of the other residues were not affected. The methionine oxidation resulted in changes in the structure and stability of the Fc, which are primarily localized to the C(H)2 domain. These changes can impact the Fc's physical and covalent stability and potentially its biological functions; therefore, it is critical to monitor and control methionine oxidation during manufacturing and storage of protein therapeutics.  相似文献   

18.
The cDNA and deduced amino acid sequences for arginine kinase (AK) from the deep-sea clam Calyptogena kaikoi have been determined revealing an unusual two-domain (2D) structure with molecular mass of 80 kDa, twice that of normal AK. The amino acid sequences of both domains contain most of the residues thought to be required for substrate binding found in the horseshoe crab Limulus polyphemus AK, a well studied system for which several X-ray crystal structures exist. However, two highly conserved residues, D62 and R193, that form a salt bridge thereby stabilizing the substrate-bound structure have been replaced by G and N in domain 1, and G and P in domain 2, respectively. The present effort probes whether both domains of Calyptogena AK are catalytically competent. Recombinant constructs of the wild-type enzyme of both single domains, and of selected mutants of the Calyptogena AK have been expressed as fusion proteins with the maltose-binding protein. The wild-type two-domain enzyme (2D[WT]) had high AK activity (k(cat)=23 s(- 1), average value of the two domains), and the single domain 2 (D2[WT]) showed 1.5-times higher activity (k(cat)=38 s(- 1)) than the wild-type 2D[WT]. Interestingly, the single domain 1 (D1[WT]) showed only a very low activity (k(cat) approximately 0.016 s(- 1)). Introduction of a Y68A mutation in both domains virtually abolished catalytic activity. On the other hand, significant residual activity was observed (k(cat)=2.8 s(- 1)), when the Y68A mutation was introduced only into domain 2 of the two-domain enzyme. A similar mutation in domain 1 of the two-domain enzyme reduced activity to a much lower extent (k(cat)=11.1 s(- 1)). Although the domains of this "contiguous" dimeric AK each have catalytic capabilities, the presence of domain 2 strongly influences the stability and activity of domain 1.  相似文献   

19.
The fourth EGF-like domain of thrombomodulin (TM4), residues E346-F389 in the TM sequence, has been synthesized. Refolding of the synthetic product under redox conditions gave a single major product. The disulfide bonding pattern of the folded, oxidized domain was (1-3, 2-4, 5-6), which is the same as that found in EGF protein. TM4 was tested for TM anticoagulant activity because deletion and substitution mutagenesis experiments have shown that the fourth EGF-like domain of TM is essential for TM cofactor activity. TM4 showed no TM-like activity in two assay systems, both for inhibition of fibrin clot formation, and for cofactor activity in thrombin activation of protein C. A preliminary structure of TM4 was determined by 2D 1H NMR from 519 NOE-derived distance constraints. Distance geometry calculations yielded a single convergent structure. The structure resembles the structure of EGF and other known EGF-like domains but has some key differences. The central two-stranded beta-sheet is conserved despite the differences in the number of amino acids in the loops. The C-terminal loop formed by the disulfide bond between C372 and C386 in TM4 is five amino acids longer than the analogous loop between C33 and C42 of EGF protein. This loop appears to have a different fold in TM4 than in EGF protein. The loop forms the two outside strands of a broken, irregular tri-stranded beta-sheet, and amino acids H384-F389 lie between the two strands forming the middle strand of the sheet. Thus, although the C-terminus of EGF protein forms one of the outside strands of a tri-stranded antiparallel sheet, the C-terminus of TM4 forms the inside strand of an irregular tri-stranded parallel-anti-parallel sheet. The residues D349, E357, and E374, which were shown to be critical for cofactor activity by alanine scanning mutagenesis, all lie in a patch near the C-terminal loop, and are solvent accessible. The other critical residues, Y358 and F376, are largely buried and appear to play essential structural rather than functional roles.  相似文献   

20.
Xylanase C from the ruminant bacterium Fibrobacter succinogenes is comprised of two catalytic domains, A and B, and a third domain, C, of unknown function. The DNA coding for domains A and B of xylanase C were separately cloned and expressed in Escherichia coli as fusion proteins with glutathione-S:-transferase. The fusion proteins were isolated by affinity chromatography on glutathione-Sepharose 4B, cleaved with thrombin and the released xylanase C catalytic domains A and B were purified to apparent homogeneity by anion-exchange chromatography on Mono Q. Electrospray mass spectrometry provided a molecular mass of 27 818 Da (expected, 27 820 Da) for domain B. The pH and temperature optima for activity of domain B on oat spelt xylan were 5.0 and 52 degrees C, respectively. A kinetic analysis of the activity of the catalytic domain A on oat spelt xylan, birch wood xylan and xylooligomers at pH 6.5 and 37 degrees C provided data significantly different to those obtained previously with a protease-derived form of the enzyme [Zhu et al. (1994) J. Bacteriol. 176, 3885-3894]. The isolated domain A was more active on barley-glucan than the protease-derived form and its affinity for birch wood xylan was enhanced resulting in greater overall catalytic efficiency as reflected by k(cat)/K:(M) values. Likewise, significant differences in the Michaelis-Menten parameters K:(M), k(cat) and k(cat)/K:(M) were obtained with domain B compared with values previously reported with this domain attached to domain C. In general, the presence of domain C appeared to decrease the overall efficiency of domain B 7- and 36-fold with birch wood xylan and xylopentaose as substrates, respectively, as reflected by values of k(cat)/K:(M). The removal of domain C also affected the mode of action of domain B such that it more closely resembled that of catalytic domain A. However, no change in either pH and temperature optima or stability were found with domain B compared with the combined domains B and C. The function of domain C remains unknown, but hydrophobic cluster analysis indicated that it may belong to a class of dockerin domains involved in the protein-protein interactions of cellulolytic and xylanolytic complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号