首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photovoltaic properties of chlorophyll a and beta-carotene Langmuir films and Langmuir films of a mixure of chlorophyll a and beta-carotene at different molar ratios were investigated. SnO2-optically transparent electrodes were used as a support. It was shown that the film photovoltage value depends on surface pressure and the total film thickness (the number of layers deposited onto SnO2-optically transparent electrodes). Fifteen layers (SP = 35 mH/m) of chlorophyll and 7-10 layers (SP = 20 mH/m) of beta-carotene give rise to a maximal photovoltage of 140 and 270 mV (at a shunt resistance of 10(7) Ohm), correspondingly. It was found that the photovoltage values in films of the carotene-chlorophyll mixture increase with the carotene concentration. The photovoltage value of a film containing 80-90% of carotene exceeds that of single-component pigment films prepared under the same deposition conditions.  相似文献   

2.
The method of spectrophotometric measurement of carotenoid and chlorophyll content in extracts from plant seeds was modified. The pigments were extracted with a mixture of petroleum ether (PE) and tetrahydrofuran (THF) (PE to THF ratio 4: 1). Equations for calculations of β-carotene, lutein, chlorophyll a and b content in PE: THF mixture were obtained using specific absorption coefficients of solutions of particular pigments. It was shown that subtraction of chlorophyll contribution from the absorption spectrum of seed extracts yields spectra, which could be used in some cases for calculation of carotene and xanthophyll contents.  相似文献   

3.
Summary 1. Potato plants were grown in pot sand cultures at different levels of iron and potassium supply. Plants grown at the lowest level of iron developed iron deficiency chlorosis and potassium deficiency symptoms when maintained at the lowest level of potassium but not at the highest level.2. Rapid procedures were developed for the extraction and estimation of chloroplast pigments from small samples of lamina—usually less than 1 g of fresh material.3. The expression of pigment content on an area basis gave results which were in better agreement with visual observations than those expressed on either fresh or dry weight basis.4. Both iron and potassium additions increased the chloroplast pigment content. Leaves exhibiting iron deficiency contained reduced quantities of all pigments per unit area of lamina.5. A linear relationship existed between chlorophyll and carotene, chlorophyll and xanthophyll, and carotene and xanthophyll contents.6. The results suggested that laminae completely deficient in chlorophyll would contain no carotene but might still contain xanthophyll.7. The relative proportions of chlorophyll, carotene and xanthophyll do not remain constant under varying conditions of iron status. When iron is deficient the proportion of xanthophyll increased in relation to the chlorophyll and carotene contents.  相似文献   

4.
Redox functions of carotenoids in photosynthesis   总被引:1,自引:0,他引:1  
Frank HA  Brudvig GW 《Biochemistry》2004,43(27):8607-8615
Carotenoids are well-known as light-harvesting pigments. They also play important roles in protecting the photosynthetic apparatus from damaging reactions of chlorophyll triplet states and singlet oxygen in both plant and bacterial photosynthesis. Recently, it has been found that beta-carotene functions as a redox intermediate in the secondary pathways of electron transfer within photosystem II and that carotenoid cation radicals are transiently formed after photoexcitation of bacterial light-harvesting complexes. The redox role of beta-carotene in photosystem II is unique among photosynthetic reaction centers and stems from the very strongly oxidizing intermediates that form in the process of water oxidation. Because of the extended pi-electron-conjugated system of carotenoid molecules, the cation radical is delocalized. This enables beta-carotene to function as a "molecular wire", whereby the centrally located oxidizing species is shuttled to peripheral redox centers of photosystem II where it can be dissipated without damaging the system. The physiological significance of carotenoid cation radical formation in bacterial light-harvesting complexes is not yet clear, but may provide a novel mechanism for excitation energy dissipation as a means of photoprotection. In this paper, the redox reactions of carotenoids in photosystem II and bacterial light-harvesting complexes are presented and the possible roles of carotenoid cation radicals in photoprotection are discussed.  相似文献   

5.
During photosynthesis carotenoids normally serve as antenna pigments, transferring singlet excitation energy to chlorophyll, and preventing singlet oxygen production from chlorophyll triplet states, by rapid spin exchange and decay of the carotenoid triplet to the ground state. The presence of two beta-carotene molecules in the photosystem II reaction centre (RC) now seems well established, but they do not quench the triplet state of the primary electron-donor chlorophylls, which are known as P(680). The beta-carotenes cannot be close enough to P(680) for triplet quenching because that would also allow extremely fast electron transfer from beta-carotene to P(+)(680), preventing the oxidation of water. Their transfer of excitation energy to chlorophyll, though not very efficient, indicates close proximity to the chlorophylls ligated by histidine 118 towards the periphery of the two main RC polypeptides. The primary function of the beta-carotenes is probably the quenching of singlet oxygen produced after charge recombination to the triplet state of P(680). Only when electron donation from water is disturbed does beta-carotene become oxidized. One beta-carotene can mediate cyclic electron transfer via cytochrome b559. The other is probably destroyed upon oxidation, which might trigger a breakdown of the polypeptide that binds the cofactors that carry out charge separation.  相似文献   

6.
In accordance with literature and our experimental data a theoretical analysis of the model system metal-porous film of the pigment-electrolyte was carried out at stationary illumination in the regimes of photocurrent and photopotential. The main properties and positions of the model are supported experimentally. Specific behaviour of the photovoltaic system considered resides in the discovered dependence of the transfer mechanism on the value of catode potential of the electrode.  相似文献   

7.
Carotenes and Retinal in Phycomyces Mutants   总被引:12,自引:1,他引:11  
Three different types of beta-carotene mutants of Phycomyces have been studied. In 2 mutants (Type I) beta-carotene is still the principal carotene but scaled down or up relative to wild type. The carotene mixture of 2 mutants (Type II) consists mainly of phytoene and phytofluene. In Type III (2 mutants) beta-carotene is replaced by lycopene.The examination of the mutants reveals that the receptor pigment is very likely neither beta-carotene nor retinal. Transmission spectra through the growing zone of live sporangiophores of 1 of these mutants which contains less than one-thousandth of the beta-carotene content of wild type show that the receptor pigment extinction is less than 0.003 at its maximum.  相似文献   

8.
Summary Thylakoid membranes immobilized in an albumin-glutaraldehyde cross-linked matrix were used for photocurrent generation by a photoelectrochemical cell in potentiostatic mode. This type of preparation was quite suited for such application because it retains a substantial volume of electrolyte within the porous network formed. This property allowed for introducing electron transfer inhibitors and artificial electron acceptors and further it permitted proper migration of electroactive species from the thylakoid membranes to the working electrode as required for efficient photocurrent generation.  相似文献   

9.
We present a simple approach for the calculation of in vivo fluorescence excitation spectra from measured absorbance spectra of the isolated pigments involved. Taking into account shading of the pigments by each other, energy transfer from carotene to chlorophyll a, and light scattering by the leaf tissue, we arrive at a model function with 6 free parameters. Fitting them to the measured fluorescence excitation spectrum yields good correspondence between theory and experiment, and parameter estimates which agree with independent measurements. The results are discussed with respect to the origin and the interpretation of in vivo excitation spectra in general.  相似文献   

10.
Bileaflet lipid membranes were formed from solutions containing lecithin, chlorophyll and carotene in various concentrations. If all the above components were present at sufficient concentrations the membranes were photosensitive; i.e., a photocurrent was produced if a redox potential gradient was present across the membranes. The presence of chlorophyll and carotene were essential for the photosensitivity of the membranes. Photoresponse could be elicited by illuminating the membrane with light which did not excite carotene. On the other hand, elimination of the part of the light spectrum which excites chlorophyll led to the abolition of the photoresponse. The findings of this study are consistent with the assumption that the excited chlorophyll chromophores allow electron exchange at the membrane-water interface while the presence of carotene allows electron movement across the "bulk" lipid membrane.  相似文献   

11.
The present study demonstrated the high bioavailability and antiperoxidative capacity of the natural beta-carotene isomer mixture of Dunaliella bardawil compared with synthetic beta-carotene under alcohol-induced oxidative stress. Weanling rats were adapted to ethanol by increasing ethanol levels in their drinking water to 30% at 5% intervals per week; other rats received water with no added ethanol. One water-drinking group and one alcohol-drinking group with no dietary carotene were used as controls. Two water-drinking groups were supplemented with 1 g/kg diet beta-carotene either from Dunaliella or a synthetic source, and due to reduced food intake, two ethanol-fed groups received 2 g beta-carotene per kilogram of diet from each source. Following 3 months of ethanol consumption, both carotene sources were found to prevent ethanol-induced lipid peroxidation as expressed by the hepatic conjugated oxidized dienes level. However, in the algal-fed rats, hepatic carotene and vitamin A levels were higher. In addition to a lower performance of the group fed ethanol and synthetic beta-carotene, there were three deaths in this group.  相似文献   

12.
Chlorophyll degradation in Cucumis leaf discs was measured at different temperatures between 1 and 25°C in the light and in darkness, and in the presence or absence of sucrose. Two different processes of chlorophyll degradation could be distinguished, a light-requiring process operating at 1 and 5°C and another, light and sucrose enhanced degradation process which was evident at 25°C. Degradation of leaf pigments at low temperatures was of a photo-oxidative nature since there was no degradation in the dark. The chlorophyll a/b ratio was decreased, carotene was degraded at a faster rate than chlorophyll, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and triphenyltetrazolium chloride (TTC) which prevent photo-oxidation, protected against chlorophyll degradation. The light and sucrose enhanced chlorophyll degradation at 25°C was of an enzymatic nature since it occurred in the dark as well as in the light. The chlorophyll a/b ratio was not affected, and carotene and chlorophyll degradation occurred at the same rate. Since DCMU completely inhibited the light enhancement at 25°C and experimentation in a low oxygen atmosphere also protected chlorophyll against the effect of light and sugar application, it is suggested that the enhancement of chlorophyll degradation by light and sucrose at 25°C may be due to increased sugar uptake of the chloroplasts and consequently excessive starch formation in the organelles.  相似文献   

13.
假根羽藻外周天线捕光色素蛋白复合物(L ight-harvesting Comp lex II,LHC II)在不同聚集态的情况下,它所包含色素分子间的能量传递是不同的。采用荧光发射光谱和激发光谱技术对不同聚集态(单体、三聚体和寡聚体)的LHC II进行研究,发现三聚体中色素分子间的能量传递效率比较高,单体要小一些。520 nm激发下,类胡萝卜素分子向叶绿素a分子的能量传递效率:三聚体约为64%、单体约为56%;650 nm激发下,叶绿素b分子向叶绿素a分子的能量传递效率:三聚体约为89%、单体约为78%。寡聚体的能量传递要复杂些,从光谱分析出它包含两种不同吸收光谱特性的叶绿素b分子,吸收峰分别为480 nm和468 nm,其中蓝区吸收峰为480 nm的叶绿素b分子向发射685 nm荧光的叶绿素a分子的能量传递效率要小于75%。  相似文献   

14.
beta-Carotene has many applications in the food, cosmetic, and pharmaceutical industries; Dunaliella salina is currently the main source for natural beta-carotene. We have investigated the effect of mixing rate and whether it leads to the facilitated release of beta-carotene from the cells of Dunaliella salina in two-phase bioreactors. Three pairs of bioreactors were inoculated at the same time, operated at 100, 150, and 170 rounds per minute, respectively, and illuminated with a light intensity of 700 micromol m(-2) s(-1). Each pair consisted of one bioreactor containing only aqueous phase for the blank and one containing the water phase together with dodecane, which is biocompatible with the cells. Comparison of the viability and growth of the cells grown under different agitation rates shows that 170 rpm and 150 rpm are just as good as 100 rpm. The presence and absence of the organic phase also has no influence on the viability and growth of the cells. In contrast to the growth rate, the extraction rate of beta-carotene is influenced by the stirrer speed. The extraction rate increases at a higher stirring rate. The effectiveness of extraction with respect to power input is comparable for all the applied mixing rates, even though it is slightly lower for 100 rpm than the others. The chlorophyll concentration in the organic phase remained very low during the experiment, although at higher mixing rates, chlorophyll impurity increased up to 3% (w/w) of the total extracted pigments. At 170 rpm carotenoid and chlorophyll undergo the highest extraction rate for both pigments-0.5% of the chlorophyll and 6% of the carotenoid is extracted.  相似文献   

15.
Carotenoids are essential components of the photosynthetic apparatus involved in plant photoprotection. To investigate the protective role of zeaxanthin under high light and UV stress we have increased the capacity for its biosynthesis in tobacco plants (Nicotiana tabacum L. cv. Samsun) by transformation with a heterologous carotenoid gene encoding beta-carotene hydroxylase (crtZ) from Erwinia uredovora under constitutive promoter control. This enzyme is responsible for the conversion of beta-carotene into zeaxanthin. Although the total pigment content of the transgenics was similar to control plants, the transformants synthesized zeaxanthin more rapidly and in larger quantities than controls upon transfer to high-intensity white light. Low-light-adapted tobacco plants were shown to be susceptible to UV exposure and therefore chosen for comparative analysis of wild-type and transgenics. Overall effects of UV irradiation were studied by measuring bioproductivity and pigment content. The UV exposed transformed plants maintained a higher biomass and a greater amount of photosynthetic pigments than controls. For revelation of direct effects, photosynthesis, pigment composition and chlorophyll fluorescence were examined immediately after UV treatment. Low-light-adapted plants of the crtZ transgenics showed less reduction in photosynthetic oxygen evolution and had higher chlorophyll fluorescence levels in comparison to control plants. After 1 h of high-light pre-illumination and subsequent UV exposure a greater amount of xanthophyll cycle pigments was retained in the transformants. In addition, the transgenic plants suffered less lipid peroxidation than the wild-type after treatment with the singlet-oxygen generator rose bengal. Our results indicate that an enhancement of zeaxanthin formation in the presence of a functional xanthophyll cycle contributes to UV stress protection and prevention of UV damage.  相似文献   

16.
Calothrix elenkenii was evaluated for accumulation of chlorophyll, beta-carotene and phycobiliproteins when grown under light-dark cycles and darkness, in the presence of glucose. Highest values of beta-carotene, chlorophyll, proteins and acetylene-reducing activity were recorded when the organism was grown in the presence of glucose under light-dark cycles after 15 d of incubation. The presence of glucose in the medium stimulated pigment production, especially of beta-carotene and chlorophyll, which may be due to increased energy-linked assimilation and ATP production. The photoheterotrophic potential of C. elenkenii can be exploited in value addition for increased and economic production of pigments.  相似文献   

17.
The wavelength-resolved fluorescence emission kinetics of the accessory pigments and chlorophyll a in Porphyridium cruentum have been studied by pico-second laser spectroscopy. Direct excitation of the pigment B-phycoerythrin with a 530 nm, 6 ps pulse produced fluorescence emission from all of the pigments as a result of energy transfer between the pigments to the reaction centre of Photosystem II. The emission from B-phycoerythrin at 576 nm follows a nonexponential decay law with a mean fluorescence lifetime of 70 ps, whereas the fluorescence from R-phycocyanin (640 nm), allophycocyanin (660 nm) and chlorophyll a (685 nm) all appeared to follow an exponential decay law with lifetimes of 90 ps, 118 ps and 175 ps respectively. Upon closure of the Photosystem II reaction centres with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and preillumination the chlorophyll a decay became non-exponential, having a long component with an apparent lifetime of 840 ps. The fluorescence from the latter three pigments all showed finite risetimes to the maximum emission intensity of 12 ps for R-phycocyanin, 24 ps for allophycocyanin and 50 ps for chlorophyll a. A kinetic analysis of these results indicates that energy transfer between the pigments is at least 99% efficient and is governed by an exp --At1/2 transfer function. The apparent exponential behaviour of the fluorescence decay functions of the latter three pigments is shown to be a direct result of the energy transfer kinetics, as are the observed risetimes in the fluorescence emissions.  相似文献   

18.
Natural carotene sample obtained from palm oil was proved to suppress the promoting stage of two-stage carcinogenesis of mouse skin, and also inhibit the proliferation of human malignant tumor cells, such as neuroblastoma GOTO cells, stomach cancer HGC-27 cells, and pancreatic cancer PANC-I cells. Among the major constituents of palm carotene, alpha-carotene showed stronger anti-proliferative effect than beta-carotene. The present results indicate that further investigation for not only beta-carotene but also other kinds of natural carotenes, such as alpha-carotene, should be carried out.  相似文献   

19.
1. The fluorescence spectra of the alga Porphyridium have been recorded as energy distribution curves for eleven different incident wave lengths of monochromatic incident light between wave lengths 405 and 546 mµ. 2. In these spectra chlorophyll fluorescence predominates when the incident light is in the blue part of the spectrum which is strongly absorbed by chlorophyll. 3. For blue-green and green light the spectrum excited in Porphyridium contains in addition to chlorophyll fluorescence, the fluorescence bands characteristic of phycoerythrin and of phycocyanin. 4. From these spectra the approximate curves for the fluorescence of the individual pigments phycoerythrin, phycocyanin, and chlorophyll in the living material have been derived and the relative intensity of each of them has been obtained for each of the eleven incident wave lengths. 5. The effectiveness spectrum for the excitation of the fluorescence of these three pigments in vivo has been plotted. 6. From comparisons of the effectiveness spectrum for the excitation of each of these pigments it appears that both phycocyanin and chlorophyll receive energy from light which is absorbed by phycoerythrin. 7. It is suggested that phycocyanin may be an intermediate in the resonance transfer of energy from phycoerythrin to chlorophyll. 8. Since phycoerythrin and phycocyanin transfer energy to chlorophyll, it appears probable that chlorophyll plays a specific chemical role in photosynthesis in addition to acting as a light absorber.  相似文献   

20.
A pigment-deficient reaction center of photosystem II (PSII)-with all the core pigments (two molecules of chlorophyll a and one of pheophytin a in each D protein) but with only one molecule each of peripheral chlorophyll a (Chlz) and beta-carotene (Car)-has been investigated by pump-probe spectroscopy. The data imply that Car and Chlz are both bound to D1. The absence of Car and Chlz in D2 allows the unprecedented observation of secondary electron transfer in D1 of PSII reaction centers at room temperature. The absorption band of the Car cation in D1 (Car(D1)(+*)) peaks around 910 nm (as against 990 nm for Car(D2)(+*)), and its positive hole is shared by ChlzD1, whereas Car(D2)(+*) can disappear by capturing an electron from ChlzD2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号