首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
We present a two-stage genomewide scan for osteoarthritis-susceptibility loci, using 481 families that each contain at least one affected sibling pair. The first stage, with 272 microsatellite markers and 297 families, involved a sparse map covering 23 chromosomes at intervals of approximately 15 cM. Sixteen markers that showed evidence of linkage at nominal P相似文献   

2.
Genome-wide multipoint linkage analyses were performed to identify chromosomal regions harboring genes influencing LDL-cholesterol, total apolipoprotein B (apoB), and LDL-apoB levels using 654 markers. They were assessed in a sedentary state (baseline) and after a 20 week endurance training program. Strong evidence for two quantitative trait loci (QTLs) for baseline levels was found. There is linkage evidence in black families on chromosomes 1q41-q44 [at marker D1S2860, 238 centimorgan (cM), with a maximum log of the odds (LOD) score of 3.7 for LDL-apoB] and in white families on chromosome 8q24 (at marker D8S1774, 142 cM, with LOD scores of 3.6, 3.3, and 2.5 for baseline LDL-cholesterol, LDL-apoB, and apoB, respectively). There were no strong signals for the lipoprotein training responses (as computed as the difference in posttraining minus baseline levels). In conclusion, QTLs for baseline apoB and LDL-cholesterol levels on chromosomes 1q41-q44 (in blacks) and 8q24 (in whites) were found. As there are no known strong candidate genes in these regions for lipids, follow-up studies to determine the source of those signals are needed.  相似文献   

3.
Epidemiological studies have shown that genetic factors contribute to the pathogenesis of the idiopathic inflammatory bowel diseases (IBD), Crohn disease (CD) and ulcerative colitis (UC). Recent genome scans and replication studies have identified replicated linkage between CD and a locus on chromosome 16 (the IBD1 locus), replicated linkage between IBD (especially UC) and a locus on chromosome 12q (the IBD2 locus), and replicated linkage between IBD (especially CD) and a locus on chromosome 6p (the IBD3 locus). Since the estimated locus-specific lambdas values for the regions of replicated linkage do not account for the overall lambdas in CD, and since the published genome scans in IBD show at least nominal evidence for linkage to regions on all but two chromosomes, we performed an independent genome scan using 751 microsatellite loci in 127 CD-affected relative pairs from 62 families. Single-point nonparametric linkage analysis using the GENEHUNTER-PLUS program shows evidence for linkage to the adjacent D14S261 and D14S283 loci on chromosome 14q11-12 (LOD = 3.00 and 1.70, respectively), and the maximal multipoint LOD score is observed at D14S261 (LOD = 3.60). In the multipoint analysis, nominal evidence for linkage (P<.05) is observed near D2S117 (LOD = 1.25), near D3S3045 (LOD = 1.31), between D7S40 and D7S648 (LOD = 0.91), and near D18S61 (LOD = 1.15). Our finding of significant linkage to D14S261 and the finding of suggestive linkage to the same locus in an independent study (multipoint LOD = 2.8) satisfies criteria for confirmed linkage, so we propose that the region of interest on chromosome 14q11-12 should be designated the IBD4 locus.  相似文献   

4.
Hereditary isolated renal magnesium loss maps to chromosome 11q23.   总被引:3,自引:0,他引:3       下载免费PDF全文
Hypomagnesemia due to isolated renal magnesium loss has previously been demonstrated in two presumably unrelated Dutch families with autosomal dominant mode of inheritance. Patients with magnesium deficiency may suffer from tetany and convulsions, but the patients with hereditary renal magnesium wasting can also be clinically nonsymptomatic. In a genomewide linkage study, we first excluded a possible candidate region, on chromosome 9q, that encompasses the gene for intestinal hypomagnesemia with secondary hypocalcemia and, subsequently, found linkage to markers on chromosome 11q23. Detailed haplotype analyses identified a common haplotype segregating in both families, suggesting both their relationship through a common ancestor and the existence of a single, hypomagnesemia-causing mutation within them. The maximum two-point LOD score (Zmax) was found for marker D11S4127 (Zmax=6.41 at a recombination fraction of. 00), whereas a multipoint analysis gave a Zmax of 8.24 between markers D11S4142 and D11S4171. Key recombination events define a 5. 6-cM region between these two markers on chromosome 11q23. We conclude that this region encompasses a gene, involved in renal magnesium handling, that is mutated in our patients and is different from the gene involved in intestinal magnesium handling.  相似文献   

5.
To identify genetic loci for autism-spectrum disorders, we have performed a two-stage genomewide scan in 38 Finnish families. The detailed clinical examination of all family members revealed infantile autism, but also Asperger syndrome (AS) and developmental dysphasia, in the same set of families. The most significant evidence for linkage was found on chromosome 3q25-27, with a maximum two-point LOD score of 4.31 (Z(max )(dom)) for D3S3037, using infantile autism and AS as an affection status. Six markers flanking over a 5-cM region on 3q gave Z(max dom) >3, and a maximum parametric multipoint LOD score (MLS) of 4.81 was obtained in the vicinity of D3S3715 and D3S3037. Association, linkage disequilibrium, and haplotype analyses provided some evidence for shared ancestor alleles on this chromosomal region among affected individuals, especially in the regional subisolate. Additional potential susceptibility loci with two-point LOD scores >2 were observed on chromosomes 1q21-22 and 7q. The region on 1q21-22 overlaps with the previously reported candidate region for infantile autism and schizophrenia, whereas the region on chromosome 7q provided evidence for linkage 58 cM distally from the previously described autism susceptibility locus (AUTS1).  相似文献   

6.
Chordoma is a rare tumor originating from notochordal remnants that is usually diagnosed during midlife. We performed a genomewide analysis for linkage in a family with 10 individuals affected by chordoma. The maximum two-point LOD score based on only the affected individuals was 2.21, at recombination fraction 0, at marker D7S2195 on chromosome 7q. Combined analysis of additional members of this family (11 affected individuals) and of two unrelated families (one with 2 affected individuals and the other with 3 affected individuals), with 20 markers on 7q, showed a maximum two-point LOD score of 4.05 at marker D7S500. Multipoint analysis based on only the affected individuals gave a maximum LOD score of 4.78, with an approximate 2-LOD support interval from marker D7S512 to marker D7S684. Haplotype analysis of the three families showed a minimal disease-gene region from D7S512 to D7S684, a distance of 11.1 cM and approximately 7.1 Mb. No loss of heterozygosity was found at markers D7S1804, D7S1824, and D7S2195 in four tumor samples from affected family members. These results map a locus for familial chordoma to 7q33. Further analysis of this region, to identify this gene, is ongoing.  相似文献   

7.
The autoimmune thyroid diseases (AITDs) include two related disorders, Graves disease (GD) and Hashimoto thyroiditis, in which perturbations of immune regulation result in an immune attack on the thyroid gland. The AITDs are multifactorial and develop in genetically susceptible individuals. However, the genes responsible for this susceptibility remain unknown. Recently, we initiated a whole-genome linkage study of patients with AITD, in order to identify their susceptibility genes. We studied a data set of 53 multiplex, multigenerational AITD families (323 individuals), using highly polymorphic and densely spaced microsatellite markers (intermarker distance <10 cM). Linkage analysis was performed by use of two-point and multipoint parametric methods (classic LOD-score analysis). While studying chromosome 20, we found a locus on chromosome 20q11.2 that was strongly linked to GD. A maximum two-point LOD score of 3.2 was obtained at marker D20S195, assuming a recessive mode of inheritance and a penetrance of.3. The maximum nonparametric LOD score was 2.4 (P=.00043); this score also was obtained at marker D20S195. Multipoint linkage analysis yielded a maximum LOD score of 3.5 for a 6-cM interval between markers D20S195 and D20S107. There was no evidence for heterogeneity in our sample. In our view, these results indicate strong evidence for linkage and suggest the presence of a major GD-susceptibility gene on chromosome 20q11.2.  相似文献   

8.
Meckel-Gruber syndrome (MKS), the most common monogenic cause of neural tube defects, is an autosomal recessive disorder characterised by a combination of renal cysts and variably associated features, including developmental anomalies of the central nervous system (typically encephalcoele), hepatic ductal dysplasia and cysts, and polydactyly. Locus heterogeneity has been demonstrated by the mapping of the MKS1locus to 17q21-24 in Finnish kindreds, and of MKS2 to 11q13 in North African-Middle Eastern cohorts. In the present study, we have investigated the genetic basis of MKS in eight consanguineous kindreds, originating from the Indian sub-continent, that do not show linkage to either MKS1 or MKS2. We report the localisation of a third MKS locus ( MKS3) to chromosome 8q24 in this cohort by a genome-wide linkage search using autozygosity mapping. We identified a 26-cM region of autozygosity between D8S586 and D8S1108 with a maximum cumulative two-point LOD score at D8S1179 ( Z(max)=3.04 at theta=0.06). A heterogeneity test provided evidence of one unlinked family. Exclusion of this family from multipoint analysis maximised the cumulative multipoint LOD score at locus D8S1128 ( Z(max)=5.65). Furthermore, a heterozygous SNP in DDEF1, a putative candidate gene, suggested that MKS3 mapped within a 15-cM interval. Comparison of the clinical features of MKS3-linked cases with reports of MKS1- and MKS2-linked kindreds suggests that polydactyly (and possibly encephalocele) appear less common in MKS3-linked families.  相似文献   

9.
Improved molecular understanding of the pathogenesis of type 2 diabetes is essential if current therapeutic and preventative options are to be extended. To identify diabetes-susceptibility genes, we have completed a primary (418-marker, 9-cM) autosomal-genome scan of 743 sib pairs (573 pedigrees) with type 2 diabetes who are from the Diabetes UK Warren 2 repository. Nonparametric linkage analysis of the entire data set identified seven regions showing evidence for linkage, with allele-sharing LOD scores > or =1.18 (P< or =.01). The strongest evidence was seen on chromosomes 8p21-22 (near D8S258 [LOD score 2.55]) and 10q23.3 (near D10S1765 [LOD score 1.99]), both coinciding with regions identified in previous scans in European subjects. This was also true of two lesser regions identified, on chromosomes 5q13 (D5S647 [LOD score 1.22] and 5q32 (D5S436 [LOD score 1.22]). Loci on 7p15.3 (LOD score 1.31) and 8q24.2 (LOD score 1.41) are novel. The final region showing evidence for linkage, on chromosome 1q24-25 (near D1S218 [LOD score 1.50]), colocalizes with evidence for linkage to diabetes found in Utah, French, and Pima families and in the GK rat. After dense-map genotyping (mean marker spacing 4.4 cM), evidence for linkage to this region increased to a LOD score of 1.98. Conditional analyses revealed nominally significant interactions between this locus and the regions on chromosomes 10q23.3 (P=.01) and 5q32 (P=.02). These data, derived from one of the largest genome scans undertaken in this condition, confirm that individual susceptibility-gene effects for type 2 diabetes are likely to be modest in size. Taken with genome scans in other populations, they provide both replication of previous evidence indicating the presence of a diabetes-susceptibility locus on chromosome 1q24-25 and support for the existence of additional loci on chromosomes 5, 8, and 10. These data should accelerate positional cloning efforts in these regions of interest.  相似文献   

10.
Alzheimer disease (AD) is a complex disorder characterized by a wide range, within and between families, of ages at onset of symptoms. Consideration of age at onset as a covariate in genetic-linkage studies may reduce genetic heterogeneity and increase statistical power. Ordered-subsets analysis includes continuous covariates in linkage analysis by rank ordering families by a covariate and summing LOD scores to find a subset giving a significantly increased LOD score relative to the overall sample. We have analyzed data from 336 markers in 437 multiplex (>/=2 sampled individuals with AD) families included in a recent genomic screen for AD loci. To identify genetic heterogeneity by age at onset, families were ordered by increasing and decreasing mean and minimum ages at onset. Chromosomewide significance of increases in the LOD score in subsets relative to the overall sample was assessed by permutation. A statistically significant increase in the nonparametric multipoint LOD score was observed on chromosome 2q34, with a peak LOD score of 3.2 at D2S2944 (P=.008) in 31 families with a minimum age at onset between 50 and 60 years. The LOD score in the chromosome 9p region previously linked to AD increased to 4.6 at D9S741 (P=.01) in 334 families with minimum age at onset between 60 and 75 years. LOD scores were also significantly increased on chromosome 15q22: a peak LOD score of 2.8 (P=.0004) was detected at D15S1507 (60 cM) in 38 families with minimum age at onset >/=79 years, and a peak LOD score of 3.1 (P=.0006) was obtained at D15S153 (62 cM) in 43 families with mean age at onset >80 years. Thirty-one families were contained in both 15q22 subsets, indicating that these results are likely detecting the same locus. There is little overlap in these subsets, underscoring the utility of age at onset as a marker of genetic heterogeneity. These results indicate that linkage to chromosome 9p is strongest in late-onset AD and that regions on chromosome 2q34 and 15q22 are linked to early-onset AD and very-late-onset AD, respectively.  相似文献   

11.
Avascular necrosis of the femoral head (ANFH) is a debilitating disease that commonly leads to destruction of the hip joint in adults. The etiology of ANFH is unknown, but previous studies have indicated that heritable thrombophilia (increased tendency to form thrombi) and hypofibrinolysis (reduced ability to lyse thrombi), alcohol intake, and steroid use are risk factors for ANFH. We recently identified two families with ANFH showing autosomal dominant inheritance. By applying linkage analysis to a four-generation pedigree, we excluded linkage between the family and three genes related to thrombophilia and hypofibrinolysis: protein C, protein S, and plasminogen activator inhibitor. Furthermore, by a genomewide scan, a significant two-point LOD score of 3.45 (recombination fraction [theta] = 0) was obtained between the family with ANFH and marker D12S85 on chromosome 12. High-resolution mapping was conducted in a second family with ANFH and replicated the linkage to D12S368 (pedigree I: LOD score 2.47, theta = 0.05; pedigree II: LOD score 2.81, theta = 0.10). When an age-dependent-penetrance model was applied, the combined multipoint LOD score was 6.43 between D12S1663 and D12S85. Thus, we mapped the candidate gene for autosomal dominant ANFH to a 15-cM region between D12S1663 and D12S1632 on chromosome 12q13.  相似文献   

12.
BACKGROUND: Chromosome 11q has not only been found to contain mutations responsible for the several Mendelian disorders of the skeleton, but it has also been linked to bone mineral density (BMD) variation in several genome-wide linkage studies. Furthermore, quantitative trait loci (QTL) affecting BMD in inbred mice and baboons have been mapped to a region syntenic to human chromosome 11q. The aim of the present study is to determine whether there is a QTL for BMD variation on chromosome 11q in the Chinese population. METHODS: Nineteen microsatellite markers were genotyped for a 75 cM region on 11q13-25 in 306 Chinese families with 1,459 subjects. BMD (g/cm(2)) was measured by DXA. Linkage analyses were performed using the variance component linkage analysis method implemented in Merlin software. RESULTS: For women, a maximum LOD score of 1.62 was achieved at 90.8 cM on 11q21 near the marker D11S4175 for femoral neck BMD; LOD scores greater than 1.0 were observed on 11q13 for trochanter BMD. For men, a maximum LOD score of 1.57 was achieved at 135.8 cM on 11q24 near the marker D11S4126 for total hip BMD. CONCLUSION: We have not only replicated the previous linkage finding on chromosome 11q but also identified two sex-specific QTL that contribute to BMD variation in Chinese women and men.  相似文献   

13.
A locus for brachydactyly type A-1 maps to chromosome 2q35-q36   总被引:5,自引:0,他引:5       下载免费PDF全文
Brachydactyly type A-1 (BDA1) was, in 1903, the first recorded example of a human anomaly with Mendelian autosomal dominant inheritance. Two large families, the affected members of which were radiographed, were recruited in the study we describe here. Two-point linkage analysis for pedigree 1 (maximum LOD score [Zmax] 6.59 at recombination fraction [theta] 0.00) and for pedigree 2 (Zmax=5.53 at straight theta=0.00) mapped the locus for BDA1 in the two families to chromosome 2q. Haplotype analysis of pedigree 1 confined the locus for family 1 within an interval of <8.1 cM flanked by markers D2S2248 and D2S360, which was mapped to chromosome 2q35-q36 on the cytogenetic map. Haplotype analysis of pedigree 2 confined the locus for family 2 within an interval of <28. 8 cM flanked by markers GATA30E06 and D2S427, which was localized to chromosome 2q35-q37. The two families had no identical haplotype within the defined region, which suggests that the two families were not related.  相似文献   

14.
A genome scan for serum triglyceride in obese nuclear families   总被引:6,自引:0,他引:6  
Serum triglyceride (TG) levels are increased in extremely obese individuals, indicating abnormalities in lipid metabolism and insulin resistance. We carried out a genome scan for serum TG in 320 nuclear families segregating extreme obesity and normal weight. Three hundred eighty-two Marshfield microsatellite markers (Screening Set 11) were genotyped. Quantitative linkage analyses were performed using family regression and variance components methods. We found linkage on the 7q36 region [D7S3058, 174 centimorgan (cM), Logarithm of Odds (LOD) = 2.98] for log-transformed TG. We also found suggestive linkages on chromosomes 20 (D20S164, 101 cM, LOD = 2.34), 13 (111 cM, LOD = 2.00), and 9 (104 cM, LOD = 1.90) as well as some weaker trends for chromosomes 1, 3, 5, 10, 12, and 22. In 58 African American families, LOD scores of 3.66 and 2.62 were observed on two loci on chromosome 16: D16S3369 (64 cM) and MFD466 (100 cM). To verify the 7q36 linkage, we added 60 nuclear families, and the LOD score increased to 3.52 (empirical P < 0.002) on marker D7S3058.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease in which motor neurons in the brain and spinal cord degenerate by largely unknown mechanisms. ALS is familial (FALS) in 10% of cases, and the inheritance is usually dominant, with variable penetrance. Mutations in copper/zinc super oxide dismutase (SOD1) are found in 20% of familial and 3% of sporadic ALS cases. Five families with ALS and frontotemporal dementia (ALS-FTD) are linked to 9q21, whereas one family with pure ALS is linked to 18q21. We identified two large European families with ALS without SOD1 mutations or linkage to known FALS loci and conducted a genomewide linkage screen using 400 microsatellite markers. In both families, two-point LOD scores >1 and a haplotype segregating with disease were demonstrated only across regions of chromosome 16. Subsequent fine mapping in family 1 gave a maximum two-point LOD score of 3.62 at D16S3137 and a three-point LOD score of 3.85 for markers D16S415 and D16S3137. Haplotype analysis revealed no recombination > approximately 30 cM, (flanking markers at D16S3075 and D16S3112). The maximum two-point LOD score for family 2 was 1.84 at D16S415, and the three-point LOD score was 2.10 for markers D16S419 and D16S415. Definite recombination occurred in several individuals, which narrowed the shared haplotype in affected individuals to a 10.1-cM region (flanking markers: D16S3396 and D16S3112). The region shared by both families on chromosome 16q12 corresponds to approximately 4.5 Mb on the Marshfield map. Bioinformatic analysis of the region has identified 18 known genes and 70 predicted genes in this region, and sequencing of candidate genes has now begun.  相似文献   

16.
Autosomal dominant familial exudative vitreoretinopathy (adFEVR) is a hereditary disorder characterized by the incomplete vascularization of the peripheral retina. The primary biochemical defect in adFEVR is unknown. The adFEVR locus has tentatively been assigned to 11q by linkage studies. We report the results of an extended multipoint linkage analysis of two families with adFEVR by using five markers (INT2, D11S533, D11S527, D11S35, and CD3D) from 11q13-q23. Pairwise linkage data obtained in the two families were rather similar and hence have not provided evidence for genetic heterogeneity. The highest complied two-point lod score (3.67, at a recombination fraction of .07) was obtained for the disease locus versus D11S533. Multipoint analyses showed that the adFEVR locus maps most likely, with a maximum location score of over 20, between D11S533/D11S527 and D11S35, at recombination rates of .147 and .104, respectively. Close linkage without recombination (maximum lod score 11.26) has been found between D11S533 and D11S527.  相似文献   

17.
Lung cancer is a major cause of death in the United States and other countries. The risk of lung cancer is greatly increased by cigarette smoking and by certain occupational exposures, but familial factors also clearly play a major role. To identify susceptibility genes for familial lung cancer, we conducted a genomewide linkage analysis of 52 extended pedigrees ascertained through probands with lung cancer who had several first-degree relatives with the same disease. Multipoint linkage analysis, under a simple autosomal dominant model, of all 52 families with three or more individuals affected by lung, throat, or laryngeal cancer, yielded a maximum heterogeneity LOD score (HLOD) of 2.79 at 155 cM on chromosome 6q (marker D6S2436). A subset of 38 pedigrees with four or more affected individuals yielded a multipoint HLOD of 3.47 at 155 cM. Analysis of a further subset of 23 multigenerational pedigrees with five or more affected individuals yielded a multipoint HLOD score of 4.26 at the same position. The 14 families with only three affected relatives yielded negative LOD scores in this region. A predivided samples test for heterogeneity comparing the LOD scores from the 23 multigenerational families with those from the remaining families was significant (P=.007). The 1-HLOD multipoint support interval from the multigenerational families extends from C6S1848 at 146 cM to 164 cM near D6S1035, overlapping a genomic region that is deleted in sporadic lung cancers as well as numerous other cancer types. Parametric linkage and variance-components analysis that incorporated effects of age and personal smoking also supported linkage in this region, but with somewhat diminished support. These results localize a major susceptibility locus influencing lung cancer risk to 6q23-25.  相似文献   

18.
Initial genome-wide scan data provided suggestive evidence for linkage of the asthma phenotype in African-American (AA), but not Caucasian, families to chromosome 11q markers (peak at D11S1985; LOD=2). To refine this region, mapping analysis of 91 AA families (51 multiplex families and 40 asthmatic case-parent trios) was performed with an additional 17 markers flanking the initial peak linkage marker. Multipoint analyses of the 51 multiplex families yielded significant evidence of linkage with a peak non-parametric linkage score of 4.38 at marker D11S1337 (map position 68.6 cM). Furthermore, family-based association and transmission disequilibrium tests conducted on all 91 families showed significant evidence of linkage in the presence of disequilibrium for several individual markers in this region. A putative susceptibility locus was estimated to be at map position 70.8 cM with a confidence interval spanning the linkage peak. Evidence from both linkage and association analyses suggest that this region of chromosome 11 contains one or more susceptibility genes for asthma in these AA families.  相似文献   

19.
Paget disease of bone (PDB) is a common disorder characterized by focal abnormalities of increased and disorganized bone turnover. Genetic factors are important in the pathogenesis of PDB, and previous studies have shown that the PDB-like bone dysplasia familial expansile osteolysis is caused by activating mutations in the TNFRSF11A gene that encodes receptor activator of nuclear factor kappa B (RANK); however, linkage studies, coupled with mutation screening, have excluded involvement of RANK in the vast majority of patients with PDB. To identify other candidate loci for PDB, we conducted a genomewide search in 319 individuals, from 62 kindreds with familial PDB, who were predominantly of British descent. The pattern of inheritance in the study group as a whole was consistent with autosomal dominant transmission of the disease. Parametric multipoint linkage analysis, under a model of heterogeneity, identified three chromosomal regions with LOD scores above the threshold for suggestive linkage. These were on chromosomes 2q36 (LOD score 2.7 at 218.24 cM), 5q35 (LOD score 3.0 at 189.63 cM), and 10p13 (LOD score 2.6 at 41.43 cM). For each of these loci, formal heterogeneity testing with HOMOG supported a model of linkage with heterogeneity, as opposed to no linkage or linkage with homogeneity. Two-point linkage analysis with a series of markers from the 5q35 region in another large kindred with autosomal dominant familial PDB also supported linkage to the candidate region with a maximum LOD score of 3.47 at D5S2034 (187.8 cM). These data indicate the presence of several susceptibility loci for PDB and identify a strong candidate locus for the disease, on chromosome 5q35.  相似文献   

20.
Genome scans in Icelandic, Australian and New Zealand, and Finnish families have localized putative susceptibility loci for preeclampsia/ eclampsia to chromosome 2. The locus mapped in the Australian and New Zealand study (designated PREG1) was thought to be the same locus as that identified in the Icelandic study. In both these studies, two distinct quantitative trait locus (QTL) regions were evident on chromosome 2. Here, we describe our fine mapping of the PREG1 locus and a genetic analysis of two positional candidate genes. Twenty-five additional microsatellite markers were genotyped within the 74-cM linkage region defined by the combined Icelandic and Australian and New Zealand genome scans. The overall position and shape of the localization evidence obtained using nonparametric multipoint analysis did not change from that seen previously in our 10-cM resolution genome scan; two peaks were displayed, one on chromosome 2p at marker D2S388 (107.46 cM) and the other on chromosome 2q at 151.5 cM at marker D2S2313. Using the robust two-point linkage analysis implemented in the Analyze program, all 25 markers gave positive LOD scores with significant evidence of linkage being seen at marker D2S2313 (151.5 cM), achieving a LOD score of 3.37 under a strict diagnostic model. Suggestive evidence of linkage was seen at marker D2S388 (107.46 cM) with a LOD score of 2.22 under the general diagnostic model. Two candidate genes beneath the peak on chromosome 2p were selected for further analysis using public single nucleotide polymorphisms (SNPs) within these genes. Maximum LOD scores were obtained for an SNP in TACR1 (LOD = 3.5) and for an SNP in TCF7L1 (LOD = 3.33), both achieving genome-wide significance. However, no evidence of association was seen with any of the markers tested. These data strongly support the presence of a susceptibility gene on chromosome 2p11-12 and substantiate the possibility of a second locus on chromosome 2q23.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号