首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of Escherichia coli to 0.8 M NaCl caused a rapid and large decrease in colony-forming activity. When such osmotically upshocked cells were exposed to betaine, colony-forming activity was restored. Betaine was able to restore colony-forming activity even when chloramphenicol inhibited protein synthesis. Thus, restoration was not the result of cell turnover. The cells were not killed by exposure to 0.8 M NaCl, because during exposure they accumulated ATP intracellularly. Betaine treatment caused this cellular ATP to decrease to a lower level. This work may provide the foundation for a simple plating procedure to quantitatively detect nonculturable E. coli in ocean beach recreational waters.  相似文献   

2.
Exposure of Escherichia coli to 0.8 M NaCl caused a rapid and large decrease in colony-forming activity. When such osmotically upshocked cells were exposed to betaine, colony-forming activity was restored. Betaine was able to restore colony-forming activity even when chloramphenicol inhibited protein synthesis. Thus, restoration was not the result of cell turnover. The cells were not killed by exposure to 0.8 M NaCl, because during exposure they accumulated ATP intracellularly. Betaine treatment caused this cellular ATP to decrease to a lower level. This work may provide the foundation for a simple plating procedure to quantitatively detect nonculturable E. coli in ocean beach recreational waters.  相似文献   

3.
In the present study, we measured the accumulation of glutamate after hyperosmotic shock in Escherichia coli growing in synthetic medium. The accumulation was high in the medium containing sucrose at a pH above 8 and decreased with decreases in the medium pH. The same results were obtained when the hyperosmotic shock was carried out with sodium chloride. The internal level of potassium ions in cells growing at a high pH was higher than that in cells growing in a neutral medium. A mutant deficient in transport systems for potassium ions accumulated glutamate upon hyperosmotic stress at a high pH without a significant increase in the internal level of potassium ions. When the medium osmolarity was moderate at a pH below 8, E. coli accumulated gamma-aminobutyrate and the accumulation of glutamate was low. These data suggest that E. coli uses different osmolytes for hyperosmotic adaptation at different environmental pHs.  相似文献   

4.
S Cayley  M T Record  Jr    B A Lewis 《Journal of bacteriology》1989,171(7):3597-3602
We found that exogenous morpholinopropanesulfonate (MOPS) is concentrated approximately fivefold in the free volume of the cytoplasm of Escherichia coli K-12 (strain MG1665) when grown at high osmolarity (1.1 OsM) in two different media containing 40 mM MOPS. MOPS was not accumulated by E. coli grown in low-osmolarity MOPS-buffered medium or in 1.1 OsM MOPS-buffered medium containing the osmoprotectant glycine betaine. Salmonella typhimurium LT2 did not accumulate MOPS under any condition examined. We infer that accumulation of MOPS by E. coli K-12 is not due to passive equilibration but rather to transport, possibly involving an as yet uncharacterized porter not present in S. typhimurium. Glutamate and MOPS were the only anionic osmolytes we observed by 13C nuclear magnetic resonance in E. coli K-12 grown in MOPS-buffered medium. The increase in positive charge accompanying the increase in the steady-state amount of K+ in cells shifted from low to high external osmolarity appeared to be compensated for by changes in the amounts of putrescine, glutamate, and MOPS. MOPS is not an osmoprotectant, because its accumulation did not increase cell growth rate.  相似文献   

5.
6.
Organic solute accumulation in osmotically stressed cyanobacteria   总被引:5,自引:0,他引:5  
Abstract Three groups of cyanobacteria are recognized on the basis of their organic osmotica and upper salinity limit for growth. In general, the least halotolerant forms accumulate disaccharides, while cyanobacteria of intermediate halotolerance synthesize the heteroside glucosylglycerol and the most halotolerant isolates accumulate betaines in response to salt stress. However, certain strains also accumulate additional organic solutes, depending upon the growth temperature, the ambient salinity and the duration of salt stress.  相似文献   

7.
DnaK-DnaJ-GrpE and GroEL-GroES are the best-characterized molecular chaperone systems in the cytoplasm of Escherichia coli. A number of additional proteins, including ClpA, ClpB, HtpG and IbpA/B, act as molecular chaperones in vitro, but their function in cellular protein folding remains unclear. Here, we examine how these chaperones influence the folding of newly synthesized recombinant proteins under heat-shock conditions. We show that the absence of either CIpB or HtpG at 42 degrees C leads to increased aggregation of preS2-beta-galactosidase, a fusion protein whose folding depends on DnaK-DnaJ-GrpE, but not GroEL-GroES. However, only the deltaclpB mutation is deleterious to the folding of homodimeric Rubisco and cMBP, two proteins requiring the GroEL-GroES chaperonins to reach a proper conformation. Null mutations in clpA or the ibpAB operon do not affect the folding of these model substrates. Overexpression of ClpB, HtpG, IbpA/B or ClpA does not suppress inclusion body formation by the aggregation-prone protein preS2-S'-beta-galactosidase in wild-type cells or alleviate recombinant protein misfolding in dnaJ259, grpE280 or groES30 mutants. By contrast, higher levels of DnaK-DnaJ, but not GroEL-GroES, restore efficient folding in deltaclpB cells. These results indicate that ClpB, and to a lesser extent HtpG, participate in de novo protein folding in mildly stressed E. coli cells, presumably by expanding the ability of the DnaK-DnaJ-GrpE team to interact with newly synthesized polypeptides.  相似文献   

8.
9.
Translocation of nitrogen in osmotically stressed wheat seedlings   总被引:1,自引:1,他引:1  
Wheat (Triticum aestivum L., cv. Drabant) seedlings were grown in a ‘split root’ system where either the whole root system or one root half was subjected to osmotic stress for 24 h, using 200 g polyethylene glycol (PEG, molecular weight 4000) dm?3 nutrient solution. 15N-Labelled nitrate was fed to one of the root compartments and total N and 15N-labelling were measured in plant material and xylem sap. Untreated plants translocated 87% of the N taken up to the shoot, and 10% of this was then retranslocated back to the root. Recalculated on a root nitrogen basis, 36% of the label recovered in the root after 24 h had passed through the shoot. Significant labelling of xylem sap collected from non-labelled roots indicated cycling of organic N through the roots. PEG-treatment of the whole root system caused significant water loss in both roots and shoots. Uptake of nitrate and retranslocation of N to roots were inhibited, whereas cycling of organic nitrogen through the root was still measurable. Treatment of half the root system with PEG had minor effects on shoot water content, but reduced the water content of the treated root part. The total uptake of nitrate by the root system was unaffected, and the effect on the treated root half was comparatively small. Nitrate reductase activity (NRA) declined in PEG-treated roots even if high nitrate uptake rates were maintained. Shoot NRA was unaffected by osmotic stress. The data indicate that the reduction in water content of the root per se has only small effects on nitrate uptake. Major inhibition of nitrate uptake was observed only after treatment of a sufficiently large portion of the root system to given an effect on shoot water content.  相似文献   

10.
11.
Cells of Escherichia coli K-12 were stressed by heating at 48 degrees C or by acid treatment at pH 4.2 for periods up to 1h. The addition of catalase to the selective medium increased the count of heat-stressed cells by 2.3-fold and acid-stressed cells by 4.8-fold. However, these values represented only a small percentage (3% for heat-stressed and 6% for acid-stressed cells respectively) of the population of injured but still viable cells. The addition of mannitol to the selective medium used to count acid-stressed cells did not increase the count. Whilst the presence of H2O2 in media may cause significant errors in the estimation of E. coli in certain situations these errors are unlikely to be significant in physiological studies of populations of cells injured by stress.  相似文献   

12.
The swelling and viscoelastic properties of purified elastin were studied in aqueous solutions of superswelling agents or osmotic deswelling agents to develop models to study the behavior of elastin at frequencies not easily accessible by direct measurement. Increasing the concentration of any of the deswelling solutes (glucose, sucrose, sodium chloride, ammonium sulphate, dextran, and polyethylene glycol) increased the tensile storage and loss moduli. The viscoelastic behavior was independent of solute when compared on the basis of swelling behavior. The data collected at various solute concentrations at 37°C could be reduced to one master curve, and the master curves for elastin in each of the deswelling solutes were themselves superposable. The ability to reduce the data indicates that dehydration can be used to model elastin's viscoelastic behavior at high frequencies or over short times. The viscoelastic behavior of elastin in the superswelling agents [potassium thiocyanate (KSCN), dimethyl sulfoxide (DMSO), and ethylene glycol (EG)] depended on the solute and was independent of swelling behavior. In KSCN the behavior of elastin seemed to be a continuation of the pattern established by the deswelling agents in that an increase in swelling was accompanied by a decrease in both moduli, and the viscoelastic spectra were reducible to one master curve. In high concentrations of DMSO and EG the spectra were not reducible. KSCN appears a suitable superswelling solute to model elastin's viscoelastic behavior at low frequencies or over long times. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Cytoplasmic steps of peptidoglycan synthesis in Escherichia coli.   总被引:29,自引:26,他引:3       下载免费PDF全文
The cellular pool levels of most of the cytoplasmic precursors of peptidoglycan synthesis were determined for normally growing cells of Escherichia coli K-12. In particular, a convenient method for analyzing the uridine nucleotide precursor contents was developed by associating gel filtration and reverse-phase high-pressure liquid chromatography techniques. The enzymatic parameters of the four synthetases which catalyze the stepwise addition of L-alanine, D-glutamic acid, meso-diaminopimelic acid, and D-alanyl-D-alanine to uridine diphosphate-N-acetylmuramic acid were determined. It was noteworthy that the pool levels of L-alanine, D-glutamic acid, meso-diaminopimelic acid, and D-alanyl-D-alanine were much higher than the Km values determined for these substrates, whereas the molar concentrations of the uridine nucleotide precursors were lower than or about the same order of magnitude as the corresponding Km values. Taking into consideration the data obtained, an attempt was made to compare the in vitro activities of the D-glutamic acid, meso-diaminopimelic acid, and D-alanyl-D-alanine adding enzymes with their in vivo functioning, expressed by the amounts of peptidoglycan synthesized. The results also suggested that these adding activities were not in excess in the cell under normal growth conditions, but their amounts appeared adjusted to the requirements of peptidoglycan synthesis. Under the different in vitro conditions considered, only low levels of L-alanine adding activity were observed.  相似文献   

14.
15.
The amino acid proline is accumulated in plant tissues in response to a variety of stresses. The existence of two routes for its biosynthesis is well documented. However, little is known about the contribution of each pathway to the accumulation of free proline under stress conditions. In the present study young barley plants were subjected to osmotic stress by treating their roots with 25% polyethylene glycol. Prior to stress imposition roots were incubated for 24 h in nutrient solution containing proline or one of its metabolic precursors: glutamate and ornithine. Free proline quantity in the leaves was measured before and after stress. Relative water content (RWC) was used as a measure of the plant water status. Foliar proline levels showed a significant increase in ornithine- and proline-pretreated plants compared to the control. Nevertheless, no considerable changes in leaf RWC were observed. It was shown that before stress application only ornithine but not glutamate was immediately metabolized to proline. Under stress conditions, however, both precursors were converted into proline. The possible role of this amino acid in the processes of post stress recovery is discussed.  相似文献   

16.
17.
18.
From determination of amounts and concentrations of biopolymers and solutes in the cytoplasm of Escherichia coli, we are obtaining information needed to assess the effect of macromolecular crowding on cytoplasmic properties and processes of osmotically stressed bacteria. We observe that growth rate, and the amount of cytoplasmic water decrease and cytoplasmic concentrations of biopolymers and K+, increase with increasing osmolality, even for cells grown in the presence of osmoprotectants like glycine betaine. We observe general correlations between the amount of cytoplasmic water, growth rate and cytoplasmic K+ concentration in osmotically stressed cells grown both with and without osmoprotectants. To explain these correlations, we propose that crowding increases with increasing growth osmolality, which in turn buffers the binding of proteins to nucleic acids against changes in cytoplasmic K+ concentration and (by affecting biopolymer diffusion rates and/or assembly equilibria) is a determinant of growth rate of osmotically stressed cells. Changes in biopolymer concentration and crowding may also explain the increase of the activity coefficient of cytoplasmic water with increasing osmolality of growth in E. coli.  相似文献   

19.
Activation of the extracellular signal-regulated MAP-kinase (ERK) by anisoosmotic conditions, the underlying signalling pathways, and the role of protein kinases in cell volume regulation were investigated in trout hepatocytes. While hyperosmolarity left phosphorylated ERK (pERK) levels unaffected, hypoosmolarity caused a significant increase of pERK within 2 min which peaked at around 30 min. Chelating extracellular Ca2+ to prevent the influx of Ca2+ associated with swelling reduced iso- and abolished hypoosmotic ERK activation. Similarly, inhibiting the ERK activator MEK, tyrosine kinases, or PKC inhibited the increase of pERK. In contrast, exposing cells to chelerytrine or staurosporine, PKC inhibitors of little specificity, increased pERK independently from osmotic conditions. Blocking PI3 kinase, application of 8-Br-cAMP, exposure to a P-receptor antagonist, and inhibition of p38 MAP-kinase had no effect on ERK activity. A significant reduction of regulatory volume decrease (RVD) after hypoosmotic swelling caused by MEK-inhibition and an even more pronounced reduction due to p38 inhibition indicates a role for MAP-kinases in volume regulation, but a lack of correlation between the impact of protein kinase inhibitors on pERK levels and on RVD suggests that ERK may merely modulate volume recovery. Immunocytochemical detection of pERK indicated cytoplasmic activation, but no nuclear accumulation within 30 min, supporting the notion that ERK exerts non-genomic effects. Overall, our data underscore the complexity of hypoosmotic ERK signalling and suggest a role of ERK and p38 in acute cell volume regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号