首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The intermediate-sized filaments present in epidermal keratinocytes derived from mouse skin and in an established cell line (HEL) derived from spontaneous transformation of murine keratinocytes grown in vitro, have been examined by immunofluorescence microscopy, using antibodies directed against subunit proteins of different classes of intermediate-sized filaments, as well as by electron microscopy and gel electrophoresis of cytoskeletal preparations highly enriched in intermediate-sized filaments. The keratinocytes derived from neonatal skin, which are capable of only limited replication in vitro, show only a single type of intermediate-sized filaments, i.e., the tonofibril-like arrays of filaments containing prekeratin. HEL cells, which proliferate indefinitely in vitro, retain the tonofilament-like structures typical of differentiated epidermal cells but in addition display intermediate-sized filaments of the vimentin type, i.e., the filament system typically found in mesenchymal and mesenchyme-derived cells. We discuss the possibility that (i) the advent of vimentin-type filaments in epidermal cells in culture is related either to the transformed state or the in vitro growth conditions as such and (ii) other differentiated epithelial cells proliferating in vitro may have more than one system of intermediate-sized filaments.  相似文献   

2.
The intermediate-sized filaments present in epidermal keratinocytes derived from mouse skin and in an established cell line (HEL) derived from spontaneous transformation of murine keratinocytes grown in vitro, have been examined by immunofluorescence microscopy, using antibodies directed against subunit proteins of different classes of intermediate-sized filaments, as well as by electron microscopy and gel electrophoresis of cytoskeletal preparations highly enriched in intermediate-sized filaments. The keratinocytes derived from neonatal skin, which are capable of only limited replication in vitro, show only a single type of intermediate-sized filaments, i.e., the tonofibril-like arrays of filaments containing prekeratin. HEL cells, which proliferate indefinitely in vitro, retain the tonofilament-like structures typical of differentiated epidermal cells but in addition display intermediate-sized filaments of the vimentin type, i.e., the filament system typically found in mesenchymal and mesenchyme-derived cells. We discuss the possibility that (i) the advent of vimentin-type filaments in epidermal cells in culture is related either to the transformed state or the in vitro growth conditions as such and (ii) other differentiated epithelial cells proliferating in vitro may have more than one system of intermediate-sized filaments.  相似文献   

3.
Intermediate-sized filaments of human endothelial cells.   总被引:15,自引:0,他引:15       下载免费PDF全文
Human endothelial cells prepared from unbilical cords are characterized in parallel by electron microscopy and indirect immunofluorescence microscopy using specific antibodies against different classes of intermediate-sized filaments. The strongly developed, loose bundles of intermediate-sized filaments typically found in these cells are not decorated by antibodies against prekeratin or antibodies against smooth muscle desmin. They are, however, strongly decorated by antibodies directed against murine "vimentin," i.e., the 57,000 mol wt polypeptide which is the major protein of the intermediate-sized filaments predominant in various cells of mesenchymal origin. Cytoskeletal preparations greatly enriched in intermediate-sized filaments show the enrichment of a polypeptide band comigrating with murine vimentin. This shows that the intermediate-sized filaments that are abundant in human endothelial cells are predominantly of the vimentin type and can be demonstrated by their cross-reaction with the vimentin of rodents. These data also strengthen the evidence for several subclasses of intermediate-sized filaments, which can be distinguished by immunological procedures.  相似文献   

4.
The epithelial derived cell lines PtK2 and HeLa were characterized by double immunofluorescence microscopy using purified antibodies against vimentin and prekeratin. The results show that both cell types express simultaneously two immunologically distinct intermediate-sized filaments. Use of colcemid-treated cells confirms that the vimentin fibers and not the keratin-related fibers are rearranged into coils around the nucleus. In some cells staining of fibrous fragments is observed, which are perhaps involved in the synthesis or breakdown of this class of filaments. The concept that growing cells derived from differentiated cell types express not only the intermediate-sized filament system typical of the differentiated cell type but in addition contain intermediate-sized filaments of the vimentin type is discussed.  相似文献   

5.
Indirect immunofluorescence microscopy has been used to detect cytoskeletal proteins, which allow a distinction between the two cell types present in the mouse blastocyst: i.e. the cells of the inner cell mass (ICM) and the outer trophoblastic cells. Antibodies against three classes of intermediate-sized filaments (cytokeratins, desmin and vimentin), as well as antibodies against actin and tubulin were studied. Antibodies against prekeratin stain the outer trophoblastic cells but not the ICM in agreement with the findings on adult tissues that cytokeratins are a marker for various epithelial cells. Interestingly, vimentin filaments typical of mesenchymal cells as well as of cells growing in culture seem to be absent in both cell types of the blastocyst. Thus, the cytokeratins of the trophoblastic cells seem to be the first intermediate-sized filaments expressed in embryogenesis. Antibodies to tubulin and actin show that microtubules and microfilaments are ubiquitous structures, although microfilaments have a noticeably different organization in the two cell types. In addition, since early embryogenic multipotential cells show close similarities to teratocarcinomic cells, a comparison is made between the cells of the blastocyst, embryonal carcinoma cells (EC cells) and an epithelial endodermal cell line (PYS2 cells) derived from EC cells. EC cells display vimentin filaments whereas PYS2 cells show both vimentin and cytokeratin filaments. The results emphasize the usefulness of antibodies specific for different classes of intermediate filaments in further embryological studies, and suggest that cells of the blastocyst and EC cells differ with respect to vimentin filaments.  相似文献   

6.
The cytoplasmic structure of Sertoli cells of rat testes has been studied by electron microscopy of ultrathin sections. Sertoli cells contain numerous intermediate-sized (7-11 nm) filaments which form a meshwork extending throughout the whole cytoplasm. Often the frequency of such filaments appears especially high in juxtanuclear and cortical regions, including the apical recesses containing the spermatids. Examination of frozen sections of testes by indirect immunofluorescence microscopy using guinea pig antibodies to prekeratin and vimentin has shown the absence of intermediate-sized filaments of the cytokeratin type in all cells of the testes but the presence of filaments of the vimentin type in Sertoli cells as well as in cells of the interstitial space. These results show that the intermediate-sized filaments, abundant in Sertoli cells, are of the vimentin type. In addition we conclude that the "germ epithelium" differs from others true epithelia by the absence of cytokeratin filaments and typical desmosomes and, in Sertoli cells, the presence of vimentin filaments, suggestive of a mesenchymal character or derivation.  相似文献   

7.
Proteins of contractile and cytoskeletal elements have been studied in bovine lens-forming cells growing in culture as well as in bovine and murine lenses grown in situ by immunofluorescence microscopy using antibodies to the following proteins: actin, myosin, tropomyosin, α-actinin, tubulin, prekeratin, vimentin, and desmin. Lens-forming cells contain actin, myosin, tropomyosin, and α-actinin which in cells grown in culture are enriched in typical cable-like structures, i.e. microfilament bundles. Antibodies to tubulin stain normal, predominantly radial arrays of microtubules. In the epithelioid lens-forming cells of both monolayer cultures grown in vitro and lens tissue grown in situ intermediate-sized filaments of the vimentin type are abundant, whereas filaments containing prekeratin-like proteins (‘cytokeratins’) and desmin filaments have not been found. The absence of cytokeratin proteins observed by immunological methods is supported by gel electrophoretic analyses of cytoskeletal proteins, which show the prominence of vimentin and the absence of detectable amounts of cytokeratins and desmin. This also correlates with electron microscopic observations that typical desmosomes and tonofilament bundles are absent in lens-forming cells, as opposed to a high density of vimentin filaments. Our observations show that the epithelioid lens-forming cells have normal arrays of (i) microfilament bundles containing proteins of contractile structures; (ii) microtubules; and (iii) vimentin filaments, but differ from most true epithelial cells by the absence of cytokeratins, tonofilaments and typical desmosomes. The question of their relationship to other epithelial tissues is discussed in relation to lens differentiation during embryogenesis. We conclude that the lens-forming cells either represent an example of cell differentiation of non-epithelial cells to epithelioid morphology, or represent a special pathway of epithelial differentiation characterized by the absence of cytokeratin filaments and desmosomes. Thus two classes of tissue with epithelia-like morphology can be distinguished: those epithelia which contain desmosomes and cytokeratin filaments and those epithelioid tissues which do not contain these structures but are rich in vimentin filaments (lens cells, germ epithelium of testis, endothelium).  相似文献   

8.
Epithelia-derived tumors (carcinomas) can be distinguished from mesenchymally derived tumors by the presence of intermediate-sized filaments of the cytokeratin type, which usually coincides with the absence of other types of intermediate-sized filaments such as vimentin filaments. In the course of diagnostic examinations of human tumors, using immunofluorescence microscopy, we have come across a case of an unusual carcinoma (Primary tumor and lymph node metastasis) positively stained not only with cytokeratin antibodies but also with immunoglobulins present in vimentin antisera. Therefore, this tumor, a cloacogenic carcinoma apparently derived from the rectal-anal transitional region, has been examined in greater detail using both immunofluorescence microscopy and immuno-electron microscopy as well as gel electrophoretic analysis of cytoskeletal polypeptides from total tumor tissue and from microdissected nodules enriched in carcinoma cells. The unusual reaction of the carcinoma cells with immunoglobulins present in seven different (rabbit or guinea pig) antisera raised against vimentin, has been found to be diminished after absorption on purified cytokeratin or total epidermal cytoskeletal material, but not after absorption on purified vimentin. Gel electrophoretic analysis of tumor cytoskeletons showed an unusual complex pattern of cytokeratin polypeptides containing relatively large (Mr 68,000 and Mr 58,000) neutral-to-slightly basic cytokeratins, as are typically found in epidermis and other stratified squamous epithelia, as well as several smaller acidic cytokeratins, including a Mr 40,000 polypeptide found in certain nonstratified epithelial such as colon and small intestine. Total tumor also showed the inclusion of some vimentin which, however, was significantly decreased in analysis of excised carcinoma nodules. Examining antibody binding to polypeptides separated by gel electrophoresis and blotted on nitrocellulose paper, we have found that antisera raised against vimentin contained not only vimentin antibodies but also immunoglobulins which specifically bound to the largest cytokeratin component. We conclude that the unusual reaction of immunoglobulins present in vimentin antisera with cytokeratin filament bundles does not represent specific binding to vimentin in these carcinoma cells, but is due to a component obviously widespread in vimentin antisera which binds specifically to a cytokeratin present in this type of tumor but not in most other carcinomas. It is proposed that use is made in diagnostic examinations of vimentin antisera or affinity-purified vimentin antibodies that have been pre-absorbed on cytokeratin protein, in order to eliminate such disturbing reactions.  相似文献   

9.
Cloned hepatoma cells (7222) derived from the liver of a rat treated with the carcinogen, diethylnitrosamine, exhibit a genetically stable, large, acentric, juxtanuclear, hyaline aggregate of loosely packed intermediate-sized (7–11 nm) filaments, interspersed with variable but minor amounts of microtubules, polyribosomes and membranous structures. Immunofluorescence microscopy shows that the these filaments react specifically with antibodies to bovine prekeratin and to murine vimentin. The aggregates contain aster-like foci common to the arrangement of both tonofilament-like and vimentin-containing intermediate-sized filaments, although both filament systems show different fibrillar patterns in other cytoplasmic regions. While the cytokeratin filament system is not significantly altered during exposure to colcemid, the vimentin in the abnormal aggregate is rearranged during such treatment into extensive and complex perinuclear ‘whorls’ of filaments. Treatment of the cells with butyrate results in a markedly flattened, hepatocyte-like morphology, a reappearance of typical actin-containing ‘cables’, and a progressive disintegration of the filament aggregate concomitant with a normal display of filaments of both the cytokeratin and vimentin type. The results show that (i) some cells contain aggregates consisting of two different types of intermediate-sized filaments oriented onto a common focal center; (ii) such an abnormal filament arrangement is clonally stable; (iii) the vimentin-type filaments contained in such aggregates are still susceptible to the action of antimitotic drugs and can be rearranged into characteristic perinuclear whorls; and (iv) this abnormal aggregate of intermediate filaments can be reverted to normal patterns upon treatment of the cells with butyrate.  相似文献   

10.
T E Kreis  B Geiger  E Schmid  J L Jorcano  W W Franke 《Cell》1983,32(4):1125-1137
Poly(A)+ RNA isolated from bovine muzzle epidermis was microinjected into nonepithelial cells containing only intermediate-sized filaments of the vimentin type. In recipient cells keratin polypeptides are synthesized and assemble into intermediate-sized filaments at multiple dispersed sites. We describe the time course and the pattern of de novo assembly of keratin filaments within living cells. These filaments were indistinguishable, by immunofluorescence and immunoelectron microscopic criteria, from keratin filament arrays present in true epithelial cells. The presence of extended keratin fibril meshworks in these injected cells is compatible with cell growth and mitosis. Double immunolabeling revealed that newly assembled keratin was not codistributed with microfilament bundles, microtubules or vimentin filaments. We suggest that assembly mechanisms exist which in vivo sort out newly synthesized cytokeratin polypeptides from vimentin.  相似文献   

11.
Myoepithelial cells from mammary glands, the modified sweat glands of bovine muzzle, and salivary glands have been studied by electron microscopy and by immunofluorescence microscopy in frozen sections in an attempt to further characterize the type of intermediate-sized filaments present in these cells. Electron microscopy has shown that all myoepithelial cells contain extensive meshworks of intermediate-sized (7--11-nm) filaments, many of which are anchored at typical desmosomes or hemidesmosomes. The intermediate-sized filaments are also intimately associated with masses of contractile elements, identified as bundles of typical 5--6-nm microfilaments and with characteristically spaced dense bodies. This organization resembles that described for various smooth muscle cells. In immunofluorescence microscopy, using antibodies specific for the various classes of intermediate-sized filaments, the myoepithelial cells are strongly decorated by antibodies to prekeratin. They are not specifically stained by antibodies to vimentin, which stain mesenchymal cells, nor by antibodies to chick gizzard desmin, which decorate fibrils in smooth muscle Z bands and intercalated disks in skeletal and cardiac muscle of mammals. Myoepithelial cells are also strongly stained by antibodies to actin. The observations show (a) that the epithelial character, as indicated by the presence of intermediate-sized filaments of the prekeratin type, is maintained in the differentiated contractile myoepithelial cell, and (b) that desmin and desmin-containing filaments are not generally associated with musclelike cell specialization for contraction but are specific to myogenic differentiation. The data also suggest that in myoepithelial cells prekeratin filaments are arranged--and might function--in a manner similar to the desmin filaments in smooth muscle cells.  相似文献   

12.
The occurrence of intermediate-sized filaments containing prekeratin-like proteins ('cytokeratins') has been examined in various organs of rat and cow by electron microscopy and by immunofluorescence microscopy on frozen sections using antibodies to defined constitutive proteins of various types of intermediate-sized filaments (prekeratin, vimentin, desmin). Positive cytokeratin reaction and tonofilament-like structures have been observed in the following epithelia: epidermis; ductal, secretory, and myoepithelial cells of sweat glands; mammary gland duct; myoepithelial cells of lactating mammary gland; milk secreting cells of cow; ductal, secretory, and myoepithelial cells of various salivary glands; tongue mucosa; bile duct; excretory duct of pancreas; intestinal mucosa; urothelium; trachea; bronchi; thymus reticulum, including Hassall corpuscles; mesothelium; uterus; and ciliated cells of oviduct. None of the epithelial cells mentioned has shown significant reaction with antibodies to vimentin, the major component of the type of intermediate-sized filaments predominant in mesenchymal cells. The widespread, if not general occurrence of cytokeratin filaments in epithelial cells is emphasized, and it is proposed to use this specific structure as a criterion for true epithelial character or origin.  相似文献   

13.
The location of constitutive proteins of different types of intermediate-sized (about 10 mm) filaments (cytokeratin, vimentin, desmin, brain filament protein) was examined in various tissues of 11--20 day chick embryos, using specific antibodies against the isolated proteins and immunofluorescence microscopy on frozen sections and on isolated serous membrane. The tissues studied which contained epithelia were small intestine, gizzard, esophagus, crop, liver, kidney, thymus, mesenteries, and epidermis. The results show that the different intermediate filament proteins, as seen in the same organ, are characteristic of specific lines of differentiation: Cytokeratin filaments are restricted to--and specific for--epithelial cells; vimentin filaments are seen--at this stage of embryogenesis--only in mesenchymal cells, including connective tissue, endothelial and blood cells, and chondrocytes; filaments containing protein(s) related to the subunit protein prepared from gizzard 10 nm filaments (i.e., desmin) are significant only in muscle cells; and intermediate filament protein of brain, most probably neurofilament protein, is present only in nerve cells. We conclude that for most tissues the expression of filaments of cytokeratin, vimentin, desmin, and neurofilament protein is mutually exclusive, and that these protein structurees provide useful markers for histochemical and cytochemical differentiation of cells of epithelial, mesenchymal, myogenic, and neurogenic differentiation.  相似文献   

14.
Summary Antibodies against intermediate-sized filaments, of the prekeratin or vimentin type, were used to investigate the presence of these filaments by indirect immunofluorescence microscopy in cultured and non-cultured amniotic fluid cells, in frozen sections of the placenta and in isolated cells of the amniotic epithelium. Two major classes of cells can be cultured from amniotic fluids, namely cells of epithelial origin containing filaments of the prekeratin type and cells of different origin which contain filaments of the vimentin type but are negative when tested with antibodies to epidermal prekeratin. The presence of prekeratin type filaments correlates with the morphology of colonies of amniotic fluid cell cultures in vitro as classified by Hoehn et al. (1974). Cells of E-type colonies are shown to be of epithelial origin. In contrast our data indicate a different origin of almost all cells of F-type colonies and of the large majority of cells of AF-type colonies. Cells of epithelial origin and positively stained with antibodies to epidermal prekeratin are occasionally scattered in F-type colonies and in variable percentages (up to 30%) in AF-type colonies. Surprisingly, cryostat sections of the amniotic epithelium and isolated groups of amniotic cells showed positive reactions with both antibodies to vimentin and prekeratin. The possibility that amniotic cells may be different from other epithelial cells in that they contain both types of filaments simultaneously already in situ is presently under investigation.Part of this work is included in the doctoral thesis of Irmgard Treiss to be submitted to the Faculty of Medicine of the University of Heidelberg  相似文献   

15.
The location of constitutive proteins of different types of intermediate-sized (about 10 mm) filaments (cytokeratin, vimentin, desmin, brain filament protein) was examined in various tissues of 11–20 day chick embryos, using specific antibodies against the isolated proteins and immunofluorescence microscopy on frozen sections and on isolated serous membrane. The tissues studied which contained epithelia were small intestine, gizzard, esophagus, crop, liver, kidney, thymus, mesenteries, and epidermis. The results show that the different intermediate filament proteins, as seen in the same organ, are characteristic of specific lines of differentiation: Cytokeratin filaments are restricted to – and specific for – epithelial cells; vimentin filaments are seen – at this stage of embryogenesis – only in mesenchymal cells, including connective tissue, endothelial and blood cells, and chondrocytes; filaments containing protein(s) related to the subunit protein prepared from gizzard 10 nm filaments (i.e., desmin) are significant only in muscle cells; and intermediate filament protein of brain, most probably neurofilament protein, is present only in nerve cells. We conclude that for most tissues the expression of filaments of cytokeratin, vimentin, desmin, and neurofilament protein is mutually exclusive, and that these protein structures provide useful markers for histochemical and cytochemical differentiation of cells of epithelial, mesenchymal, myogenic, and neurogenic differentiation.  相似文献   

16.
Intermediate-sized filaments in Drosophila tissue culture cells   总被引:5,自引:2,他引:3       下载免费PDF全文
《The Journal of cell biology》1984,99(4):1468-1477
In using a monoclonal antibody against a major cytoplasmic protein of 46,000 mol wt, we have characterized an intermediate-sized (10 nm) filamentous cytoskeleton in Drosophila melanogaster tissue culture cells. Indirect immunofluorescence, immunoelectron microscopy, and protein blotting show that this cytoskeleton exhibits features typical of the vertebrate vimentin cytoskeleton, including the diameter and appearance of filaments, sensitivity to 10(-6) M colcemid, and insolubility in buffers containing 1% Triton X-100. The antibody cross- reacts with vimentin and desmin from baby hamster kidney cells and stains a vimentin cytoskeleton in the vertebrate Chinese hamster ovary cell line. We, therefore, conclude that the 46,000-mol wt Drosophila protein is homologous to vertebrate vimentin. Three minor, higher- molecular-weight polypeptides are also detected in the Drosophila cells that react with the antibody. At least two of these are members of a family of proteins with properties resembling those of the 46,000-mol wt intermediate filament protein.  相似文献   

17.
Immunofluorescence microscopy has been used to follow the rearrangement of intermediate-sized filaments during mitosis in rat kangaroo PtK2 cells. These epithelial cells express two different intermediate filament systems: the keratin-related tonofilament-like arrays typical of epithelial cells, and the vimentin-type filaments characteristic of mesenchymal cells in vivo, and of many established cell lines. The two filament systems do not appear to depolymerize extensively during mitosis, but show differences in their organization and display which may indicate different functions. The most striking rearrangements have been seen with the vimentin filaments, and in particular in prometaphase a transient cage-like structure of vimentin fibers surrounding the developing spindle is formed. In metaphase, this cage disappears, and vimentin fibers are found in an elliptical band surrounding the chromosomes and the interzone. In telophase, these bands separate, usually breaking first on the side closest to where the cleavage furrow has started to form. Double label experiments with tubulin and vimentin antibodies have indicated that the microtubules and the chromosomes are contained within the thick crescents of vimentin filaments and suggest that the vimentin intermediate filaments may be involved in the orientation of the spindle and/or the chromosomes during mitosis. In contrast, extensive arrays of cytokeratin filaments are present throughout mitosis on the substrate-attached side of the cell and also in other cellular areas, although they are usually not present in the spindle region. Thus the cytokeratin filaments probably continue to play a cytoskeletal role during mitosis and may be responsible for the flat shape that certain epithelial cells such as PtK2 cells continue to maintain during mitosis.  相似文献   

18.
Mouse polyclonal antibodies have been raised against two human proteins (IEF [isoelectric focusing] 31, Mr = 50,000; IEF 46, Mr = 43,500) that have previously been shown to be present in HeLa cytoskeletons enriched in intermediate-sized filaments. Immunoprecipitation studies show that both proteins share common antigenic determinants with each other and with the putative human keratins IEF 36 and 44, also present in HeLa cytoskeletons. Indirect immunofluorescence studies showed that both antibodies revealed similar filamentous networks in various cultured epithelial cells of human origin. These included AMA (transformed amnion), HeLa (cervical carcinoma), normal amnion cells, Fl-amnion (transformed amnion), WISH-amnion (transformed amnion), Chang liver (liver), and Detroid-98 (sternal marrow). Human cells that did not react with both antibodies included skin fibroblasts, lung fibroblasts (WI-38), SV40-transformed lung fibroblasts, Molt 4 (leukemia), lymphocytes, and monocytes. These results were in complete agreement with the presence or absence of both proteins in two-dimensional gels of the different cell types. Exposure of AMA cells to demecolcine (24 h; 10 micrograms/ml) caused the total collapse of vimentin filaments but, as seen by indirect immunofluorescence, caused only a partial redistribution of the IEF 31 and 46 filaments. These results are taken to suggest that both proteins are components of the intermediate-sized filaments of the "keratin" type. The antibodies could be clearly differentiated by staining human bladder carcinoma EJ 19 cells, as only the IEF 46 antibody stained a filamentous network in these cells The occurrence of keratins IEF 31, 36, 44, and 46 in different cultured human epithelial cells has been studied using two-dimensional gel electrophoresis.  相似文献   

19.
Epithelial cells contain a cytoskeletal system of intermediate-sized (7 to 11 nm) filaments formed by proteins related to epidermal keratins (cytokeratins). Cytoskeletal proteins from different epithelial tissues (e.g. epidermis and basaliomas, cornea, tongue, esophagus, liver, intestine, uterus) of various species (man, cow, rat, mouse) as well as from diverse cultured epithelial cells have been analyzed by one and two-dimensional gel electrophoresis. Major cytokeratin polypeptides are identified by immunological cross-reaction and phosphorylated cytokeratins by [32P]phosphate labeling in vivo.It is shown that different epithelia exhibit different patterns of cytokeratin polypeptides varying in molecular weights (range: 40,000 to 68,000) and electrical charges (isoelectric pH range: 5 to 8.5). Basic cytokeratins, which usually represent the largest cytokeratins in those cells in which they occur, have been found in all stratified squamous epithelia examined, and in a murine keratinocyte line (HEL) but not in hepatocytes and intestinal cells, and in most other cell cultures including HeLa cells. Cell type-specificity of cytokeratin patterns is much more pronounced than species diversity. Anatomically related epithelia can express similar patterns of cytokeratin polypeptides. Carcinomas and cultured epithelial cells often continue to synthesize cytokeratins characteristic of their tissue of origin but may also produce, in addition or alternatively, other cytokeratins. It is concluded: (1) unlike other types of intermediate-sized filaments, cytokeratin filaments are highly heterogeneous in composition and can contain basic polypeptides: (2) structurally indistinguishable filaments of the same class, i.e. cytokeratin filaments, are formed, in different epithelial cells of the same species, by different proteins of the cytokeratin family; (3) vertebrate genomes contain relatively large numbers of different cytokeratin genes which are expressed in programs characteristic of specific routes of epithelial differentiation; (4) individual cytokeratins provide tissue- or cell type-specific markers that are useful in the definition and identification of the relatedness or the origin of epithelial and carcinoma cells.  相似文献   

20.
The presence of intermediate filament proteins in vascular tissue cells has been examined by immunofluorescence microscopy on frozen sections of the aortic wall of diverse vertebrates (rat, cow, human and chicken) and by gel electrophoresis of cytoskeletal proteins from whole aortic tissue or from stripped tunica media of cow and man. Most cells of the aortic wall in these species contain vimentin filaments, including smoooth muscle cells of the tunica media. In addition, we have observed aortic cells that are positively stained by antibodies to desmin. The presence of desmin in aortic tissue has also been demonstrated by gel electrophoresis for rat, cow and chicken. In aortic tissue some smooth muscle cells contain both types of intermediate filament proteins, vimentin and desmin. Bovine aorta contains, besides cells in which vimentin and desmin seem to co-exist, distinct bundles of smooth muscle cells, located in outer regions of the tunica media, which contain only desmin. The results suggest that (i) intermediate-sized filaments of both kinds, desmin and vimentin, can occur in vascular smooth muscle in situ and (ii) smooth muscle cells of the vascular system are heterogeneous and can be distinguished by their intermediate filament proteins. The finding of different vascular smooth muscle cells is discussed in relation to development and differentiation of the vascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号