首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have recently developed a fragment based selection strategy for targeting kinases, where a small molecule warhead can be non-covalently tethered to a phage-displayed library of peptides. This approach was applied to the conversion of the promiscuous kinase inhibitor, staurosporine, into a potent bivalent ligand for cAMP-dependent protein kinase (PKA). Herein we report a systematic evaluation of this new bivalent ligand (BL); (a) Lineweaver–Burke analysis revealed that the BL, unlike substrate-based bivalent kinase inhibitors, displayed non-competitive inhibition with respect to the peptide substrate, suggesting an allosteric mechanism of action; (b) linker optimization of the BL, afforded one of the most potent, sub-nanomolar, inhibitors of PKA reported to date; (c) the BL was found to be modular, where attachment of active site targeted small molecule warheads in lieu of staurosporine could achieve similar gains in affinity; and (d) profiling studies of both the staurosporine derivative and the BL (amide isostere) against a panel of 90 kinases revealed almost unique enhancement in selectivity against PKA (>5-fold) compared to the starting staurosporine derivative. These combined results provide new insights for BL discovery, which has the potential to provide guidance toward the development of kinase selective reagents while uncovering new allosteric sites on kinases for therapeutic targeting.  相似文献   

3.
The effect of acidosis on cAMP-dependent protein kinase activity in perfused hearts from normal and reserpinized rats has been investigated. The results were compared to the effect of acidosis on myocardial contractility under the same conditions. The results showed that acidosis increases the cAMP-dependent protein kinase activity in normal hearts. This increase was abolished when the hearts were depleted of norepinephrine by previous treatment with reserpine. As regards myocardial contractility, there was a similar decrease by acidosis either in normal hearts with increased cAMP-dependent protein kinase activity or in reserpinized hearts in which the increase in protein kinase activity was prevented. Two alternative hypotheses are suggested: (1) a dissociation between contractility and cAMP levels, or (2) a "blockade" by acidosis of the mechanical effect of increasing cAMP-dependent protein kinase activity.  相似文献   

4.
The 55-kDa TNFR1 (type I tumor necrosis factor receptor) can be released to the extracellular space by two mechanisms, the proteolytic cleavage and shedding of soluble receptor ectodomains and the release of full-length receptors within exosome-like vesicles. We have shown that the brefeldin A-inhibited guanine nucleotide exchange protein BIG2 associates with TNFR1 and selectively modulates the release of TNFR1 exosome-like vesicles via an ARF1- and ARF3-dependent mechanism. Here, we assessed the role of BIG2 A kinase-anchoring protein (AKAP) domains in the regulation of TNFR1 exosome-like vesicle release from human vascular endothelial cells. We show that 8-bromo-cyclic AMP induced the release of full-length, 55-kDa TNFR1 within exosome-like vesicles via a protein kinase A (PKA)-dependent mechanism. Using RNA interference to decrease specifically the levels of individual PKA regulatory subunits, we demonstrate that RIIbeta modulates both the constitutive and cAMP-induced release of TNFR1 exosome-like vesicles. Consistent with its AKAP function, BIG2 was required for the cAMP-induced PKA-dependent release of TNFR1 exosome-like vesicles via a mechanism that involved the binding of RIIbeta to BIG2 AKAP domains B and C. We conclude that both the constitutive and cAMP-induced release of TNFR1 exosome-like vesicles occur via PKA-dependent pathways that are regulated by the anchoring of RIIbeta to BIG2 via AKAP domains B and C. Thus, BIG2 regulates TNFR1 exosome-like vesicle release by two distinct mechanisms, as a guanine nucleotide exchange protein that activates class I ADP-ribosylation factors and as an AKAP for RIIbeta that localizes PKA signaling within cellular TNFR1 trafficking pathways.  相似文献   

5.
cAMP stimulates proliferation in many cell types. For many years, cAMP-dependent protein kinase (PKA) represented the only known cAMP effector. PKA, however, does not fully mimic the action of cAMP, indicating the existence of a PKA-independent component. Since cAMP-mediated activation of the G-protein Rap1 and its phosphorylation by PKA are strictly required for the effects of cAMP on mitogenesis, we hypothesized that the Rap1 activator Epac might represent the PKA-independent factor. Here we report that Epac acts synergistically with PKA in cAMP-mediated mitogenesis. We have generated a new dominant negative Epac mutant that revealed that activation of Epac is required for thyroid-stimulating hormone or cAMP stimulation of DNA synthesis. We demonstrate that Epac's action on cAMP-mediated activation of Rap1 and cAMP-mediated mitogenesis depends on the subcellular localization of Epac via its DEP domain. Disruption of the DEP-dependent subcellular targeting of Epac abolished cAMP-Epac-mediated Rap1 activation and thyroid-stimulating hormone-mediated cell proliferation, indicating that an Epac-Rap-PKA signaling unit is critical for the mitogenic action of cAMP.  相似文献   

6.
7.
The effects of cAMP-dependent protein kinase (cAMP-PK) phosphorylation on the degradation of the microtubule-associated protein tau by calpain were studied. Purified bovine brain tau that had been phosphorylated by cAMP-PK had a slower migration pattern on sodium dodecyl sulfate-polyacrylamide gels and a more acidic, less heterogeneous pattern on two-dimensional, nonequilibrium pH gradient electrophoresis (NEPHGE) gels compared with untreated tau. Phosphorylation of tau by cAMP-PK significantly inhibited its proteolysis by calpain compared with untreated tau. To our knowledge this is the first demonstration that phosphorylation of tau by a specific kinase results in increased resistance to hydrolysis by calpain. Tau dephosphorylated by alkaline phosphatase migrated more rapidly on sodium dodecyl sulfate-polyacrylamide gels and also showed an altered two-dimensional NEPHGE pattern. Dephosphorylation of tau had no effect on its susceptibility to calpain proteolysis, indicating that regulation of the susceptibility to calpain hydrolysis is due to the phosphorylation of a specific site(s). These results suggest a role for phosphorylation in regulating the degradation of tau. Abnormal phosphorylation could result in a protease-resistant tau population which may contribute to the formation of paired helical filaments in Alzheimer's disease.  相似文献   

8.
1. Ten new cAMP analogs were synthesized by replacing the purine ring with with indazole, benzimidazole or benztriazole and/or their nitro and amino derivatives. 2. Each analog proved effective in activating cAMP-dependent protein kinase I (PK-I) purified from rabbit skeletal muscle and cAMP-dependent protein kinase II (PK-II) from bovine heart and chasing 8-[3H]cAMP bound to regulatory subunits in the half-maximal effective concentrations of 2 x 10(-8)-8 x 10(-6) M. 3. The N-1-beta-D-ribofuranosyl-indazole-3'5'-cyclophosphate(I) proved a very poor chaser and activator of both isoenzymes, but when indazole was attached at its N-2 to ribose (IV) or when its H at C-4 (equivalent to the position of amino-group in adenine) was substituted by an amino-(III) or especially nitro-group (II) its efficiency was dramatically increased. 4. Analogs containing benztriazole ring proved as powerful as cAMP irrespective of the presence of substituents (VII-X). 5. Benzimidazole derivatives with amino-(VI) or nitro-group (V) activated PK-II 3 and 20 times better than PK-I. 6. Attaching of ribose to N-2 of indazole or benztriazole increased the affinity to PK-II 10 and 4 times, respectively. 7. Chasing efficiency of cAMP analogs at half-saturating [3H]cAMP tended to correlate with activating potency only for PK-I but at saturating [3H]cAMP concentration for both isoenzymes. 8. On the basis of synergistic activation with 8-Br-cAMP a site 2-selective binding of nitro-benzimidazole (V) and unsubstituted benztriazole (VII) derivatives to PK-II is suggested.  相似文献   

9.
Due to the numerous kinases in the cell, many with overlapping substrates, it is difficult to find novel substrates for a specific kinase. To identify novel substrates of cAMP-dependent protein kinase (PKA), the PKA catalytic subunit was engineered to accept bulky N(6)-substituted ATP analogs, using a chemical genetics approach initially pioneered with v-Src (1). Methionine 120 was mutated to glycine in the ATP-binding pocket of the catalytic subunit. To express the stable mutant C-subunit in Escherichia coli required co-expression with PDK1. This mutant protein was active and fully phosphorylated on Thr(197) and Ser(338). Based on its kinetic properties, the engineered C-subunit preferred N(6)(benzyl)-ATP and N(6)(phenethyl)-ATP over other ATP analogs, but still retained a 30 microm K(m) for ATP. This mutant recombinant C-subunit was used to identify three novel PKA substrates. One protein, a novel mitochondrial ChChd protein, ChChd3, was identified, suggesting that PKA may regulate mitochondria proteins.  相似文献   

10.
Compartmentalization of cAMP-dependent protein kinase (PKA) is in part mediated by specialized protein motifs in the dimerization domain of the regulatory (R)-subunits of PKA that participate in protein-protein interactions with an amphipathic helix region in A-kinase anchoring proteins (AKAPs). In order to develop a molecular understanding of the subcellular distribution and specific functions of PKA isozymes mediated by association with AKAPs, it is of importance to determine the apparent binding constants of the R-subunit-AKAP interactions. Here, we present a novel approach using surface plasmon resonance (SPR) to examine directly the association and dissociation of AKAPs with all four R-subunit isoforms immobilized on a modified cAMP surface with a high level of accuracy. We show that both AKAP79 and S-AKAP84/D-AKAP1 bind RIIalpha very well (apparent K(D) values of 0.5 and 2 nM, respectively). Both proteins also bind RIIbeta quite well, but with three- to fourfold lower affinities than those observed versus RIIalpha. However, only S-AKAP84/D-AKAP1 interacts with RIalpha at a nanomolar affinity (apparent K(D) of 185 nM). In comparison, AKAP95 binds RIIalpha (apparent K(D) of 5.9 nM) with a tenfold higher affinity than RIIbeta and has no detectable binding to RIalpha. Surface competition assays with increasing concentrations of a competitor peptide covering amino acid residues 493 to 515 of the thyroid anchoring protein Ht31, demonstrated that Ht31, but not a proline-substituted peptide, Ht31-P, competed binding of RIIalpha and RIIbeta to all the AKAPs examined (EC(50)-values from 6 to 360 nM). Furthermore, RIalpha interaction with S-AKAP84/D-AKAP1 was competed (EC(50) 355 nM) with the same peptide. Here we report for the first time an approach to determine apparent rate- and equilibria binding constants for the interaction of all PKA isoforms with any AKAP as well as a novel approach for characterizing peptide competitors that disrupt PKA-AKAP anchoring.  相似文献   

11.
Activation of cAMP-dependent protein kinase II by static and dynamic steady-state cAMP levels was studied by reconstituting an in vitro model system composed of hormone-sensitive adenylate cyclase, cyclic nucleotide phosphodiesterase, and cAMP-dependent protein kinase II. The rates of cAMP synthesis were regulated by incubating isolated membranes from AtT20 cells with various concentrations of forskolin. In the presence of 3-methylisobutylxanthine, the rate of protein kinase activation was proportional to the rate at which cAMP was synthesized, and there was a direct relationship between the degree of activation and the level of cAMP produced. The activation profiles of protein kinase generated in the presence of exogenous cAMP or cAMP produced by activation of adenylate cyclase in the absence of cAMP degradation were indistinguishable. Dynamic steady-state levels of cAMP were achieved by incubating the membranes with forskolin in the presence of purified cyclic nucleotide phosphodiesterase. Under these conditions, the apparent activation constant of protein kinase II for cAMP was reduced by 65-75%. This increased sensitivity to activation by cAMP was seen when phosphotransferase activity was measured directly in reaction mixtures containing membranes, protein kinase, and histone H2B or when regulatory and catalytic subunits were first separated by immunoprecipitation of holoenzyme and regulatory subunits with specific anti-serum. Our results are consistent with the hypothesis that rapid cAMP turnover may function as a mechanism for amplifying hormonal signals which use the cAMP-dependent protein kinase system.  相似文献   

12.
cAMP-dependent protein kinase mediates a variety of cellular responses in most eukaryotic cells. Many of these responses are cytoplasmic, whereas others appear to require nuclear localization of the catalytic subunit. In order to understand further the molecular basis for subcellular localization of the catalytic subunit, the effect of the heat stable protein kinase inhibitor (PKI) was investigated. The subcellular localization of the catalytic (C) subunit was determined both in the presence and absence of PKI, by microinjecting fluorescently labeled C subunit into single living cells. When injected alone, a significant fraction of the dissociated C subunit localized to the nucleus. When coin-injected with an excess of PKI, little of the C subunit localized to the nucleus, suggesting that accumulation of catalytic subunit in the nucleus requires either enzymatic activity or a nuclear localization signal. Inactivation of the catalytic subunit in vitro by treatment with N-ethylmaleimide did not prevent localization in the nucleus, indicating that enzymatic activity was not a prerequisite for nuclear localization. In an effort to search for a specific signal that might mediate nuclear localization, a complex of the catalytic subunit with a 20-residue inhibitory peptide derived from PKI (PKI(5-24)) was microinjected. In contrast to intact PKI, the peptide was not sufficient to block nuclear accumulation. In the presence of PKI(5-24), the C subunit localized to the nucleus in a fashion analogous to that of dissociated, active C subunit despite evidence of no catalytic activity in situ. Thus, nuclear localization of the C subunit appears to be independent of enzymatic activity but most likely dependent upon a signal. The signal is apparently masked by both the regulatory subunit and PKI but not by the inhibitory peptide.  相似文献   

13.
Mutation of the coiled-coil and C2 domain-containing 1A (CC2D1A) gene, which encodes a C2 domain and DM14 domain-containing protein, has been linked to severe autosomal recessive nonsyndromic mental retardation. Using a mouse model that produces a truncated form of CC2D1A that lacks the C2 domain and three of the four DM14 domains, we show that CC2D1A is important for neuronal differentiation and brain development. CC2D1A mutant neurons are hypersensitive to stress and have a reduced capacity to form dendrites and synapses in culture. At the biochemical level, CC2D1A transduces signals to the cyclic adenosine 3',5'-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit to the nucleus is also defective in CC2D1A mutant cells. Consistently, phosphorylation of the PKA target cAMP-responsive element-binding protein, at serine 133, is nearly abolished in CC2D1A mutant cells. The defects in cAMP/PKA signaling were observed in fibroblast, macrophage, and neuronal primary cells derived from the CC2D1A KO mice. CC2D1A associates with the cAMP-PKA complex following forskolin treatment and accumulates in vesicles or on the plasma membrane in wild-type cells, suggesting that CC2D1A may recruit the PKA complex to the membrane to facilitate signal transduction. Together, our data show that CC2D1A is an important regulator of the cAMP/PKA signaling pathway, which may be the underlying cause for impaired mental function in nonsyndromic mental retardation patients with CC2D1A mutation.  相似文献   

14.
cAMP-dependent protein kinase (PKA) has been suggested to interfere with T-cell activation by inhibiting interleukin (IL-2) receptor alpha-chain (CD25) expression and IL-2 production. The Ras/MAP kinase pathway has been found to be necessary for induction of the IL-2 production. In this study, we have scrutinized the Ras/MAP kinase pathway in Jurkat T-cells to attempt to identify any sites for PKA-mediated regulatory phosphorylations. Here we unambiguously demonstrate that PKA directly inhibits anti-CD3-induced MAP kinase activation. In vitro phosphorylation experiments showed that Raf-1 was extensively phosphorylated by PKA, while ERK2 and MEK were not. Phosphopeptide mapping identified Ser-43 of Raf-1 as the only site phosphorylated by PKA in the Ras/MAPK pathway. Transient transfection experiments demonstrated that mutations of Ser-43 of the Raf-1 kinase were rendered insensitive to cAMP-mediated inhibition.  相似文献   

15.
Subcellular compartmentalization of the cAMP-dependent protein kinase (PKA) by protein kinase A-anchoring proteins (AKAPs) facilitates local protein phosphorylation. However, little is known about how PKA targeting to AKAPs is regulated in the intact cell. PKA binds to an amphipathic helical region of AKAPs via an N-terminal domain of the regulatory subunit. In vitro studies showed that autophosphorylation of type II regulatory subunit (RII) can alter its affinity for AKAPs and the catalytic subunit (PKA(cat)). We now investigate whether phosphorylation of serine 96 on RII regulates PKA targeting to AKAPs, downstream substrate phosphorylation and calcium cycling in primary cultured cardiomyocytes. We demonstrated that, whereas there is basal phosphorylation of RII subunits, persistent maximal activation of PKA results in a phosphatase-dependent loss of RII phosphorylation. To investigate the functional effects of RII phosphorylation, we constructed adenoviral vectors incorporating mutants which mimic phosphorylated (RIIS96D), nonphosphorylated (RIIS96A) RII, or wild-type (WT) RII and performed adenoviral infection of neonatal rat cardiomyocytes. Coimmunoprecipitation showed that more AKAP15/18 was pulled down by the phosphomimic, RIIS96D, than RIIS96A. Phosphorylation of phospholamban and ryanodine receptor was significantly increased in cells expressing RIIS96D versus RIIS96A. Expression of recombinant RII constructs showed significant effects on cytosolic calcium transients. We propose a model illustrating a central role of RII phosphorylation in the regulation of local PKA activity. We conclude that RII phosphorylation regulates PKA-dependent substrate phosphorylation and may have significant implications for modulation of cardiac function.  相似文献   

16.
The gdt1 gene is a negative regulator of the growth-differentiation-transition (GDT) in Dictyostelium. gdt1- cells express the GDT marker discoidin earlier and at higher levels and prematurely enter the differentiation pathway. Protein kinase A is a positive regulator of the GDT and is required for multicellular development. Disruption of the PKA catalytic subunit or overexpression of a constitutively active mutant of the regulatory subunit results in cells which do not form multicellular aggregates and which show strongly reduced levels of discoidin. We have created PKA-/gdt1- double mutants and show that these display high levels of discoidin expression but no aggregation, suggesting that gdt1 may be a downstream target of PKA in a branched signaling cascade initiating differentiation. Data obtained with the PKA inhibitor H89 support these result: in wild type cells H89 inhibits discoidin expression while in gdt1- mutants there is no obvious effect. However, since PKA-/gdt1- cells display less discoidin expression than the single gdt1 mutant, we propose that PKA and gdt1 are in two parallel interacting pathways. To get insight into the mechanism how PKA may block gdt1, we have tested two putative PKA phosphorylation sites in the protein and found that one of them is efficiently phosphorylated by PKA in vitro. A model for the interplay between PKA and gdt1 during the growth-differentiation-transition is discussed.  相似文献   

17.
This study determined whether all protein kinase A (PKA) and protein kinase C (PKC) phosphorylation sites on the alpha4 subunit of rat alpha4beta2 neuronal nicotinic receptors could be localized to the M3/M4 cytoplasmic domain of the protein, and investigated specific amino acid substrates for the kinases through two-dimensional phosphopeptide mapping and site-directed mutagenesis. Experiments were conducted using alpha4beta2 receptors expressed in Xenopus oocytes and a fusion protein corresponding to the M3/M4 cytoplasmic domain of alpha4 (alpha4(333-594) ). When oocytes expressing alpha4beta2 receptors were incubated with [(32) P]orthophosphate in order to label endogenous ATP stores, phosphorylation of alpha4 subunits was evident. Incubation of either immunoprecipitated receptors or the fusion protein with [(32) P]ATP and either PKA or PKC followed by trypsinization of the samples demonstrated that the kinases phosphorylated alpha4 subunits on multiple phosphopeptides, and that the phosphorylated full-length alpha4 protein and fusion protein produced identical phosphopeptide maps. Site-directed mutagenesis of Ser365, Ser472 and Ser491 to alanines in the fusion protein eliminated phosphopeptides phosphorylated by PKA, but not by PKC. Other mutations investigated, Ser470, Ser493, Ser517 and Ser590, did not alter the phosphopeptide maps. Results indicate that Ser365, Ser472 and Ser491 on neuronal nicotinic receptor alpha4 subunits are phosphorylated by PKA and are likely to represent post-translational regulatory sites on the receptor.  相似文献   

18.
19.
Abstract The gdt1 gene is a negative regulator of the growth-differentiation-transition (GDT) in Dictyostelium . gdt1 cells express the GDT marker discoidin earlier and at higher levels and prematurely enter the differentiation pathway. Protein kinase A is a positive regulator of the GDT and is required for multicellular development. Disruption of the PKA catalytic subunit or overexpression of a constitutively active mutant of the regulatory subunit results in cells which do not form multicellular aggregates and which show strongly reduced levels of discoidin. We have created PKA /gdt1 double mutants and show that these display high levels of discoidin expression but no aggregation, suggesting that gdt1 may be a downstream target of PKA in a branched signalling cascade initiating differentiation. Data obtained with the PKA inhibitor H89 support these result: in wild type cells H89 inhibits discoidin expression while in gdt1 mutants there is no obvious effect. However, since PKA/gdt1 cells display less discoidin expression than the single gdt1 mutant, we propose that PKA and gdt1 are in two parallel interacting pathways.
To get insight into the mechanism how PKA may block gdt1, we have tested two putative PKA phosphorylation sites in the protein and found that one of them is efficiently phosphorylated by PKA in vitro. A model for the interplay between PKA and gdt1 during the growth-differentiation-transition is discussed.  相似文献   

20.
The MAPK-activated protein kinases belong to the Ca2+/calmodulin-dependent protein kinases. Within this group, MK2, MK3, and MK5 constitute three structurally related enzymes with distinct functions. Few genuine substrates for MK5 have been identified, and the only known biological role is in ras-induced senescence and in tumor suppression. Here we demonstrate that activation of cAMP-dependent protein kinase (PKA) or ectopic expression of the catalytic subunit Calpha in PC12 cells results in transient nuclear export of MK5, which requires the kinase activity of both Calpha and MK5 and the ability of Calpha to enter the nucleus. Calpha and MK5, but not MK2, interact in vivo, and Calpha increases the kinase activity of MK5. Moreover, Calpha augments MK5 phosphorylation, but not MK2, whereas MK5 does not seem to phosphorylate Calpha. Activation of PKA can induce actin filament accumulation at the plasma membrane and formation of actin-based filopodia. We demonstrate that small interfering RNA-triggered depletion of MK5 interferes with PKA-induced F-actin rearrangement. Moreover, cytoplasmic expression of an activated MK5 variant is sufficient to mimic PKA-provoked F-actin remodeling. Our results describe a novel interaction between the PKA pathway and MAPK signaling cascades and suggest that MK5, but not MK2, is implicated in PKA-induced microfilament rearrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号