首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most photosynthetically active leaves of rice seedlings were severely damaged when shoots but not roots were chilled (10°C/25°C, respectively), but no such injury was observed when the whole seedling was chilled (10°C/10°C). To elucidate the mechanisms, we compared the photosynthetic characteristics of the seedlings during the dark chilling treatments. Simultaneous analyses of Chl fluorescence and the change in absorbance of P700 showed that electron transport almost disappeared in both PSII and PSI in the 10°C/25°C leaves, whereas the electron transport rate in PSI in the 10°C/10°C leaves was similar to or higher than that in non-chilled control leaves. Light-induced non-photochemical quenching in PSII was inhibited in the 10°C/25°C leaves, occurring at only half the level in the 10°C/10°C leaves, whereas non-light-induced non-photochemical quenching remained high in the 10°C/25°C leaves. The light induction of Chl a fluorescence (OJIP curves) in the 10°C/25°C leaves was similar to that in leaves treated with DCMU. The fluorescence decay after a single turnover saturating flash in the 10°C/25°C leaves was much slower than in the 10°C/10°C leaves. In vivo analyses of the 550-515 nm difference signal indicated decreased formation of a proton gradient across the thylakoid membrane and decreased zeaxanthin formation in the 10°C/25°C leaves. Our results suggest that electron transport was blocked between Q(A) and Q(B) in the dark 10°C/25°C leaves, but without irreversible damage to the components of this system. The consequent light-dependent losses of electron transport, proton gradient formation across the thylakoids and thermal dissipation may therefore be responsible for the visible injury.  相似文献   

2.
A desiccation-tolerant cyanobacterium, Nostoc commune, showsunique responses to dehydration. These responses are: (i) lossof PSII activity in parallel with the loss of photosynthesis;(ii) loss of PSI activity; and (iii) dissipation of light energyabsorbed by pigment–protein complexes. In this study,the deactivation of PSII is shown to be important in avoidingphotoinhibition when the Calvin–Benson cycle is repressedby dehydration. Furthermore, our evidence suggests that dissipationof light energy absorbed by PSII blocks photoinhibition understrong light in dehydrated states.  相似文献   

3.
Measurements of 810 nm transmittance changes in leaves, simultaneously with Chl fluorescence, CO(2) uptake and O(2) evolution, were carried out on potato (Solanum tuberosum L.) leaves with altered expression of plastidic NADP-dependent malate dehydrogenase. Electron transport rates were calculated: J(C) from the CO(2) uptake rate considering ribulose-1,5-bisphosphate (RuBP) carboxylation and oxygenation, J(O) from the O(2) evolution rate, J(F) from Chl fluorescence parameters and J(I) from the post-illumination re-reduction speed of PSI donors. In the absence of external O(2), J(O) equaled (1.005 +/- 0.003) J(C), independent of the transgenic treatment, light intensity and CO(2) concentration. This showed that nitrite and oxaloacetate reduction rates were very slow. The Mehler-type O(2) reduction was evaluated from the rate of electron accumulation at PSI after the O(2) concentration was decreased from 210 to 20 mmol mol(-1), and resulted in <1% of the linear flow. J(F) and J(I) did not differ from J(C) while photosynthesis was light-limited, but considerably exceeded J(C) at saturating light. Then, typically, J(F) = 1.2 J(C) and J(I) = 1.3 J(C), and J(F) -J(C) and J(I) -J(C) depended little on CO(2) and O(2) concentrations. The results showed that the alternative and cyclic electron flow necessary to compensate variations in the ATP/NADPH ratio were only a few percent of the linear flow. The data do not support the requirement of 14H(+)/3ATP by the chloroplast ATP synthase. We suggest that the fast PSI cyclic electron flow J(I) - J(C), as well as the fast J(F) - J(C) are energy-dissipating cycles around PSI and PSII at light saturation.  相似文献   

4.
The protein complexes of pea (Pisum sativum L.) etioplasts,etio-chloroplasts and chloroplasts were examined using 2D BlueNative/SDS–PAGE. The most prominent protein complexesin etioplasts were the ATPase and the Clp and FtsH proteasecomplexes which probably have a crucial role in the biogenesisof etioplasts and chloroplasts. Also the cytochrome b6f (Cytb6f) complex was assembled in the etioplast membrane, as wellas Rubisco, at least partially, in the stroma. These complexesare composed of proteins encoded by both the plastid and nucleargenomes, indicating that a functional cross-talk exists betweenpea etioplasts and the nucleus. In contrast, the proteins andprotein complexes that bind chlorophyll, with the PetD subunitand the entire Cyt b6f complex as an exception, did not accumulatein etioplasts. Nevertheless, some PSII core components suchas PsbE and the luminal oxygen-evolvong complex (OEC) proteinsPsbO and PsbP accumulated efficiently in etioplasts. After 6h de-etiolation, a complete PSII core complex appeared with40% of the maximal photochemical efficiency, but a fully functionalPSII was recorded only after 24 h illumination. Similarly, thecore complex of PSI was assembled after 6 h illumination, whereasthe PSI–light-harvesting complex I was stably assembledonly in chloroplasts illuminated for 24 h. Moreover, a batteryof proteins responsible for defense against oxidative stressaccumulated particularly in etioplasts, including the stromaland thylakoidal forms of ascorbate peroxidase, glutathione reductaseand PsbS.  相似文献   

5.
The effect of chilling on photosystem II (PSII) efficiency was studied in the variegated leaves of Calathea makoyana, in order to gain insight into the causes of chilling-induced photoinhibition. Additionally, a relationship was revealed between (chilling) stress and variation in photosynthesis. Chilling treatments (5 degrees C and 10 degrees C) were performed for different durations (1-7 d) under a moderate irradiance (120 micromol m-2 s-1). The individual leaves were divided into a shaded zone and two illuminated, chilled zones. The leaf tip and sometimes the leaf base were not chilled. Measurements of the dark-adapted Fv/Fm were made on the different leaf zones at the end of the chilling treatment, and then for several days thereafter to monitor recovery. Chilling up to 7 d in the dark did not affect PSII efficiency and visual appearance, whereas chilling in the light caused severe photoinhibition, sometimes followed by leaf necrosis. Photoinhibition increased with the duration of the chilling period, whereas, remarkably, chilling temperature had no effect. In the unchilled leaf tip, photoinhibition also occurred, whereas in the unchilled leaf base it did not. Whatever the leaf zone, photoinhibition became permanent if the mean value dropped below 0.4, although chlorosis and necrosis were associated solely with chilled illuminated tissue. Starch accumulated in the unchilled leaf tip, in contrast to the adjacent chilled irradiated zone. This suggests that photoinhibition was due to a secondary effect in the unchilled leaf tip (sink limitation), whereas it was a direct effect of chilling and irradiance in the chilled illuminated zones. The PSII efficiency and its coefficient of variation showed a unique negative linearity across all leaf zones and different tissue types. The slope of this curve was steeper for chilled leaves than it was for healthy, non-stressed leaves, suggesting that the coefficient of variation may be an important tool for assessing stress in leaves.  相似文献   

6.
Pre-illumination of cucumber leaf discs at a chilling temperature in low-irradiance white light resulted in accelerated re-reduction of P700(+) [the special Chl pair in the photosystem I (PSI) reaction centre] when the far-red measuring light was turned off. Measurements (in +/- methyl viologen or +/- DCMU conditions) of the re-reduction half time suggest that accelerated re-reduction of P700(+) appeared to be predominantly due to charge recombination and only partly due to reductants sustained by previous cyclic electron flow around PSI. Apparently, charge recombination in PSI was greatly enhanced by inhibition of forward, linear electron flow. Inhibition of PSII electron transport was observed to occur to a lesser extent than that of PSI, but only if the measurement of PSII functionality was free from complications due to downstream accumulation of electrons in pools. We suggest that promotion of controlled charge recombination and cyclic electron flow round PSI during chilling of leaves in the light may partly prevent further damage to both photosystems.  相似文献   

7.
Maximum quantum yields (QY) of photosynthetic electron flows through PSI and PSII were separately assessed in thylakoid membranes isolated from leaves of Cucumis sativus L. (cucumber) that had been chilled in various ways. The QY(PSI) in the thylakoids prepared from the leaves treated at 4° C in moderate light at 220 mol quanta·m–2·s–1 (400–700 nm) for 5 h, was about 20–30% of that in the thylakoids prepared from untreated leaves, while QY(PSII) decreased, at most, by 20% in response to the same treatment. The decrease in QY(PSI) was observed only when the leaves were chilled at temperatures below 10° C, while such a marked temperature dependency was not observed for the decrease in QY(PSII). In the chilling treatment at 4° C for 5 h, the quantum flux density that was required to induce 50% loss of QY (PSI) was ca. 50 umol quanta·m–2·s–1. When the chilling treatment at 4° C in the light was conducted in an atmosphere of N2, photoinhibition of PSI was largely suppressed, while the damage to PSII was somewhat enhanced. The ferricyanide-oxidised minus ascorbate-reduced difference spectra and the light-induced absorbance changes at 700 nm obtained with the thylakoid suspension, indicated the loss of P700 to extents that corresponded to the decreases in QY(PSI). Accordingly, the decreases in QY(PSI) can largely be attributed to destruction of the PSI reaction centre itself. These results clearly show that, at least in cucumber, a typical chillingsensitive plant, PSI is much more susceptible to aerobic photoinhibition than PSII.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - P700 primary electron donor of PSI - PPFD photosynthetically active photon flux density - QY quantum yield We are grateful to invaluable comments by Prof. S. Katoh, K. Hikosaka and the members of our laboratory. We also thank A. Aoyama for technical assistance. This work was partly supported by the grants from the Ministry of Education, Science, and Culture, Japan, to I. Terashima (#03740342 and #04640621).  相似文献   

8.
The real-time translocation of iron (Fe) in barley (Hordeumvulgare L. cv. Ehimehadaka no. 1) was visualized using the positron-emittingtracer 52Fe and a positron-emitting tracer imaging system (PETIS).PETIS allowed us to monitor Fe translocation in barley non-destructivelyunder various conditions. In all cases, 52Fe first accumulatedat the basal part of the shoot, suggesting that this regionmay play an important role in Fe distribution in graminaceousplants. Fe-deficient barley showed greater translocation of52Fe from roots to shoots than did Fe-sufficient barley, demonstratingthat Fe deficiency causes enhanced 52Fe uptake and translocationto shoots. In the dark, translocation of 52Fe to the youngestleaf was equivalent to or higher than that under the light condition,while the translocation of 52Fe to the older leaves was decreased,in both Fe-deficient and Fe-sufficient barley. This suggeststhe possibility that the mechanism and/or pathway of Fe translocationto the youngest leaf may be different from that to the olderleaves. When phloem transport in the leaf was blocked by steamtreatment, 52Fe translocation from the roots to older leaveswas not affected, while 52Fe translocation to the youngest leafwas reduced, indicating that Fe is translocated to the youngestleaf via phloem in addition to xylem. We propose a novel modelin which root-absorbed Fe is translocated from the basal partof the shoots and/or roots to the youngest leaf via phloem ingraminaceous plants.  相似文献   

9.
The Effects of Cold Stress on Photosynthesis in Hibiscus Plants   总被引:1,自引:0,他引:1  
The present work studies the effects of cold on photosynthesis, as well as the involvement in the chilling stress of chlororespiratory enzymes and ferredoxin-mediated cyclic electron flow, in illuminated plants of Hibiscus rosa-sinensis. Plants were sensitive to cold stress, as indicated by a reduction in the photochemistry efficiency of PSII and in the capacity for electron transport. However, the susceptibility of leaves to cold may be modified by root temperature. When the stem, but not roots, was chilled, the quantum yield of PSII and the relative electron transport rates were much lower than when the whole plant, root and stem, was chilled at 10°C. Additionally, when the whole plant was cooled, both the activity of electron donation by NADPH and ferredoxin to plastoquinone and the amount of PGR5 polypeptide, an essential component of the cyclic electron flow around PSI, increased, suggesting that in these conditions cyclic electron flow helps protect photosystems. However, when the stem, but not the root, was cooled cyclic electron flow did not increase and PSII was damaged as a result of insufficient dissipation of the excess light energy. In contrast, the chlororespiratory enzymes (NDH complex and PTOX) remained similar to control when the whole plant was cooled, but increased when only the stem was cooled, suggesting the involvement of chlororespiration in the response to chilling stress when other pathways, such as cyclic electron flow around PSI, are insufficient to protect PSII.  相似文献   

10.
Identification of maize silicon influx transporters   总被引:1,自引:1,他引:0  
Maize (Zea mays L.) shows a high accumulation of silicon (Si),but transporters involved in the uptake and distribution havenot been identified. In the present study, we isolated two genes(ZmLsi1 and ZmLsi6), which are homologous to rice influx Sitransporter OsLsi1. Heterologous expression in Xenopus laevisoocytes showed that both ZmLsi1 and ZmLsi6 are permeable tosilicic acid. ZmLsi1 was mainly expressed in the roots. By contrast,ZmLsi6 was expressed more in the leaf sheaths and blades. Differentfrom OsLsi1, the expression level of both ZmLsi1 and ZmLsi6was unaffected by Si supply. Immunostaining showed that ZmLsi1was localized on the plasma membrane of the distal side of rootepidermal and hypodermal cells in the seminal and crown roots,and also in cortex cells in lateral roots. In the shoots, ZmLsi6was found in the xylem parenchyma cells that are adjacent tothe vessels in both leaf sheaths and leaf blades. ZmLsi6 inthe leaf sheaths and blades also exhibited polar localizationon the side facing towards the vessel. Taken together, it canbe concluded that ZmLsi1 is an influx transporter of Si, whichis responsible for the transport of Si from the external solutionto the root cells and that ZmLsi6 mainly functions as a Si transporterfor xylem unloading.  相似文献   

11.
The effects of air drying and hypertonic treatments in the dark on seven bryophytes, which had grown under different water environments, were studied. All the desiccation-tolerant species tested lost most of their PSII photochemical activity when photosynthetic electron transport was inhibited by air drying, while, in all the sensitive species, the PSII photochemical activity remained at a high level even when photosynthesis was totally inhibited. The PSI reaction center remained active under drying conditions in both sensitive and tolerant species, but the activity became non-detectable in the light only in tolerant species due to deactivation of the cyclic electron flow around PSI and of the back reaction in PSI. Light-induced non-photochemical quenching (NPQ) was found to be induced not only by the xanthophyll cycle but also by a DeltapH-induced, dithiothreitol-insensitive mechanism in both the desiccation-tolerant and -intolerant bryophytes. Both mechanisms are thought to have an important role in protecting desiccation-tolerant species from photoinhibition under drying conditions. Fluorescence emission spectra at 77K showed that dehydration-induced quenching of PSII fluorescence was observed only in tolerant species and was due to neither state 1-state 2 transition nor detachment of light-harvesting chlorophyll protein complexes from PSII core complexes.The presence of dehydration-induced quenching of PSI fluorescence was also suggested.  相似文献   

12.
Abstract The leaves of olive are long lived and likely to experience both chilling and high temperature stress during their life. Changes in photosynthetic CO2 assimilation resulting from chilling and high temperature stress, in both dim and high light, are investigated. The quantum yield (φ) of photosynthesis at limiting light levels was reduced following chilling (at 5°C for 12 h), in dim light by approximately 10%, and in high light by 75%; the difference being attributed to photoinhibition. Similar reductions were observed in the light-saturated rate of CO2 uptake (Amax). Decrease in Amax correlated with a halving of the leaf internal CO2 concentration (ci), suggesting an increased limitation by stomata following photoinhibition. Leaves were apparently more susceptible to photoinhibitory damage if the whole plant, rather than the leaf alone, was chilled. On return to 26 °C, I he photosynthetic capacity recovered to pre-stress levels within a few hours if leaves had been chilled in high light for 8 h or less, but did not fully recover from longer periods of chilling when loss of chlorophyll occurred. Leaves which were recovering from chilling in high light showed far more damage on being chilled a second time in high light. Three hours in high light at 38 °C reduced φ by 80%, but φ recovered within 4h of return to 26 °C. Although leaves of Olive are apparently less susceptible to photoinhibitory damage during chilling stress than the short-lived leaves of chilling-sensitive annual? crops, the results nevertheless show that photoinhibition during temperature stress is potentially a major factor influencing the photosynthetic productivity of Olive in the field.  相似文献   

13.
Martin B  Ort DR 《Plant physiology》1982,70(3):689-694
Chilling tomato plants (Lycopersicon esculentum Mill. cv. Rutgers and cv. Floramerica) in the dark resulted in a sizable inhibition in the rate of light- and CO2-saturated photosynthesis. However, at low light intensity, the inhibition disappeared and the absolute quantum yield of CO2 reduction was diminished only slightly. The quantum yield of photosystem II (PSII) electron flow was 18% lower when measured in chloroplasts isolated from chilled leaves than in chloroplasts isolated from unchilled leaves. Even though the maximum rate of PSII turnover in these chloroplasts was 12% lower subsequent to chilling, it was in all cases two or more times that required to support the light- and CO2-saturated rate of photosynthesis measured in the attached leaf. The concentration of active PSII centers in chloroplasts isolated from leaves either before or after chilling was determined by measurement of the products of water oxidation from a series of saturating flashes short enough to turnover the electron transport carriers only a single time. There was no significant change in the concentration of active PSII centers due to dark chilling.

It was concluded that PSII activity and water oxidation capacity are not significantly impaired in tomato by chilling in the dark and therefore are not primary aspects of the inhibition of CO2 reduction observed in attached leaves.

  相似文献   

14.
Smillie, R. M., Nott, R., Hetherington, S. E. and Öyustt, G. 1987. Chilling injury and recovery in detached and attached leaves measured by chlorophyll fluorescence Chilling injury was compared in detached and attached leaves chilled at 0 or 0.5°C by measuring the decrease in induced chlorophyll fluorescence in vivo. The fluorescence parameter measured was FR, the maximal rate of rise of induced chlorophyll fluorescence emission after irradiating dark-adapted leaves. The plants used were bean, Phaseolus vulgaris L. cv. Pioneer, and maize, Zea mays L. cvs hybrid GH 390 and Northern Belle. Leaves were detached and placed on wet paper and covered with thin polyethylene film to prevent water loss during chilling. Leaves left attached on plants were treated similarly. When chilled in this way at 100% relative humidity, the chilling-induced decrease in FR was the same in detached and attached leaves. For the attached leaves, the same result was obtained whether just a single leaf was chilled or the whole plant. Expression of chilling injury was greatest in fully turgid leaves and comparisons can be invalid unless the water status of the detached and attached leaves are the same. Problems arising from diurnal fluctuations in water potential of plants grown in a glasshouse were circumvented by placing leaves on the wet filter paper under polyethylene film prior to chilling, which allowed high water potentials to be regained, or mist sprays in the glasshouse were employed. Determinations of the time course for changes in FR of maize (cv. Northern Belle) during chilling at 0°C showed that FR decreased exponentially, at the same rate (time to 50% decrease in FR was 9.3 h) in detached and attached leaves. Chilling injury was largely reversible for the first 20 h of chilling stress as both detached and attached leaves recovered their pre-chilling values of FR after a further 20 h at 20°C in darkness. Leaves chilled for 48 h showed partial recovery, while those chilled for 72 h did not recover. Recovery was impeded by light. Inability to recover from chilling as indicated by measurements of FR was paralleled by the incidence of visible symptoms of injury. It is concluded that detached and attached leaves behave similarly during chilling and short-term recovery, provided a similarity in treatments is rigorously maintained.  相似文献   

15.
PSI cyclic electron transport contributes markedly to photosynthesis and photoprotection in flowering plants. Although the thylakoid protein PGR5 (Proton Gradient Regulation 5) has been shown to be essential for the main route of PSI cyclic electron transport, its exact function remains unclear. In transgenic Arabidopsis plants overaccumulating PGR5 in the thylakoid membrane, chloroplast development was delayed, especially in the cotyledons. Although photosynthetic electron transport was not affected during steady-state photosynthesis, a high level of non-photochemical quenching (NPQ) was transiently induced after a shift of light conditions. This phenotype was explained by elevated activity of PSI cyclic electron transport, which was monitored in an in vitro system using ruptured chloroplasts, and also in leaves. The effect of overaccumulation of PGR5 was specific to the antimycin A-sensitive pathway of PSI cyclic electron transport but not to the NAD(P)H dehydrogenase (NDH) pathway. We propose that a balanced PGR5 level is required for efficient regulation of the rate of antimycin A-sensitive PSI cyclic electron transport, although the rate of PSI cyclic electron transport is probably also regulated by other factors during steady-state photosynthesis.  相似文献   

16.
低温弱光胁迫对野生大豆和大豆栽培种光系统功能的影响   总被引:13,自引:0,他引:13  
以野生大豆和栽培大豆为材料,通过同时测定大豆叶片的叶绿素荧光快速诱导动力学曲线和对820nm光的吸收曲线,以及测定超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)的活性,分析了低温弱光胁迫及常温弱光恢复下这2种大豆光系统Ⅱ(PSⅡ)和光系统Ⅰ(PSI)功能的变化。结果表明,低温弱光胁迫对这2种大豆的PSI和PSⅡ的功能都造成伤害;在低温弱光胁迫下,维持较高的SOD和APX活性和维持PSI和PSⅡ的协调性是野生大豆比栽培大豆耐低温的一个重要原因。  相似文献   

17.
Changes in chloroplast structure and rearrangement of chlorophyll-protein (CP) complexes were investigated in detached leaves of bean (Phaseolus vulgaris L. cv. Eureka), a chilling-sensitive plant, during 5-day dark-chilling at 1 degrees C and subsequent 3-h photoactivation under white light (200 mumol photons m(-2) s(-1)) at 22 degrees C. Although, no change in chlorophyll (Chl) content and Chl a/b ratio in all samples was observed, overall fluorescence intensity of fluorescence emission and excitation spectra of thylakoid membranes isolated from dark-chilled leaves decreased to about 50%, and remained after photoactivation at 70% of that of the control sample. Concomitantly, the ratio between fluorescence intensities of PSI and PSII (F736/F681) at 120 K increased 1.5-fold upon chilling, and was fully reversed after photoactivation. Moreover, chilling stress seems to induce a decrease of the relative contribution of LHCII fluorescence to the thylakoid emission spectra at 120 K, and an increase of that from LHCI and PSI, correlated with a decrease of stability of LHCI-PSI and LHCII trimers, shown by mild-denaturing electrophoresis. These effects were reversed to a large extent after photoactivation, with the exception of LHCII, which remained partly in the aggregated form. In view of these data, it is likely that dark-chilling stress induces partial disassembly of CP complexes, not completely restorable upon photoactivation. These data are further supported by confocal laser scanning fluorescence microscopy, which showed that regular grana arrangement observed in chloroplasts isolated from control leaves was destroyed by dark-chilling stress, and was partially reconstructed after photoactivation. In line with this, Chl a fluorescence spectra of leaf discs demonstrated that dark-chilling caused a decrease of the quantum yield PSII photochemistry (F(v)/F(m)) by almost 40% in 5 days. Complete restoration of the photochemical activity of PSII required 9 h post-chilling photoactivation, while only 3 h were needed to reconstruct thylakoid membrane organization and chloroplast structure. The latter demonstrated that the long-term dark-chilled bean leaves started to suffer from photoinhibition after transfer to moderate irradiance and temperature conditions, delaying the recovery of PSII photochemistry, independently of photo-induced reconstruction of PSII complexes.  相似文献   

18.
The effects of chilling on respiration (SHAM-resistant, cytochrome pathway and KCN-resistant, alternative pathway), temperature sensitivity, relative electrolyte conductivity, and degrees of oxidative stress (H(2)O(2) and malonaldehyde (MDA) contents) were separately examined in leaves and roots of cucumber (Cucumis sativus L.). After chilling at 8 degrees C for 4 days, both total respiration and KCN-resistant respiration in roots increased at different measurement temperatures. In contrast, SHAM-resistant respiration remained unchanged. In comparison, chilling significantly decreased the total respiration in leaves and this decrease was mostly due to a decrease in SHAM-resistant respiration. Chilling apparently decreased the sensitivity of KCN-resistant respiration to changes of temperature. The reduction levels of ubiquinone pool (UQr/UQt) increased both in chilled leaves and roots whilst pyruvate content increased only in chilled roots, but not in chilled leaves. Furthermore increases of H(2)O(2) and MDA contents were much greater in leaves than in roots. The same trend was also observed for ion leakage from tissues. Taken together, the results suggested that the higher chilling tolerance of roots was associated with their high total respiration and KCN-resistant respiration.  相似文献   

19.
Fast and slow chlorophyll fluorescence induction curves at high and low actinic visible light, post-illumination changes in fluorescence yield and reflectance changes at 820 nm induced by far-red light were used to characterize the state of PSII and PSI and their electron transport capabilities in chlorophyllous twig cortices of Eleagnus angustifolius L., while corresponding leaves served as controls. Twigs displayed low dark-adapted PSII photochemical efficiencies and particularly low linear electron transport rates when illuminated. In addition, their PSII population was characterized by a high proportion of inactive, non-QB-reducing centers and an incomplete quenching of fluorescence during the slow induction phase. It is suggested that PSII in twigs is an inefficient electron donor to PSI and/or the reductive pentose phosphate cycle. Yet, in spite of this apparent PSII deficiency, pools of intermediate electron carriers and potential PSI activity were more than sufficient to support the observed linear electron transport rates. Moreover, the rate of PSI reduction upon far-red/dark transitions and the magnitude of fluorescence yield increase upon white light/dark transitions were compatible with an efficient electron flow to PSI from stromal donors in the absence of PSII activity. We conclude that corticular chlorenchyma may be actively engaged in cyclic at the expense of a linear electron flow and discuss the possible physiological significance of this finding in conjunction with the particular microenvironmental conditions encountered within twigs.  相似文献   

20.
Choi SM  Jeong SW  Jeong WJ  Kwon SY  Chow WS  Park YI 《Planta》2002,216(2):315-324
Light-chilling stress, the combination of low-light illumination and low temperature, preferentially inactivated photosystem I (PSI) of cucumber (Cucumis sativus L.) leaves, resulting in the photoinhibition of photosynthesis. The extent of PSI photoinhibition, determined in vivo by monitoring absorption changes around 810 nm (induced by far-red light), was closely correlated with the redox state of the PSII electron acceptor Q(A), measured as the chlorophyll fluorescence parameter, 1-qP, where qP is a photochemical quenching coefficient. In contrast, the decrease in the far-red-induced leaf absorptance signal was not well correlated with the limited fragmentation of the PsaA/B gene products in the PSI reaction center after the light-chilling stress. Amongst various enzymes involved in the photooxidative damage such as superoxide dismutase (SOD), ascorbate peroxidase, and NAD(P)H dehydrogenase, only SOD was inhibited by light-chilling treatment. Further, an approximately 3-fold increase in the leaf content of H(2)O(2), a potent inhibitor of Cu/Zn-SOD, was observed after light-chilling stress. From these results, we suggest that Cu/Zn-SOD is the primary target of the light-chilling stress, followed by subsequent inactivation of PSI by reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号