首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inactivation of the yeast nuclear gene YMe2 causes an increased rate of DNA escape from mitochondria to the nucleus. Mutations in yme2 also show genetic interactions with yme1, a second gene that affects DNA escape from mitochondria to the nucleus. The yme1 cold-sensitive growth phenotype is suppressed by yme2 mutations. In addition, yme1 yme2 double mutants exhibit a synthetic growth defect on ethanol-glycerol medium at 30 degrees C. YME2 was isolated by complementation of the synthetic growth defect of yme1 yme2 strains and was found to be identical with the previously cloned RNA12 gene. The dominant temperature-sensitive mutation RNA12-1 prevents growth of yeast cells at 37 degrees C. YME2 encodes a protein with a predicted molecular weight of 96,681 and is an integral inner mitochondrial membrane protein. The larger carboxyl-terminal domain of the YME2 gene product faces the intermembrane space. Null alleles of yme2 display the same genetic interactions with yme1 and high rate of DNA escape from mitochondria as do the originally isolated yme2 mutant strains. Disruption of yme2 causes a strain-dependent growth defect on nonfermentable carbon sources.  相似文献   

2.
3.
Hmi1p is a Saccharomyces cerevisiae mitochondrial DNA helicase that is essential for the maintenance of functional mitochondrial DNA. Hmi1p belongs to the superfamily 1 of helicases and is a close homologue of bacterial PcrA and Rep helicases. We have overexpressed and purified recombinant Hmi1p from Escherichia coli and describe here the biochemical characteristics of its DNA helicase activities. Among nucleotide cofactors, the DNA unwinding by Hmi1p was found to occur efficiently only in the presence of ATP and dATP. Hmi1p could unwind only the DNA substrates with a 3'-single-stranded overhang. The length of the 3'-overhang needed for efficient targeting of the helicase to the substrate depended on the substrate structure. For substrates consisting of duplex DNA with a 3'-single-stranded DNA overhang, at least a 19-nt 3'-overhang was needed. In the case of forked substrates with both 3'- and 5'-overhangs, a 9-nt 3'-overhang was sufficient provided that the 5'-overhang was also 9 nt in length. In flap-structured substrates mimicking the chain displacement structures in DNA recombination process, only a 5-nt 3'-single-stranded DNA tail was required for efficient unwinding by Hmi1p. These data indicate that Hmi1p may be targeted to a specific 3'-flap structure, suggesting its possible role in DNA recombination.  相似文献   

4.
To continue the systematic examination of the physical and genetic organization of an entire Saccharomyces cerevisiae chromosome, the DNA from the CEN1-ADE1-CDC15 region from chromosome I was isolated and characterized. Starting with the previously cloned ADE1 gene (J. C. Crowley and D. B. Kaback, J. Bacteriol. 159:413-417, 1984), a series of recombinant lambda bacteriophages containing 82 kilobases of contiguous DNA from chromosome I were obtained by overlap hybridization. The cloned sequences were mapped with restriction endonucleases and oriented with respect to the genetic map by determining the physical positions of the CDC15 gene and the centromeric DNA (CEN1). The CDC15 gene was located by isolating plasmids from a YCp50 S. cerevisiae genomic library that complemented the cdc15-1 mutation. S. cerevisiae sequences from these plasmids were found to be represented among those already obtained by overlap hybridization. The cdc15-1-complementing plasmids all shared only one intact transcribed region that was shown to contain the bona fide CDC15 gene by in vitro gene disruption and one-step replacement to delete the chromosomal copy of this gene. This deletion produced a recessive lethal phenotype that was also recessive to cdc15-1. CEN1 was located by finding a sequence from the appropriate part of the cloned region that stabilized the inheritance of autonomously replicating S. cerevisiae plasmid vectors. Finally, RNA blot hybridization and electron microscopy of R-loop-containing DNA were used to map transcribed regions in the 23 kilobases of DNA that went from CEN1 to CDC15. In addition to the transcribed regions corresponding to the ADE1 and ADC15 genes, this DNA contained five regions that gave rise to polyadenylated RNA, at least two regions complementary to 4S RNA species, and a Ty1 transposable element. Notably, a higher than average proportion of the DNA examined was transcribed into RNA.  相似文献   

5.
6.
We have recently shown that a member of the Nramp family of metal transporters, Saccharomyces cerevisiae Smf1p, is tightly regulated at the level of protein stability and protein sorting. Under metal replete conditions, Smf1p is targeted to the vacuole for degradation in a manner dependent on the S. cerevisiaeBSD2 gene product, but under metal starvation conditions, Smf1p accumulates at the cell surface. Here, we have addressed whether Smf1p activity may be necessary for its regulation by metal ions and Bsd2p. Well conserved residues within transmembrane domain 4 and the transport signature sequence of Smf1p were mutagenized. We identified two mutants, G190A and G424A, which destroyed Smf1p activity as monitored by complementation of a smf1 mutation. Notably, these mutations also abolished control by metal ions and Bsd2p, suggesting that Smf1p metal transport function may be necessary for its regulation. Two additional mutants isolated (Q419A and E423A) exhibited wild-type complementation activity and were properly targeted for vacuolar degradation in a Bsd2-dependent manner. However, these mutants failed to re-distribute to the plasma membrane under conditions of metal starvation. A model is proposed herein describing the probable role of Smf1 protein conformation in directing its movement to the vacuole versus cell surface in response to changes in metal ion availability.  相似文献   

7.
The OGG1 gene encodes a highly conserved DNA glycosylase that repairs oxidized guanines in DNA. We have investigated the in vivo function of the Ogg1 protein in yeast mitochondria. We demonstrate that inactivation of ogg1 leads to at least a 2-fold increase in production of spontaneous mitochondrial mutants compared with wild-type. Using green fluorescent protein (GFP) we show that a GFP–Ogg1 fusion protein is transported to mitochondria. However, deletion of the first 11 amino acids from the N-terminus abolishes the transport of the GFP–Ogg1 fusion protein into the mitochondria. This analysis indicates that the N-terminus of Ogg1 contains the mitochondrial localization signal. We provide evidence that both yeast and human Ogg1 proteins protect the mitochondrial genome from spontaneous, as well as induced, oxidative damage. Genetic analyses revealed that the combined inactivation of OGG1 and OGG2 [encoding an isoform of the Ogg1 protein, also known as endonuclease three-like glycosylase I (Ntg1)] leads to suppression of spontaneously arising mutations in the mitochondrial genome when compared with the ogg1 single mutant or the wild-type. Together, these studies provide in vivo evidence for the repair of oxidative lesions in the mitochondrial genome by human and yeast Ogg1 proteins. Our study also identifies Ogg2 as a suppressor of oxidative mutagenesis in mitochondria.  相似文献   

8.
Molecular Genetics and Genomics - In Saccharomyces cerevisiae the metabolite phosphoribosyl-pyrophosphate (PRPP) is required for purine, pyrimidine, tryptophan and histidine biosynthesis. Enzymes...  相似文献   

9.
The yeast STE18 gene product has sequence and functional similarity to the gamma subunits of G proteins. The cloned STE18 gene was subjected to a saturation mutagenesis using doped oligonucleotides. The populations of mutant genes were screened for two classes of STE18 mutations, those that allowed for increased mating of a strain containing a defective STE4 gene (compensators) and those that inhibited mating even in the presence of a functional STE18 gene (dominant negatives). Three amino acid substitutions that enhanced mating in a specific STE4 (G beta) point mutant background were identified. These compensatory mutations were allele specific and had no detectable phenotype of their own; they may define residues that mediate an association between the G beta and G gamma subunits or in the association of the G beta gamma subunit with other components of the signalling pathway. Several dominant negative mutations were also identified, including two C terminal truncations. These mutant proteins were unable to function in signal transduction by themselves, but they prevented signal transduction mediated by pheromone, as well as the constitutive signalling which is present in cells defective in the GPA1 (G alpha) gene. These mutant proteins may sequester G beta or some other component of the signalling machinery in a nonfunctional complex.  相似文献   

10.
The regulation of cellular growth and proliferation in response to environmental cues is critical for development and the maintenance of viability in all organisms. In unicellular organisms, such as the budding yeast Saccharomyces cerevisiae, growth and proliferation are regulated by nutrient availability. We have described changes in the pattern of protein synthesis during the growth of S. cerevisiae cells to stationary phase (E. K. Fuge, E. L. Braun, and M. Werner-Washburne, J. Bacteriol. 176:5802-5813, 1994) and noted a protein, which we designated Snz1p (p35), that shows increased synthesis after entry into stationary phase. We report here the identification of the SNZ1 gene, which encodes this protein. We detected increased SNZ1 mRNA accumulation almost 2 days after glucose exhaustion, significantly later than that of mRNAs encoded by other postexponential genes. SNZ1-related sequences were detected in phylogenetically diverse organisms by sequence comparisons and low-stringency hybridization. Multiple SNZ1-related sequences were detected in some organisms, including S. cerevisiae. Snz1p was found to be among the most evolutionarily conserved proteins currently identified, indicating that we have identified a novel, highly conserved protein involved in growth arrest in S. cerevisiae. The broad phylogenetic distribution, the regulation of the SNZ1 mRNA and protein in S. cerevisiae, and identification of a Snz protein modified during sporulation in the gram-positive bacterium Bacillus subtilis support the hypothesis that Snz proteins are part of an ancient response that occurs during nutrient limitation and growth arrest.  相似文献   

11.
S Zhang  C Lockshin  A Herbert  E Winter    A Rich 《The EMBO journal》1992,11(10):3787-3796
A putative Z-DNA binding protein, named zuotin, was purified from a yeast nuclear extract by means of a Z-DNA binding assay using [32P]poly(dG-m5dC) and [32P]oligo(dG-Br5dC)22 in the presence of B-DNA competitor. Poly(dG-Br5dC) in the Z-form competed well for the binding of a zuotin containing fraction, but salmon sperm DNA, poly(dG-dC) and poly(dA-dT) were not effective. Negatively supercoiled plasmid pUC19 did not compete, whereas an otherwise identical plasmid pUC19(CG), which contained a (dG-dC)7 segment in the Z-form was an excellent competitor. A Southwestern blot using [32P]poly(dG-m5dC) as a probe in the presence of MgCl2 identified a protein having a molecular weight of 51 kDa. The 51 kDa zuotin was partially sequenced at the N-terminal and the gene, ZUO1, was cloned, sequenced and expressed in Escherichia coli; the expressed zuotin showed similar Z-DNA binding activity, but with lower affinity than zuotin that had been partially purified from yeast. Zuotin was deduced to have a number of potential phosphorylation sites including two CDC28 (homologous to the human and Schizosaccharomyces pombe cdc2) phosphorylation sites. The hexapeptide motif KYHPDK was found in zuotin as well as in several yeast proteins, DnaJ of E.coli, csp29 and csp32 proteins of Drosophila and the small t and large T antigens of the polyoma virus. A 60 amino acid segment of zuotin has similarity to several histone H1 sequences. Disruption of ZUO1 in yeast resulted in a slow growth phenotype.  相似文献   

12.
Two novel genes affecting hexose transport in the yeast Saccharomyces cerevisiae have been identified. The gene HXT1 (hexose transport), isolated from plasmid pSC7, was sequenced and found to encode a hydrophobic protein which is highly homologous to the large family of sugar transporter proteins from eucaryotes and procaryotes. Multicopy expression of the HXT1 gene restored high-affinity glucose transport to the snf3 mutant, which is deficient in a significant proportion of high-affinity glucose transport. HXT1 was unable to complement the snf3 growth defect in low copy number. The HXT1 protein was found to contain 12 putative membrane-spanning domains with a central hydrophilic domain and hydrophilic N- and C-terminal domains. The HXT1 protein is 69% identical to GAL2 and 66% identical to HXT2, and all three proteins were found to have a putative leucine zipper motif at a consensus location in membrane-spanning domain 2. Disruption of the HXT1 gene resulted in loss of a portion of high-affinity glucose and mannose transport, and wild-type levels of transport required both the HXT1 and SNF3 genes. Unexpectedly, expression of beta-galactosidase activity by using a fusion of the lacZ gene to the HXT1 promoter in a multicopy plasmid was maximal during lag and early exponential phases of growth, decreasing approximately 100-fold upon further entry into exponential growth. Deletion analysis of pSC7 revealed the presence of another gene (called ORF2) capable of suppressing the snf3 null mutant phenotype by restoring high-affinity glucose transport and increased low-affinity transport.  相似文献   

13.
The KEX2-encoded endoprotease of Saccharomyces cerevisiae resides in the Golgi complex where it participates in the maturation of alpha-factor mating pheromone precursor. Clathrin heavy chain gene disruptions cause mislocalization of Kex2p to the cell surface and reduce maturation of the alpha-factor precursor. Based on these findings, a genetic screen has been devised to isolate mutations that affect retention of Kex2p in the Golgi complex. Two alleles of a single genetic locus, lam1 (lowered alpha-factor maturation), have been isolated, which result in inefficient maturation of alpha-factor precursor. In lam1 cells, Kex2p is not mislocalized to the cell surface but is abnormally unstable. Normal stability is restored by the pep4 mutation which reduces the activity of vacuolar proteases. In contrast, the pheromone maturation defect is not corrected by pep4. Organelle fractionation by sucrose density gradient centrifugation shows that Kex2p is not retained in the Golgi complex of lam1 cells. Vacuolar protein precursors are secreted by lam1 mutants, revealing another sorting defect in the Golgi complex. Genetic complementation reveals that lam1 is allelic to the VPS1 gene, which encodes a dynamin-related GTPase. These results indicate that Vps1p is necessary for membrane protein retention in a late Golgi compartment.  相似文献   

14.
A B Sudarikov  A P Surguchev 《Genetika》1988,24(9):1525-1538
The mechanisms of interaction of nuclear and mitochondrial genes in biogenesis of mitochondria are discussed in this review. Brief characterization of yeast mitochondrial genes and their products is presented. The mechanism of nuclear and mitochondrial control of expression of the mosaic genes in mitochondria is described. The data on the processing of imported mitochondrial proteins synthesized on cytoplasmic ribosomes are presented. The possibility of existence of common proteins encoded for by common genes and possessing similar functions in the cytoplasm and mitochondria is discussed. A hypothesis is put forward considering the role of common proteins in coordination of nuclear and mitochondrial genes' expression in biogenesis of mitochondria.  相似文献   

15.
BTG1, a member of a new family of antiproliferative genes.   总被引:16,自引:0,他引:16  
The BTG1 gene locus has been shown to be involved in a t(8;12)(q24;q22) chromosomal translocation in a case of B-cell chronic lymphocytic leukemia. We report here the cloning and sequencing of the human BTG1 cDNA and establish the genomic organization of this gene. The full-length cDNA isolated from a lymphoblastoid cell line contains an open reading frame of 171 amino acids. BTG1 expression is maximal in the G0/G1 phases of the cell cycle and is down-regulated when cells progress throughout G1. Furthermore, transfection experiments of NIH3T3 cells indicate that BTG1 negatively regulates cell proliferation. The BTG1 open reading frame is 60% homologous to PC3, an immediate early gene induced by nerve growth factor in rat PC12 cells. Sequence and Northern blot analyses indicate that BTG1 and PC3 are not cognate genes. We then postulate that these two genes are the first members of a new family of antiproliferative genes.  相似文献   

16.
The Has1 protein, a member of the DEAD-box family of ATP-dependent RNA helicases in Saccharomyces cerevisiae, has been found by different proteomic approaches to be associated with 90S and several pre-60S ribosomal complexes. Here, we show that Has1p is an essential trans-acting factor involved in 40S ribosomal subunit biogenesis. Polysome analyses of strains genetically depleted of Has1p or carrying a temperature-sensitive has1-1 mutation show a clear deficit in 40S ribosomal subunits. Analyses of pre-rRNA processing by pulse-chase labelling, Northern hybridization and primer extension indicate that these strains form less 18S rRNA because of inhibition of processing of the 35S pre-rRNA at the early cleavage sites A0, A1 and A2. Moreover, processing of the 27SA3 and 27SB pre-rRNAs is delayed in these strains. Therefore, in addition to its role in the biogenesis of 40S ribosomal subunits, Has1p is required for the optimal synthesis of 60S ribosomal subunits. Consistent with a role in ribosome biogenesis, Has1p is localized to the nucleolus. On sucrose gradients, Has1p is associated with a high-molecular-weight complex sedimenting at positions equivalent to 60S and pre-60S ribosomal particles. A mutation in the ATP-binding motif of Has1p does not support growth of a has1 null strain, suggesting that the enzymatic activity of Has1p is required in ribosome biogenesis. Finally, sequence comparisons suggest that Has1p homologues exist in all eukaryotes, and we show that a has1 null strain can be fully complemented by the Candida albicans homologue.  相似文献   

17.
J L Woolford  L M Hereford  M Rosbash 《Cell》1979,18(4):1247-1259
Yeast mRNA enriched for ribosomal protein mRNA was obtained by isolating poly(A)+ small mRNA from small polysomes. A comparison of cell-free translation of this small mRNA and total mRNA, and electrophoresis of the products on two-dimensional gels which resolve most yeast ribosomal proteins, demonstrated that a 5-10 fold enrichment for ribosomal protein mRNA was obtained. One hundred different recombinant DNA molecules possibly containing ribosomal protein genes were selected by differential colony hybridization of this enriched mRNA and unfractionated mRNA to a bank of yeast pMB9 hybrid plasmids. After screening twenty-five of these candidates, five different clones were found which contain yeast ribosomal protein gene sequences. The yeast mRNAs complementary to these five plasmids code for 35S-methionine-labeled polypeptides which co-migrate on two-dimensional gels with yeast ribosomal proteins. Consistent with previous studies on ribosomal protein mRNAs, the amounts of mRNA complementary to three of these cloned genes are controlled by the RNA2 locus. Although two of the five clones contain more than one yeast gene, none contain more than one identifiable ribosomal protein gene. Thus there is no evidence for "tight" linkage of yeast ribosomal protein genes. Two of the cloned ribosomal protein genes are single-copy genes, whereas two other cloned sequences contain two different copies of the same ribosomal protein gene. The fifth plasmid contains sequences which are repeated in the yeast genome, but it is not known whether any or all of the ribosomal protein gene on this clone contains repetitive DNA.  相似文献   

18.
Summary The addition of nalidixic acid to growing cells of the yeast Saccharomyces cerevisiae resulted in a transient depression in the rate of ribosomal precursor RNA production and a transient arrest of cells in G1. Protein synthesis rates were less affected. Lower concentrations of nalidixic acid also affected RNA synthesis and progression through G1 but had no effect on protein synthesis rates. We suggest that nalidixic acid has a primary effect on RNA synthesis leading to a G1 arrest.  相似文献   

19.
20.
A previously uncharacterized yeast protein, YJL066c, was discovered in the membrane fraction although it has no hydrophobic stretch. The protein was partly solubilized by Triton X-100 in an oligomeric form, while it was insoluble in alkali or salt. By immunofluorescent microscopy, its localization coincided with the mitochondria. We therefore propose it should be named Mpm1 (mitochondrial peculiar membrane protein 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号