首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A full-length cDNA encoding Carica papaya glutamine cyclotransferase was cloned by RT-PCR on the basis of results from amino acid sequencing of tryptic fragments of the native enzyme. The cDNA of 1036 nucleotides encodes a typical 22-residue signal peptide and a mature protein of 266 residues with a calculated molecular mass of 30,923 Da. Five plant ESTs encoding putative QCs highly homologous to PQC were identified and the numbers and locations of cysteines and N-glycosylation sites are conserved. The plant QC amino acid sequences are very different from the known mammalian QC sequences and no clear homology was observed. The PQC cDNA was expressed in Escherichia coli as either His-tagged PQC, with three different signal peptides and in fusions with thioredoxin, glutathione S-transferase, and (pre-) maltose-binding protein. In all cases, the expressed protein was either undetectable or insoluble. Expression in Pichia pastoris of PQC fused to the alpha-factor leader resulted in low levels of PQC activity. Extracellular expression of PQC in the insect cell/baculovirus system was successful and 15-50 mg/liter of active PQCs with three different secretion signals was expressed and purified. Further, PQC N-terminally fused to a combined secretion signal/His-tag peptide was correctly processed by the host signal peptidase and the His-tag could subsequently be removed with dipeptidyl peptidase I. The expressed products were characterized by activity assays, SDS-PAGE, N-terminal amino acid sequencing, MALDI-TOF mass spectroscopy, and peptide mass fingerprint analysis.  相似文献   

2.
A lambda gt11 expression library constructed from human liver mRNA was screened with an antibody against human microsomal xenobiotic epoxide hydrolase. The clone pheh32 contains an insert of 1742 base pairs with an open reading frame coding for a protein of 455 amino acids with a calculated Mr of 52,956. The nucleotide sequence is 77% similar to the previously reported rat xenobiotic epoxide hydrolase cDNA sequence. The deduced amino acid sequence of the human epoxide hydrolase is 80% similar to the previously reported rabbit and 84% similar to the deduced rat protein sequence. The NH2-terminal amino acids deduced from the human xenobiotic epoxide hydrolase cDNA are identical to the published 19 NH2-terminal amino acids of the purified human xenobiotic epoxide hydrolase protein. Northern blot analysis revealed a single mRNA band of 1.8 kilobases. Southern blot analysis indicated that there is only one gene copy/haploid genome. The human xenobiotic epoxide hydrolase gene was assigned to the long arm of human chromosome 1. Several restriction fragment length polymorphisms were observed with the human epoxide hydrolase cDNA. pheh32 was expressed as enzymatically active protein in cultured monkey kidney cells (COS-1).  相似文献   

3.
The complete cDNAs corresponding to two distinct gypsy moth (Lymantria dispar) larval gut aminopeptidases, APN1 and lambda APN2, were cloned and sequenced. The 3.4 kilobasepair cDNA of APN1 which encodes a 1017 amino acid prepro-protein corresponds to the previously-identified gypsy moth APN (APN-1) that specifically binds the Cry1Ac delta-endotoxin of Bacillus thuringiensis. Analysis of the primary structure of APN1 revealed a cluster of five potential N-linked glycosylation sites near the N-terminus and a C-terminal sequence characteristic of a putative glycosylphosphatidyl-inositol (GPI) anchor signal sequence. The cDNA of APN1 encodes the N-terminal peptide sequence and nine internal sequences obtained from the purified brush border membrane vesicle Cry1Ac receptor by protein sequencing. The lambda APN2 cDNA encodes a shorter protein with 51% similarity to APN1 that also appears to have a GPI anchor signal sequence. Expression of the APN1 cDNA in a baculovirus vector was confirmed by immunoblotting.  相似文献   

4.
Alam M  Vance DE  Lehner R 《Biochemistry》2002,41(21):6679-6687
Triacylglycerol hydrolase is a microsomal enzyme that hydrolyzes stored cytoplasmic triacylglycerol in the liver and participates in the lipolysis/re-esterification cycle during the assembly of very-low-density lipoproteins. The structure-activity relationship of the enzyme was investigated by site-directed mutagenesis and heterologous expression. Expression of human TGH in Escherichia coli yields a protein without enzymatic activity, which suggests that posttranslational processing is necessary for the catalytic activity. Expression in baculovirus-infected Sf-9 cells resulted in correct processing of the N-terminal signal sequence and yielded a catalytically active enzyme. A putative catalytic triad consisting of a nucleophilic serine (S221), glutamic acid (E354), and histidine (H468) was identified. Site-directed mutagenesis of the residues (S221A, E354A, and H468A) yielded a catalytically inactive enzyme. CD spectra of purified mutant proteins were very similar to that of the wild-type enzyme, which suggests that the mutations did not affect folding. Human TGH was glycosylated in the insect cells. Mutagenesis of the putative N-glycosylation site (N79A) yielded an active nonglycosylated enzyme. Deletion of the putative C-terminal endoplasmic reticulum retrieval signal (HIEL) did not result in secretion of the mutant protein. A model of human TGH structure suggested a lipase alpha/beta hydrolase fold with a buried active site and two disulfide bridges (C87-C116 and C274-C285).  相似文献   

5.
We examined the feasibility of high-level production of recombinant human prolactin, a multifunctional protein hormone, in insect cells using a baculovirus expression system. The human prolactin cDNA with and without the secretory signal sequence was cloned into pFastBac1 baculovirus vector under the control of polyhedrin promoter. Prolactin was produced upon infection of either Sf9 or High-Five cells with the recombinant baculovirus containing the human prolactin cDNA. The production of recombinant prolactin varied from 20 to 40 mg/L of monolayer culture, depending on the cell types. The prolactin polypeptide with its own secretory signal was secreted into the medium. N-terminal amino acid sequence analysis of the recombinant polypeptide purified from the culture medium indicated that the protein was processed similar to human pituitary prolactin. Carbohydrate analysis of the purified protein indicated that a fraction of the recombinant prolactin made in insect cells appeared to be glycosylated. Also, both secreted and nonsecreted forms of the recombinant prolactin in insect cells were biologically equivalent to the native human prolactin (pituitary derived) in the Nb2 lymphoma cell proliferation assay.  相似文献   

6.
Rabbit antibodies raised against dianthin 30, a ribosome inactivating protein from carnation (Dianthus caryophyllus) leaves, were used to identify a full length dianthin precursor cDNA clone from a lambda gt11 expression library. N-terminal amino acid sequencing of purified dianthin 30 and dianthin 32 confirmed that the clone encoded dianthin 30. The cDNA was 1153 basepairs in length and encoded a precursor protein of 293 amino acid residues. The first 23 N-terminal amino acids of the precursor represented the signal sequence. The protein contained a carboxy-terminal region which, by analogy with barley lectin, may contain a vacuolar targeting signal.  相似文献   

7.
By using differential display PCR, we obtained a cDNA clone encoding a gloverin homologue from the cabbage looper, Trichoplusia ni. The expression of the gene was induced by bacterial infections. The gene codes for a 174 amino acid residue protein, including a signal sequence and a prosegment. The deduced mature protein is 14 kDa and shows 58% and 49% identity to P2 from Helicoverpa armigera and to Hyalophora gloveri gloverin, respectively. The protein was detected in hemolymph and hemocytes from bacteria-immunized animals. We expressed gloverin using the baculovirus expression system. N-terminal amino acid sequence analysis showed that the purified protein contained a propart. This progloverin inhibited the growth of E. coli and the activity is comparable to that of H. gloveri mature gloverin. Processing of progloverin was possible in vitro, using human furin.  相似文献   

8.
The alpha-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing beta-lactam antibiotics, such as cephalexin and ampicillin. N-terminal amino acid sequencing of the purified alpha-amino acid ester hydrolase allowed cloning and genetic characterization of the corresponding gene from an A. turbidans genomic library. The gene, designated aehA, encodes a polypeptide with a molecular weight of 72,000. Comparison of the determined N-terminal sequence and the deduced amino acid sequence indicated the presence of an N-terminal leader sequence of 40 amino acids. The aehA gene was subcloned in the pET9 expression plasmid and expressed in Escherichia coli. The recombinant protein was purified and found to be dimeric with subunits of 70 kDa. A sequence similarity search revealed 26% identity with a glutaryl 7-ACA acylase precursor from Bacillus laterosporus, but no homology was found with other known penicillin or cephalosporin acylases. There was some similarity to serine proteases, including the conservation of the active site motif, GXSYXG. Together with database searches, this suggested that the alpha-amino acid ester hydrolase is a beta-lactam antibiotic acylase that belongs to a class of hydrolases that is different from the Ntn hydrolase superfamily to which the well-characterized penicillin acylase from E. coli belongs. The alpha-amino acid ester hydrolase of A. turbidans represents a subclass of this new class of beta-lactam antibiotic acylases.  相似文献   

9.
Partial amino acid sequence of 80 kDa oxidized protein hydrolase (OPH), a serine protease present in human erythrocyte cytosol (Fujino et al., J. Biochem. 124 (1998) 1077-1085) that is adherent to oxidized erythrocyte membranes and preferentially degrades oxidatively damaged proteins (Beppu et al., Biochim. Biophys. Acta 1196 (1994) 81-87; Fujino et al., Biochim. Biophys. Acta 1374 (1998) 47-55) was determined. The N-terminal amino acid of diisopropyl fluorophosphate (DFP)-labeled OPH was suggested to be masked. Six peptide fragments of OPH obtained by digestion of DFP-labeled OPH with lysyl endopeptidase were isolated by use of reverse-phase high-performance liquid chromatography, and the sequence of more than eight amino acids from the N-terminal position of each peptide was determined. Results of homology search of amino acid sequence of each peptide strongly suggested that the protein was identical with human liver acylpeptide hydrolase (ACPH). OPH showed ACPH activity when N-acetyl-L-alanine p-nitroanilide and N-acetylmethionyl L-alanine were used as substrates. Glutathione S-transferase (GST)-tagged recombinant ACPH (rACPH) was prepared by use of baculovirus expression system as a 107-kDa protein from cDNA of human erythroleukemic cell line K-562. rACPH reacted with anti-OPH antiserum from rabbit. rACPH showed OPH activity when hydrogen peroxide-oxidized or glycated bovine serum albumin was used as substrates. As well as the enzyme activities of OPH, those of rACPH were inhibited by DFP. The results clearly demonstrate that ACPH, whose physiological function has not yet been well characterized, can play an important role as OPH in destroying oxidatively damaged proteins in living cells.  相似文献   

10.
A cDNA for rat liver beta-glucuronidase was isolated, its sequence determined and its expression after transfection into COS cells studied. The deduced amino acid sequence of the rat liver clone showed 77% homology with that from the cDNA for human placental beta-glucuronidase and 47% homology with that deduced from the cDNA for Escherichia coli beta-glucuronidase. Several differences were found between the cDNA from rat liver and that previously reported from rat preputial gland. Only one change leads to an amino acid difference in the mature enzyme. A chimeric clone was constructed by using a fragment encoding the first 18 amino acid residues of the signal sequence from the human placental cDNA clone and a fragment from the rat clone encoding four amino acid residues of the signal sequence, all 626 amino acid residues of the mature rat enzyme, and all of the 3' untranslated region. After transfection into COS cells the chimeric clone expressed beta-glucuronidase activity that was specifically immunoprecipitated by antibody to rat beta-glucuronidase. The Mr value of 76,000 of the expressed gene product was characteristic of the glycosylated rat enzyme. It was proteolytically processed in COS cells to Mr 75,000 6 h after metabolic labelling. At least 50% of the expressed enzyme was secreted at 60 h post-transfection, but the secreted enzyme did not undergo proteolytic processing. These results provide evidence that the partial cDNA isolated from a rat liver library contains the complete coding sequence for the mature rat liver enzyme and that the chimeric signal sequence allows normal biosynthesis and processing of the transfected rat liver enzyme in COS cells.  相似文献   

11.
12.
We have isolated a cDNA encoding an endoplasmic reticulum alpha-mannosidase, an asparagine-linked oligosaccharide processing enzyme, from a rat liver lambda gt11 library. Two degenerate oligonucleotides, based on amino acid sequence data from the purified enzyme, were used as primers in the polymerase chain reaction with liver cDNA as a template to generate an unambiguous cDNA probe. The cDNA fragment (524 base pair) obtained was then used to isolate cDNA clones by hybridization. We isolated two overlapping clones which were used to construct a full-length cDNA of 3392 base pairs. A single open reading frame of 1040 amino acids encodes a protein with a molecular mass of 116 kilodaltons containing the six known peptide sequences. The deduced amino acid sequence revealed no classical signal sequence or membrane-spanning domain. The alpha-mannosidase encoding cDNA can be expressed transiently in COS cells using the mammalian expression vector pXM, causing a 400-fold increase in alpha-mannosidase activity as well as a dramatic increase in immunoreactive polypeptide. The rat liver endoplasmic reticulum alpha-mannosidase bears striking homology to the vacuolar alpha-mannosidase from Saccharomyces cerevisiae.  相似文献   

13.
Coniferin -glucosidase (CBG) catalyzes the hydrolysis of monolignol glucosides to release the cinnamyl alcohols for oxidative polymerization to lignin. Utilizing the N-terminal amino acid sequence of the purified enzyme, the corresponding full-length cDNA sequence was isolated from a Pinus contorta xylem-specific library. The isolated 1909 nucleotide cDNA was confirmed to be that of CBG on the basis of its high homology to family 1 glycosyl hydrolases, the sequence identity with the N-terminal amino acid residues of the purified enzyme, and the coniferin hydrolytic activity and substrate specificity profile displayed by the recombinant protein when expressed in Escherichia coli. The presence of a 23 amino acid N-terminal signal peptide in the deduced 513 amino acid enzyme suggests that CBG is a secretory protein targeted to the ER. The isolation of CBG cDNA will facilitate the evaluation of the importance of this enzyme in the ultimate stages of lignin biosynthesis and could be a valuable tool in manipulating lignin levels in xylem cell walls.  相似文献   

14.
A cytosolic acetyl-CoA hydrolase (CACH) was purified from rat liver to homogeneity by a new method using Triton X-100 as a stabilizer. We digested the purified enzyme with an endopeptidase and determined the N-terminal amino-acid sequences of the two proteolytic fragments. From the sequence data, we designed probes for RT-PCR, and amplified CACH cDNA from rat liver mRNA. The CACH cDNA contains a 1668-bp ORF encoding a protein of 556 amino-acid residues (62 017 Da). Recombinant expression of the cDNA in insect cells resulted in overproduction of functional acetyl-CoA hydrolase with comparable acyl-CoA chain-length specificity and Michaelis constant for acetyl-CoA to those of the native CACH. Database searching shows no homology to other known proteins, but reveals high similarities to two mouse expressed sequence tags (91% and 93% homology) and human mRNA for KIAA0707 hypothetical protein (50% homology) of unknown function.  相似文献   

15.
Mitochondrial NAD(+)-dependent malic enzyme (EC 1.1.1.40) is expressed in rapidly proliferating cells and tumor cells, where it is probably linked to the conversion of amino acid carbon to pyruvate. In this paper, we report the cDNA cloning, amino acid sequence, and expression in Escherichia coli of functional human NAD(+)-dependent mitochondrial malic enzyme. The cDNA is 1,923 base pairs long and contains an open reading frame coding for a 584-amino acid protein. The molecular mass is 65.4 kDa for the unprocessed precursor protein. Comparison of the amino acid sequence of the human protein with the published NADP(+)-dependent mammalian cytosolic or plant chloroplast malic enzymes reveals highly conserved regions interrupted with long stretches of amino acids without significant homology. Expression of the processed protein in E. coli yielded an enzyme with the same kinetic and allosteric properties as malic enzyme purified from human cells.  相似文献   

16.
N-terminal as well as internal amino acid sequence data were obtained from the GH dependent, insulin-like growth factor (IGF) binding protein, BP-53, purified from human plasma. Based on these sequence data, full-length cDNA clones of BP-53 have been isolated, and the complete deduced sequence of BP-53 determined. This sequence contains a 27 amino acid putative signal sequence followed by a mature protein of 264 amino acids containing 18 cysteine residues clustered near the N- and C-terminus. The deduced protein sequence of BP-53 has 33% amino acid identity including conservation of all 18 cysteine residues with the recently cloned BP-28, a smaller human IGF-binding protein identified in amniotic fluid and also secreted by the cell line HEP G2. Expression of the cloned BP-53 cDNA in mammalian tissue culture cells results in secretion of the protein into the culture medium. This expressed protein is identical to plasma-derived BP-53 in its immunoreactivity, high affinity binding of IGF-I and IGF-II, and mobility on sodium dodecyl sulfate gel electrophoresis.  相似文献   

17.
The first representative of a group of mammalian, low molecular weight phosphotyrosyl protein phosphatases was cloned, sequenced and expressed in Escherichia coli. Using a 61-mer oligonucleotide probe based on the amino acid sequence of the purified enzyme, several overlapping cDNA clones were isolated from a bovine heart cDNA library. A full-length clone was obtained consisting of a 27-bp 5' noncoding region, an open reading frame encoding the expected 157 amino acid protein, and an extensive 3' nontranslated sequence. The identification of the clone as full length was consistent with results obtained in mRNA blotting experiments using poly(A)+ mRNA from bovine heart. The coding sequence was placed downstream of a bacteriophage T7 promoter, and protein was expressed in E. coli. The expressed enzyme was soluble, and catalytically active and was readily isolated and purified. The recombinant protein had the expected Mr of 18,000 (estimated by SDS-PAGE), and it showed cross-reactivity with antisera that had been raised against both the bovine heart and the human placenta enzymes. The amino acid sequence of the N-terminal region of the expressed protein showed that methionine had been removed, resulting in a sequence identical to that of the enzyme isolated from the bovine tissue, with the exception that the N-terminal alanine of the protein from tissue is acetylated. A kinetically competent phosphoenzyme intermediate was trapped from a phosphatase-catalyzed reaction. Using 31P NMR, the covalent intermediate was identified as a cysteinyl phosphate. By analogy with the nomenclature used for serine esterases, these enzymes may be called cysteine phosphatases.  相似文献   

18.
Acetoacetyl-CoA thiolase (AT) is an enzyme that catalyses the CoA-dependent thiolytic cleavage of acetoacetyl-CoA to yield 2 molecules of acetyl-CoA, or the reverse condensation reaction. A full-length cDNA clone pBSGT-3, which has homology to known thiolases, was isolated from Dictyostelium cDNA library. Expression of the protein encoded in pBSGT-3 in Escherichia coli, its thiolase enzyme activity, and the amino acid sequence homology search revealed that pBSGT-3 encodes an AT. The recombinant AT (r-thiolase) was expressed in an active form in an E. coli expression system, and purified to homogeneity by selective ammonium sulfate fractionation and two steps of column chromatography. The purified enzyme exhibited a specific activity of 4.70 mU/mg protein. Its N-terminal sequence was (NH2)-Arg-Met-Tyr-Thr-Thr-Ala-Lys-Asn-Leu-Glu-, which corresponds to the sequence from positions 15 to 24 of the amino acid sequence deduced from pBSGT-3 clone. The r-thiolase in the inclusion body expressed highly in E. coli was the precursor form, which is slightly larger than the purified r-thiolase. When incubated with the cell-free extract of Dictyostelium cells, the precursor was converted to the same size to the purified r-thiolase, suggesting that the presequence at the N-terminus is removed by a Dictyostelium processing peptidase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号