首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cholinesterases have been investigated in terms of the effects of methanol and ethanol on substrate and carbamate turnover, and on their phosphorylation. It was found: 1) that at low substrate concentrations the two alcohols inhibit all three tested cholinesterases and that the optimum activities are shifted towards higher substrate concentrations, but with a weak effect on horse butyrylcholinesterase; 2) that methanol slows down carbamoylation by eserine and does not influence decarbamoylation of vertebrate and insect acetylcholinesterase and 3) that ethanol decreases the rate of phosphorylation of vertebrate acetylcholinesterase by DFP. Our results are in line with the so-called ‘approach-and-exit’ hypothesis. By hindering the approach of substrate and the exit of products, methanol and ethanol decrease cholinesterase activity at low substrate concentrations and allow for the substrate inhibition only at higher substrate concentrations. Both effects appears to be a consequence of the lower ability of substrate to substitute alcohol rather than water. It also seems that during substrate turnover in the presence of alcohol the transacetylation is negligible.  相似文献   

2.
Kinetic parameters of the effect of tacrine as a cholinesterase inhibitor have been studied in two different sources: snake venom (Bungarus sindanus) acetylcholinesterase (AChE) and human serum butyrylcholinesterase (BChE). Tacrine inhibited both venom acetylcholinesterase (AChE) as well as human serum butyrylcholinesterase (BChE) in a concentration-dependent manner. Kinetic studies indicated that the nature of inhibition was mixed for both enzymes, i.e. Km values increase and Vmax decrease with the increase of the tacrine concentration. The calculated IC50 for snake venom and for human serum were 31 and 25.6 nM, respectively. Ki was observed to be 13 nM for venom acetylcholinesterase (AChE) and 12 nM for serum butyrylcholinesterase (BChE). KI (constant of AChE-ASCh-tacrine complex into AChE-ASCh complex and tacrine) was estimated to be 20 nM for venom and 10 nM for serum butyrylcholinesterase (BChE), while the gammaKm (dissociation constant of AChE-ASCh-tacrine complex into AChE-tacrine complex and ASCh) were 0.086 and 0.147 mM for snake venom AChE and serum BChE, respectively. The present results suggest that this therapeutic agent used for the treatment of Alzheimer's disease can also be considered an inhibitor of snake venom and human serum butyrylcholinesterase. Values of Ki and KI show that tacrine had more affinity with these enzymes as compared with other cholinesterases from the literature.  相似文献   

3.
Alkyl tributylphosphonium and triphenylphosphonium derivatives as well as tetraphenylphosphonium were first studied as inhibitors of acetylcholinesterase of human blood erythrocytes and butyrylcholinesterase of horse blood serum. The inhibition is reversible, of mixed type, with a different contribution of competitive and uncompetitive components. The value of the inhibitory effect is essentially dependent on the structure of phosphonium compounds, especially in experiments with butyrylcholinesterase: allyltriphenylphosphonium is 290 times as strong enzyme inhibitor as methyltributylphosphonium. Hexyltributylphosphonium is identical to hexyltributylammonium in both the pattern and efficiency of the inhibitory action on cholinesterases.  相似文献   

4.
1. Series of colorimetric dynamic assays allowed the study of the inhibition of cholinesterases by F(-) ions in vitro, by using, as sources of enzyme, whole human blood, human serum, homogenized rat brain and two preparations of red blood cells (human and bovine) whose enzymic purity was ascertained. 2. The first evidence of inhibition of human serum pseudocholinesterase by fluoride was noticed at 15-25mum-fluoride. Ten times as much fluoride was needed to start inhibition of acetylcholinesterase of the red blood cells. 3. The action of fluoride on the enzymic reaction was immediate. The reversibility of the inhibition was shown by dialysis and dilution. 4. Kinetic measurements showed that the inhibition under study was not dependent on the substrate concentration and was of the uncompetitive type, similar to that observed in the presence of a heavy metal (cadmium). 5. The activity of serum cholinesterase did not change in the absence of Mg(2+) and Ca(2+) ions. Fluoride was shown to inhibit the enzyme in the absence of these ions as well as of phosphate. 6. Fluoride could inhibit cholinesterases in the presence of three different substrates and had no action on the non-enzymic hydrolysis. 7. It is thought that the halide is bound reversibly to the enzyme molecule, with the probable exclusion of the active site, but no firm conclusion could be reached on this point.  相似文献   

5.
Inhibition of hepatic gluconeogenesis by ethanol   总被引:21,自引:10,他引:11       下载免费PDF全文
1. Gluconeogenesis from 10mm-lactate in the perfused liver of starved rats is inhibited by ethanol. The degree of inhibition reached a maximum of 66% at 10mm-ethanol under the test conditions and decreased at higher ethanol concentrations. The concentration-dependence of the inhibition is paralleled by the concentration-dependence of the activity of alcohol dehydrogenase. The enzyme is also inhibited by ethanol concentrations above 10mm. 2. Gluconeogenesis from pyruvate is not inhibited by ethanol. 3. The degree of the inhibition of gluconeogenesis from lactate by ethanol depends on the concentration of lactate and other oxidizable substances, e.g. oleate, in the perfusion medium. 4. Ethanol also inhibits, to different degrees, gluconeogenesis from glycerol, dihydroxyacetone, proline, serine, alanine, fructose and galactose. 5. The inhibition of gluconeogenesis from lactate by ethanol is reversed by acetaldehyde. 6. Pyrazole, a specific inhibitor of alcohol dehydrogenase, also reverses the inhibition of gluconeogenesis by ethanol. 7. Gluconeogenesis in kidney cortex, where the activity of alcohol dehydrogenase is very low, is not inhibited by ethanol. 8. Kidney cortex, testis, ovary, uterus and certain tissues of the alimentary tract were the only rat tissues, apart from the liver, that showed measurable alcohol dehydrogenase activity. 9. The concentrations of pyruvate in the liver were decreased to about one-fifth by ethanol. 10. The concentration of lactate in the perfused liver was about 3mm below that of the perfusion medium 30min. after the addition of 10mm-lactate. 11. The great majority of the findings support the view that the inhibition of gluconeogensis by ethanol is caused by the alcohol dehydrogenase reaction, which decreases the [free NAD(+)]/[free NADH] ratio. The decrease lowers the concentration of pyruvate and this is the immediate cause of the inhibition of gluconeogenesis from lactate, alanine and serine: the fall in the concentration of pyruvate lowers the rate of the pyruvate carboxylase reaction, one of the rate-limiting reactions of gluconeogenesis. The cause of the inhibition of gluconeogenesis from other substrates is discussed.  相似文献   

6.
The effect of ethanol and sugars on rates of fermentation was studied. We used a strain of Canadida pseudotropicalis. The specific rate of fermentation was determined by using the Warburg manometer. The effect of ethanol was formulated as an exponential function of ethanol concentration, but the empirical constant was different when glucose or lactose was used as a substrate. The effects of both ethanol and substrate were formulated. It was demonstrate that when lactose and glucose were present in the medium with a small amount of alcohol, a synergistic effect on the rate of fermentation appeard. This phenomenon considerably limits the rate of fermentation.  相似文献   

7.
8.
9.
The effect of ethanol oxidation on proline metabolism in the perfused rat liver was studied. Ethanol oxidation inhibited proline consumption by about 80%, glucose production by 92% and urea formation by 60%. The mechanism in the [NADH]/[NAD+]-ratio.  相似文献   

10.
The actions of ethanol and its primary oxidative metabolite, acetaldehyde, on plasma membrane and mitochondrial transmembrane potentials were examined in rat brain using fluorescence techniques. Subchronic treatment of adult rats with ethanol resulted in a significant depolarization of both the plasma and mitochondrial membranes when the mean blood ethanol level of the rats was 59±11 mM (mean±SEM, n=6). Acute dosing of animals (4.5 g/kg, i.p.) failed to show any significant alterations. Various concentrations of ethanol, added in vitro to a crude synaptosomal preparation isolated from the rat cerebrocortex (P2) from untreated animals, depolarized both the plasma and mitochondrial transmembrane potentials in a dose-related manner. Addition of acetaldehyde in vitro did not reveal any significant effects on plasma or mitochondrial transmembrane potential.  相似文献   

11.
Ethanol and a variety of solvents are known to activate basal and Gpp(NH)p- and hormone-stimulated adenylate cyclase. We report here that ethanol and other solvents inhibit the activation of adenylate cyclase by forskolin. In the presence of 10 microM forskolin, 2% ethanol gives about 20% inhibition and 5% ethanol gives 40% inhibition of enzyme activity. Analysis of ethanol inhibition at several forskolin concentrations suggests that inhibition is competitive versus forskolin. Thus the effect of ethanol is greater at low forskolin concentrations and minimal at high concentrations. In addition to ethanol, inhibition of forskolin activation was observed with acetone, n-butanol, t-butanol, dimethyl formamide, dioxane, methanol and n-propanol. Dimethyl sulfoxide was inhibitory only at high concentrations (10%). Since some solvent is needed to prepare forskolin solutions and to maintain solubility at higher concentrations, the inhibitory effects reported here are an important consideration in studies employing forskolin activation. To minimize solvent inhibition we recommend that dimethyl sulfoxide be used to prepare forskolin solutions. At concentrations of 5% and less, dimethyl sulfoxide gives little if any inhibition of forskolin activation and causes only small increases in basal activity.  相似文献   

12.
13.
14.
Inhibition of the enzymatic hydrolysis of cellulose by ethanol   总被引:3,自引:0,他引:3  
Ethanol inhibits the cellulase from Trichoderma reesi progressively and linearly up to 65 g/L. The inhibition of this magnitude presents a potential problem in the simultaneous saccharification and fermentation, presently a norm of the process scheme in ethanol production from biomass.  相似文献   

15.
Hepatic microsomes catalyze the oxidation of methanol, ethanol, propanol and butanol to their respective aldehydes. The reaction requires molecular oxygen and NADPH and is inhibited by CO, sharing thereby properties with other microsomal drug oxidations. This microsomal alcohol oxidizing system increases in activity after chronic ethanol consumption and operates independently from catalase as well as alcohol dehydrogenase. It appears responsible, at least in part, for the alcohol metabolism by the alcohol dehydrogenase independent pathway of the liver.  相似文献   

16.
The behavior of ferrihemoglobin and ferrimyoglobin in widely varying concentrations of the lowest four alcohols has been studied by optical and electron paramagnetic resonance absorption spectroscopy. Methanol and ethanol, at concentrations too low to cause general conformational destabilization of the protein, produce both optical and electron paramagnetic resonance absorption spectral changes in ferrihemoglobin. These changes arise from equilibrium associations, characterized by dissociation constants at 25 degrees C of about 40 and 200 mM, respectively, for the methanol-ferrihemoglobin and ethanol-ferrihemoglobin complexes so formed. Other optical spectral changes appear when the methanol concentration exceeds 3.5 M and the ethanol, 1.0 M. At concentrations lower than 0.5 M, 1- and 2-propanol produce spectral changes of this second kind. At room temperature no optical evidence has been found that the propanols associate with ferrihemoglobin in the manner of methanol and ethanol. Methanol and ethanol at low concentration have specific effects, characterized by electron paramagnetic resonance spectral differences, upon ferric alphaSH chains. All four alcohols, over a wide range of concentrations, reduce the symmetry of electron paramagnetic resonance spectra from frozen solutions of ferrihemoglobin; even at the high end of this concentration range, none of the alcohols reduces the symmetry of electron paramagnetic resonance spectra from frozen ferrimyoglobin. Ferrimyoglobin and catalase association with methanol is measurable optically; the binding is about five and sixty times weaker, respectively, for these two proteins as compared with ferrihemoglobin.  相似文献   

17.
S. C. Pappas  M. Silverman 《CMAJ》1982,126(12):1391-1394
Twelve cases of methanol poisoning are reviewed. The clinical presentation and biochemical features are described and the results of treatment with alkali, ethanol and dialysis reported. The outcome of methanol poisoning appears to be related more to the interval between the time of ingestion and the start of therapy and to the degree of acidosis than to the initial serum methanol level. Therefore, early and aggressive treatment with bicarbonate and ethanol and subsequent institution of hemodialysis are strongly recommended whenever methanol can be detected in the blood, especially when metabolic acidosis of the anion-gap type is present, when mental or visual disturbances are present, or when more than 30 ml of absolute methanol has been consumed.  相似文献   

18.
Mechanisms of the inhibitory effect of ethanol on acetaminophen hepatotoxicity are controversial. We studied the effects of ethanol and acetaldehyde, an oxidative metabolite of ethanol, on NADPH-dependent acetaminophen-glutathione conjugate production in liver microsomes. Ethanol at concentrations as low as 2mM prevented the conjugate production noncompetitively. Acetaldehyde also inhibited acetaminophen-glutathione conjugate production at concentrations as low as 0.1mM that is comparable with those observed in vivo after social drinking. Acetaldehyde may be involved in ethanol-induced inhibition of acetaminophen hepatotoxicity.  相似文献   

19.
Summary A new capillary inlet system was used with a magnetic sector mass spectrometer to analyse headspace gas from air-sparged aqueous solutions of methanol and ethanol. The system responded to pulse additions within 2 minutes and gave 90% of equilibrium response after 10 minutes. No memory effects or hysteresis were observed. Signal to concentration ratio was linear with alcohol concentrations up to 5 g/L. Liquid ethanol concentration in aerobic yeast fermentation was followed successfully by on-line headspace gas analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号