首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KCNE1 associates with KCNQ1 to increase its current amplitude and slow the activation gating process, creating the slow delayed rectifier channel that functions as a “repolarization reserve” in human heart. The transmembrane domain (TMD) of KCNE1 plays a key role in modulating KCNQ1 pore conductance and gating kinetics, and the extracellular juxtamembrane (EJM) region plays a modulatory role by interacting with the extracellular surface of KCNQ1. KCNE2 is also expressed in human heart and can associate with KCNQ1 to suppress its current amplitude and slow the deactivation gating process. KCNE1 and KCNE2 share the transmembrane topology and a high degree of sequence homology in TMD and surrounding regions. The structural basis for their distinctly different effects on KCNQ1 is not clear. To address this question, we apply cysteine (Cys) scanning mutagenesis to TMDs and EJMs of KCNE1 and KCNE2. We analyze the patterns of functional perturbation to identify high impact positions, and probe disulfide formation between engineered Cys side chains on KCNE subunits and native Cys on KCNQ1. We also use methanethiosulfonate reagents to probe the relationship between EJMs of KCNE subunits and KCNQ1. Our data suggest that the TMDs of both KCNE subunits are at about the same location but interact differently with KCNQ1. In particular, the much closer contact of KCNE2 TMD with KCNQ1, relative to that of KCNE1, is expected to impact the allosteric modulation of KCNQ1 pore conductance and may explain their differential effects on the KCNQ1 current amplitude. KCNE1 and KCNE2 also differ in the relationship between their EJMs and KCNQ1. Although the EJM of KCNE1 makes intimate contacts with KCNQ1, there appears to be a crevice between KCNQ1 and KCNE2. This putative crevice may perturb the electrical field around the voltage-sensing domain of KCNQ1, contributing to the differential effects of KCNE2 versus KCNE1 on KCNQ1 gating kinetics.  相似文献   

2.
KCNE1 is a single-span membrane protein that modulates the voltage-gated potassium channel KCNQ1 (K V7.1) by slowing activation and enhancing channel conductance to generate the slow delayed rectifier current ( I Ks) that is critical for the repolarization phase of the cardiac action potential. Perturbation of channel function by inherited mutations in KCNE1 or KCNQ1 results in increased susceptibility to cardiac arrhythmias and sudden death with or without accompanying deafness. Here, we present the three-dimensional structure of KCNE1. The transmembrane domain (TMD) of KCNE1 is a curved alpha-helix and is flanked by intra- and extracellular domains comprised of alpha-helices joined by flexible linkers. Experimentally restrained docking of the KCNE1 TMD to a closed state model of KCNQ1 suggests that KCNE1 slows channel activation by sitting on and restricting the movement of the S4-S5 linker that connects the voltage sensor to the pore domain. We postulate that this is an adhesive interaction that must be disrupted before the channel can be opened in response to membrane depolarization. Docking to open KCNQ1 indicates that the extracellular end of the KCNE1 TMD forms an interface with an intersubunit cleft in the channel that is associated with most known gain-of-function disease mutations. Binding of KCNE1 to this "gain-of-function cleft" may explain how it increases conductance and stabilizes the open state. These working models for the KCNE1-KCNQ1 complexes may be used to formulate testable hypotheses for the molecular bases of disease phenotypes associated with the dozens of known inherited mutations in KCNE1 and KCNQ1.  相似文献   

3.
KCNQ1 channels are voltage-gated potassium channels that are widely expressed in various non-neuronal tissues, such as the heart, pancreas, and intestine. KCNE proteins are known as the auxiliary subunits for KCNQ1 channels. The effects and functions of the different KCNE proteins on KCNQ1 modulation are various; the KCNQ1-KCNE1 ion channel complex produces a slowly activating potassium channel that is crucial for heartbeat regulation, while the KCNE3 protein makes KCNQ1 channels constitutively active, which is important for K(+) and Cl(-) transport in the intestine. The mechanisms by which KCNE proteins modulate KCNQ1 channels have long been studied and discussed; however, it is not well understood how different KCNE proteins exert considerably different effects on KCNQ1 channels. Here, we approached this point by taking advantage of the recently isolated Ci-KCNQ1, a KCNQ1 homologue from marine invertebrate Ciona intestinalis. We found that Ci-KCNQ1 alone could be expressed in Xenopus laevis oocytes and produced a voltage-dependent potassium current, but that Ci-KCNQ1 was not properly modulated by KCNE1 and totally unaffected by coexpression of KCNE3. By making chimeras of Ci-KCNQ1 and human KCNQ1, we determined several amino acid residues located in the pore region of human KCNQ1 involved in KCNE1 modulation. Interestingly, though, these amino acid residues of the pore region are not important for KCNE3 modulation, and we subsequently found that the S1 segment plays an important role in making KCNQ1 channels constitutively active by KCNE3. Our findings indicate that different KCNE proteins use different domains of KCNQ1 channels, and that may explain why different KCNE proteins give quite different outcomes by forming a complex with KCNQ1 channels.  相似文献   

4.
KCNQ2 and KCNQ3 subunits belong to the six transmembrane domain K+ channel family and loss of function mutations are associated with benign familial neonatal convulsions. KCNE2 (MirP1) is a single transmembrane domain subunit first described to be a modulator of the HERG potassium channel in the heart. Here, we show that KCNE2 is present in brain, in areas which also express KCNQ2 and KCNQ3 channels. We demonstrate that KCNE2 associates with KCNQ2 and/or KCNQ3 subunits. In transiently transfected COS cells, KCNE2 expression produces an acceleration of deactivation kinetics of KCNQ2 and of the KCNQ2–KCNQ3 complex. Effects of two previously identified arrhythmogenic mutations of KCNE2 have also been analyzed.  相似文献   

5.
I(Ks), a slowly activating delayed rectifier K(+) current through channels formed by the assembly of two subunits KCNQ1 (KvLQT1) and KCNE1 (minK), contributes to the control of the cardiac action potential duration. Coassembly of the two subunits is essential in producing the characteristic and physiologically critical kinetics of assembled channels, but it is not yet clear where or how these subunits interact. Previous investigations of external access to the KCNE1 protein in assembled I(Ks) channels relied on occlusion of the pore by extracellular application of TEA(+), despite the very low TEA(+) sensitivity (estimated EC(50) > 100 mM) of channels encoded by coassembly of wild-type KCNQ1 with the wild type (WT) or a series of cysteine-mutated KCNE1 constructs. We have engineered a high affinity TEA(+) binding site into the h-KCNQ1 channel by either a single (V319Y) or double (K318I, V319Y) mutation, and retested it for pore-delimited access to specific sites on coassembled KCNE1 subunits. Coexpression of either KCNQ1 construct with WT KCNE1 in Chinese hamster ovary cells does not alter the TEA(+) sensitivity of the homomeric channels (IC(50) approximately 0.4 mM [TEA(+)](out)), providing evidence that KCNE1 coassembly does not markedly alter the structure of the outer pore of the KCNQ1 channel. Coexpression of a cysteine-substituted KCNE1 (F54C) with V319Y significantly increases the sensitivity of channels to external Cd(2+), but neither the extent of nor the kinetics of the onset of (or the recovery from) Cd(2+) block was affected by [TEA(+)](o) at 10x the IC(50) for channel block. These data strongly suggest that access of Cd(2+) to the cysteine-mutated site on KCNE1 is independent of pore occlusion caused by TEA(+) binding to the outer region of the KCNE1/V319Y pore, and that KCNE1 does not reside within the pore region of the assembled channels.  相似文献   

6.
The function of the KCNE5 (KCNE1-like) protein has not previously been described. Here we show that KCNE5 induces both a time- and voltage-dependent modulation of the KCNQ1 current. Interaction of the KCNQ1 channel with KCNE5 shifted the voltage activation curve of KCNQ1 by more than 140 mV in the positive direction. The activation threshold of the KCNQ1+KCNE5 complex was +40 mV and the midpoint of activation was +116 mV. The KCNQ1+KCNE5 current activated slowly and deactivated rapidly as compared to the KCNQ1+KCNE1 at 22 degrees C; however, at physiological temperature, the activation time constant of the KCNQ1+KCNE5 current decreased fivefold, thus exceeding the activation rate of the KCNQ1+KCNE1 current. The KCNE5 subunit is specific for the KCNQ1 channel, as none of other members of the KCNQ-family or the human ether a-go-go related channel (hERG1) was affected by KCNE5. Four residues in the transmembrane domain of the KCNE5 protein were found to be important for the control of the voltage-dependent activation of the KCNQ1 current. We speculate that since KCNE5 is expressed in cardiac tissue it may here along with the KCNE1 beta-subunit regulate KCNQ1 channels. It is possible that KCNE5 shapes the I(Ks) current in certain parts of the mammalian heart.  相似文献   

7.
The KCNE proteins (KCNE1 through KCNE5) function as beta-subunits of several voltage-gated K(+) channels. Assembly of KCNQ1 K(+) channel alpha-subunits and KCNE1 underlies cardiac I(Ks), while KCNQ1 interacts with all other members of KCNE forming complexes with different properties. Here we investigated synergic actions of KCNE1 and KCNE2 on functional properties of KCNQ1 heterologously expressed in COS7 cells. Patch-clamp recordings from cells expressing KCNQ1 and KCNE1 exhibited the slowly activating current, while co-expression of KCNQ1 with KCNE2 produced a practically time-independent current. When KCNQ1 was co-expressed with both of KCNE1 and KCNE2, the membrane current exhibited a voltage- and time-dependent current whose characteristics differed substantially from those of the KCNQ1/KCNE1 current. The KCNQ1/KCNE1/KCNE2 current had a more depolarized activation voltage, a faster deactivation kinetics, and a less sensitivity to activation by mefenamic acid. These results suggest that KCNE2 can functionally couple to KCNQ1 even in the presence of KCNE1.  相似文献   

8.
The KCNQ1 (Kv7.1) channel plays an important role in cardiovascular physiology. Cardiomyocytes co‐express KCNQ1 with KCNE1‐5 proteins. KCNQ1 may co‐associate with multiple KCNE regulatory subunits to generate different biophysically and pharmacologically distinct channels. Increasing evidence indicates that the location and targeting of channels are important determinants of their function. In this context, the presence of K+ channels in sphingolipid–cholesterol‐enriched membrane microdomains (lipid rafts) is under investigation. Lipid rafts are important for cardiovascular functioning. We aimed to determine whether KCNE subunits modify the localization and targeting of KCNQ1 channels in lipid rafts microdomains. HEK‐293 cells were transiently transfected with KCNQ1 and KCNE1–5, and their traffic and presence in lipid rafts were analyzed. Only KCNQ1 and KCNE3, when expressed alone, co‐localized in raft fractions. In addition, while KCNE2 and KCNE5 notably stained the cell surface, KCNQ1 and the rest of the KCNEs showed strong intracellular retention. KCNQ1 targets multiple membrane surface microdomains upon association with KCNE peptides. Thus, while KCNQ1/KCNE1 and KCNQ1/KCNE2 channels target lipid rafts, KCNQ1 associated with KCNE3–5 did not. Channel membrane dynamics, analyzed by fluorescence recovery after photobleaching (FRAP) experiments, further supported these results. In conclusion, the trafficking and targeting pattern of KCNQ1 can be influenced by its association with KCNEs. Since KCNQ1 is crucial for cardiovascular physiology, the temporal and spatial regulations that different KCNE subunits may confer to the channels could have a dramatic impact on membrane electrical activity and putative endocrine regulation. J. Cell. Physiol. 225: 692–700, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Type I transmembrane KCNE peptides contain a conserved C-terminal cytoplasmic domain that abuts the transmembrane segment. In KCNE1, this region is required for modulation of KCNQ1 K(+) channels to afford the slowly activating cardiac I(Ks) current. We utilized alanine/leucine scanning to determine whether this region possesses any secondary structure and to identify the KCNE1 residues that face the KCNQ1 channel complex. Helical periodicity analysis of the mutation-induced perturbations in voltage activation and deactivation kinetics of KCNQ1-KCNE1 complexes defined that the KCNE1 C terminus is alpha-helical when split in half at a conserved proline residue. This helical rendering assigns all known long QT mutations in the KCNE1 C-terminal domain as protein facing. The identification of a secondary structure within the KCNE1 C-terminal domain provides a structural scaffold to map protein-protein interactions with the pore-forming KCNQ1 subunit as well as the cytoplasmic regulatory proteins anchored to KCNQ1-KCNE complexes.  相似文献   

10.
The KCNQ1 channel is a voltage-dependent potassium channel, which is widely expressed in various tissues of the human body including heart, inner ear, intestine, kidney and pancreas. The ion channel properties of KCNQ1 change remarkably when auxiliary subunit KCNE proteins co-exist. The mechanisms of KCNQ1 channel regulation by KCNE proteins are of longstanding interest but are still far from being fully understood. The pore region (S5-S6 segments) of KCNQ1 is thought to be the main interaction site for KCNE proteins. However, some recent reports showed that the voltage-sensing domain (S1-S4 segments) is critically involved in the regulation of KCNQ1 by KCNE proteins. In addition, we recently re-examined the stoichiometry of the KCNQ1-KCNE1 complex and found that the stoichiometry is not fixed but rather flexible and the KCNQ1 channel can have up to four associated KCNE1 proteins. We will review these recent findings concerning the mechanisms of KCNQ1 regulation by KCNE proteins.  相似文献   

11.
Cardiac slow delayed rectifier (IKs) channel complex consists of KCNQ1 channel and KCNE1 auxiliary subunits. The extracellular juxtamembranous region of KCNE1 is an unstructured loop that contacts multiple KCNQ1 positions in a gating-state-dependent manner. Congenital arrhythmia-related mutations have been identified in the extracellular S1–S2 linker of KCNQ1. These mutations manifest abnormal phenotypes only when coexpressed with KCNE1, pointing to the importance of proper KCNQ1/KCNE1 interactions here in IKs channel function. We investigate the interactions between the KCNE1 loop (positions 36–47) and KCNQ1 S1–S2 linker (positions 140–148) by means of disulfide trapping and voltage clamp techniques. During transitions among the resting-state conformations, KCNE1 positions 36–43 make contacts with KCNQ1 positions 144, 145, and 147 in a parallel fashion. During conformational changes in the activated state, KCNE1 position 40 can make contacts with all three KCNQ1 positions, while the neighboring KCNE1 positions (36, 38, 39, and 41) can make contact with KCNQ1 position 147. Furthermore, KCNQ1 positions 143 and 146 are high-impact positions that cannot tolerate cysteine substitution. To maintain the proper IKs channel function, position 143 requires a small side chain with a hydroxyl group, and position 146 requires a negatively charged side chain. These data and the proposed molecular motions provide insights into the mechanisms by which mutations in the extracellular juxtamembranous region of the IKs channel impair its function.  相似文献   

12.
The KCNQ1 channel is a voltage-dependent potassium channel, which is widely expressed in various tissues of the human body including heart, inner ear, intestine, kidney and pancreas. The ion channel properties of KCNQ1 change remarkably when auxiliary subunit KCNE proteins co-exist. The mechanisms of KCNQ1 channel regulation by KCNE proteins are of longstanding interest but are still far from being fully understood. The pore region (S5-S6 segments) of KCNQ1 is thought to be the main interaction site for KCNE proteins. However, some recent reports showed that the voltage-sensing domain (S1-S4 segments) is critically involved in the regulation of KCNQ1 by KCNE proteins. In addition, we recently re-examined the stoichiometry of the KCNQ1-KCNE1 complex and found that the stoichiometry is not fixed but rather flexible and the KCNQ1 channel can have up to four associated KCNE1 proteins. We will review these recent findings concerning the mechanisms of KCNQ1 regulation by KCNE proteins.  相似文献   

13.
The five KCNE genes encode a family of type I transmembrane peptides that assemble with KCNQ1 and other voltage-gated K(+) channels, resulting in potassium conducting complexes with varied channel-gating properties. It has been recently proposed that a triplet of amino acids within the transmembrane domain of KCNE1 and KCNE3 confers modulation specificity to the peptide, since swapping of these three residues essentially converts the recipient KCNE into the donor (Melman, Y.F., A. Domenech, S. de la Luna, and T.V. McDonald. 2001. J. Biol. Chem. 276:6439-6444). However, these results are in stark contrast with earlier KCNE1 deletion studies, which demonstrated that a COOH-terminal region, highly conserved between KCNE1 and KCNE3, was responsible for KCNE1 modulation of KCNQ1 (Tapper, A.R., and A.L. George. 2000 J. Gen. Physiol. 116:379-389.). To ascertain whether KCNE3 peptides behave similarly to KCNE1, we examined a panel of NH(2)- and COOH-terminal KCNE3 truncation mutants to directly determine the regions required for assembly with and modulation of KCNQ1 channels. Truncations lacking the majority of their NH(2) terminus, COOH terminus, or mutants harboring both truncations gave rise to KCNQ1 channel complexes with basal activation, a hallmark of KCNE3 modulation. These results demonstrate that the KCNE3 transmembrane domain is sufficient for assembly with and modulation of KCNQ1 channels and suggests a bipartite model for KCNQ1 modulation by KCNE1 and KCNE3 subunits. In this model, the KCNE3 transmembrane domain is active in modulation and overrides the COOH terminus' contribution, whereas the KCNE1 transmembrane domain is passive and reveals COOH-terminal modulation of KCNQ1 channels. We furthermore test the validity of this model by using the active KCNE3 transmembrane domain to functionally rescue a nonconducting, yet assembly and trafficking competent, long QT mutation located in the conserved COOH-terminal region of KCNE1.  相似文献   

14.
Modulation of voltage-gated potassium (KV) channels by the KCNE family of single transmembrane proteins has physiological and pathophysiological importance. All five KCNE proteins (KCNE1–KCNE5) have been demonstrated to modulate heterologously expressed KCNQ1 (KV7.1) with diverse effects, making this channel a valuable experimental platform for elucidating structure–function relationships and mechanistic differences among members of this intriguing group of accessory subunits. Here, we specifically investigated the determinants of KCNQ1 inhibition by KCNE4, the least well-studied KCNE protein. In CHO-K1 cells, KCNQ1, but not KCNQ4, is strongly inhibited by coexpression with KCNE4. By studying KCNQ1-KCNQ4 chimeras, we identified two adjacent residues (K326 and T327) within the extracellular end of the KCNQ1 S6 segment that determine inhibition of KCNQ1 by KCNE4. This dipeptide motif is distinct from neighboring S6 sequences that enable modulation by KCNE1 and KCNE3. Conversely, S6 mutations (S338C and F340C) that alter KCNE1 and KCNE3 effects on KCNQ1 do not abrogate KCNE4 inhibition. Further, KCNQ1-KCNQ4 chimeras that exhibited resistance to the inhibitory effects of KCNE4 still interact biochemically with this protein, implying that accessory subunit binding alone is not sufficient for channel modulation. These observations indicate that the diverse functional effects observed for KCNE proteins depend, in part, on structures intrinsic to the pore-forming subunit, and that distinct S6 subdomains determine KCNQ1 responses to KCNE1, KCNE3, and KCNE4.  相似文献   

15.
KCNQ1 channels assemble with KCNE1 transmembrane (TM) peptides to form voltage-gated K+ channel complexes with slow activation gate opening. The cytoplasmic C-terminal domain that abuts the KCNE1 TM segment has been implicated in regulating KCNQ1 gating, yet its interaction with KCNQ1 has not been described. Here, we identified a protein–protein interaction between the KCNE1 C-terminal domain and the KCNQ1 S6 activation gate and S4–S5 linker. Using cysteine cross-linking, we biochemically screened over 300 cysteine pairs in the KCNQ1–KCNE1 complex and identified three residues in KCNQ1 (H363C, P369C, and I257C) that formed disulfide bonds with cysteine residues in the KCNE1 C-terminal domain. Statistical analysis of cross-link efficiency showed that H363C preferentially reacted with KCNE1 residues H73C, S74C, and D76C, whereas P369C showed preference for only D76C. Electrophysiological investigation of the mutant K+ channel complexes revealed that the KCNQ1 residue, H363C, formed cross-links not only with KCNE1 subunits, but also with neighboring KCNQ1 subunits in the complex. Cross-link formation involving the H363C residue was state dependent, primarily occurring when the KCNQ1–KCNE1 complex was closed. Based on these biochemical and electrophysiological data, we generated a closed-state model of the KCNQ1–KCNE1 cytoplasmic region where these protein–protein interactions are poised to slow activation gate opening.  相似文献   

16.
KCNQ1 voltage-gated K(+) channels assemble with the family of KCNE type I transmembrane peptides to afford membrane-embedded complexes with diverse channel gating properties. KCNQ1/KCNE1 complexes generate the very slowly activating cardiac I(Ks) current, whereas assembly with KCNE3 produces a constitutively conducting complex involved in K(+) recycling in epithelia. To determine whether these two KCNE peptides influence voltage sensing in KCNQ1 channels, we monitored the position of the S4 voltage sensor in KCNQ1/KCNE complexes using cysteine accessibility experiments. A panel of KCNQ1 S4 cysteine mutants was expressed in Xenopus oocytes, treated with the membrane-impermeant cysteine-specific reagent 2-(trimethylammonium) ethyl methanethiosulfonate (MTSET), and the voltage-dependent accessibility of each mutant was determined. Of these S4 cysteine mutants, three (R228C, G229C, I230C) were modified by MTSET only when KCNQ1 was depolarized. We then employed these state-dependent residues to determine how assembly with KCNE1 and KCNE3 affects KCNQ1 voltage sensor equilibrium and equilibration rates. In the presence of KCNE1, MTSET modification rates for the majority of the cysteine mutants were approximately 10-fold slower, as was recently reported to indicate that the kinetics of the KCNQ1 voltage sensor are slowed by KCNE1 (Nakajo, K., and Y. Kubo. 2007 J. Gen. Physiol. 130:269-281). Since MTS modification rates reflect an amalgam of reagent accessibility, chemical reactivity, and protein conformational changes, we varied the depolarization pulse duration to determine whether KCNE1 slows the equilibration rate of the voltage sensors. Using the state-dependent cysteine mutants, we determined that MTSET modification rates were essentially independent of depolarization pulse duration. These results demonstrate that upon depolarization the voltage sensors reach equilibrium quickly in the presence of KCNE1 and the slow gating of the channel complex is not due to slowly moving voltage sensors. In contrast, all cysteine substitutions in the S4 of KCNQ1/KCNE3 complexes were freely accessible to MTSET independent of voltage, which is consistent with KCNE3 shifting the voltage sensor equilibrium to favor the active state at hyperpolarizing potentials. In total, these results suggest that KCNE peptides differently modulate the voltage sensor in KCNQ1 K(+) channels.  相似文献   

17.
Mutations in KCNQ K+ channel genes underlie several human pathologies. KCNQ α-subunits form either homotetramers or hetero-oligomers with a restricted subset of other KCNQ α-subunits or with KCNE β-subunits. KCNQ1 assembles with KCNE β-subunits but not with other KCNQ α-subunits. By contrast, KCNQ3 interacts with KCNQ2, KCNQ4 and KCNQ5. Using a chimaeric strategy, we show that a cytoplasmic carboxy-terminal subunit interaction domain (sid) suffices to transfer assembly properties between KCNQ3 and KCNQ1. A chimaera (KCNQ1-sidQ3) carrying the si domain of KCNQ3 within the KCNQ1 backbone interacted with KCNQ2, KCNQ3 and KCNQ4 but not with KCNQ1. This interaction was shown by enhancement of KCNQ2 currents, testing for dominant-negative effects of pore mutants, determining its effects on surface expression and co-immunoprecipitation experiments. Conversely, a KCNQ3-sidQ1 chimaera no longer affects KCNQ2 but interacts with KCNQ1. We conclude that the si domain suffices to determine the subunit specificity of KCNQ channel assembly.  相似文献   

18.
Voltage-gated potassium channels are often assembled with accessory proteins which increases their functional diversity. KCNE proteins are small accessory proteins that modulate voltage-gated potassium (KV) channels. Although the functional effects of various KCNE proteins have been described, many questions remain regarding their assembly with the pore-forming subunits. For example, while previous experiments with some KV channels suggest that the association of the pore-subunit with the accessory subunits occurs co-translationally in the endoplasmic reticulum, it is not known whether KCNQ1 assembly with KCNE1 occurs in a similar manner to generate the medically important cardiac slow delayed rectifier current (IKs). In this study we used a novel approach to demonstrate that purified recombinant human KCNE1 protein (prKCNE1) modulates KCNQ1 channels heterologously expressed in Xenopus oocytes resulting in generation of IKs. Incubation of KCNQ1-expressing oocytes with cycloheximide did not prevent IKs expression following prKCNE1 injection. By contrast, incubation with brefeldin A prevented KCNQ1 modulation by prKCNE1. Moreover, injection of the trafficking-deficient KCNE1-L51H reduced KCNQ1 currents. Together, these observations indicate that while assembly of KCNE1 with KCNQ1 does not require co-translation, functional KCNQ1-prKCNE1 channels assemble early in the secretory pathway and reach the plasma membrane via vesicular trafficking.  相似文献   

19.
KCNE4 can co-associate with the I(Ks) (KCNQ1-KCNE1) channel complex   总被引:1,自引:0,他引:1  
Voltage-gated potassium (K(V)) channels can form heteromultimeric complexes with a variety of accessory subunits, including KCNE proteins. Heterologous expression studies have demonstrated diverse functional effects of KCNE subunits on several K(V) channels, including KCNQ1 (K(V)7.1) that, together with KCNE1, generates the slow-delayed rectifier current (I(Ks)) important for cardiac repolarization. In particular, KCNE4 exerts a strong inhibitory effect on KCNQ1 and other K(V) channels, raising the possibility that this accessory subunit is an important potassium current modulator. A polyclonal KCNE4 antibody was developed to determine the human tissue expression pattern and to investigate the biochemical associations of this protein with KCNQ1. We found that KCNE4 is widely and variably expressed in several human tissues, with greatest abundance in brain, liver and testis. In heterologous expression experiments, immunoprecipitation followed by immunoblotting was used to establish that KCNE4 directly associates with KCNQ1, and can co-associate together with KCNE1 in the same KCNQ1 complex to form a 'triple subunit' complex (KCNE1-KCNQ1-KCNE4). We also used cell surface biotinylation to demonstrate that KCNE4 does not impair plasma membrane expression of either KCNQ1 or the triple subunit complex, indicating that biophysical mechanisms probably underlie the inhibitory effects of KCNE4. The observation that multiple KCNE proteins can co-associate with and modulate KCNQ1 channels to produce biochemically diverse channel complexes has important implications for understanding K(V) channel regulation in human physiology.  相似文献   

20.
Although K+ channels are essential for hepatocellular function, it is not known which channels are involved in the regulatory volume decrease (RVD) in these cells. We have used a combination of electrophysiological and molecular approaches to describe the potential candidates for these channels. The dialysis of short-term cultured rat hepatocytes with a hypotonic solution containing high K+ and low Cl- concentration caused the slow activation of an outward, time-independent current under whole-cell configuration of the patch electrode voltage clamp. The reversal potential of this current suggested that K+ was the primary charge carrier. The swelling-induced K+ current (IKvol) occurred in the absence of Ca2+ and was inhibited with 1 microM Ca2+ in the pipette solution. The activation of IKvol required both Mg2+ and ATP and an increasing concentration of Mg-ATP from 0.25 through 0.5 to 0.9 mM activated IKvol increasingly faster and to a larger extent. The KCNQ1 inhibitor chromanol 293B reversibly depressed IKvol with an IC50 of 26 microM. RT-PCR detected the expression of members of the KCNQ family from KCNQ1 to KCNQ5 and of the accessory proteins KCNE1 to KCNE3 in the rat hepatocytes, but not KCNQ2 and KCNE2 in human liver. Western blotting showed KCNE3 expression in a plasma membrane-enriched fraction from rat hepatocytes. The results suggest that KCNQ1, probably with KCNE2 or KCNE3 as its accessory unit, provides a significant fraction of IKvol in rat hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号