首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human erythrocyte ghosts have been shown, by scanning electron microscopy, to undergo ATP-dependent shape changes. Under appropriate conditions the ghosts prepared from normal disk-shaped intact cells adopt a highly crenated shape, which in the presence of Mg-ATP at 37 degrees C is slowly converted to the disk shape and eventually to the cup shape. These changes are not observed with other nucleotides or with 5'-adenylyl imidodiphosphate. Anti-spectrin antibodies, incorporated along with the Mg-ATP into the ghosts in amounts less than equivalent to the spectrin, markedly accelerate the shape changes observed with the Mg-ATP alone. The Fab fragments of these antibodies, however, have no effect. The conclusion is that the structural effect produced by the ATP is promoted by the cross-linking of spectrin by its antibodies, and may therefore itself be some kind of polymerization or network formation involving the spectrin complex on the cytoplasmic face of the membrane. The factors that contribute to the shape of the ghost and of the intact erythrocyte are discussed in the light of these findings.  相似文献   

2.
Recent experiments have demonstrated that stimulation of rat hepatocyte alpha-adrenergic receptors alters the activity of enzymes known to be regulated by cycles of phosphorylation and dephosphorylation. These events apparently occur without an increase in the activity of adenosine 3':5'-monophosphate-dependent protein kinase. The present study compared the effects of glucagon and catecholamines on the incorporation of radioactive phosphate into cytosolic proteins obtained from intact rat hepatocytes. Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis resolved 27 phosphorylated bands in the molecular weight range 220,000 to 29,000. Treatment of the intact hepatocytes with glucagon or cyclic nucleotides increased the phosphorylation of 12 of these bands. Incubation of unlabeled cytoplasmic proteins with the catalytic subunit of protein kinase and [gamma-32P]ATP leads to the phosphorylation of 11 proteins. The molecular weights of these proteins were very similar to those altered by glucagon treatment of intact cells. Stimulation of the alpha-receptor with norepinephrine, epinephrine, or phenylephrine in the presence of 20 micrometer propranolol caused an increase in the phosphorylation of at least 10 of the same 12 phosphorylated bands stimulated by glucagon. The increase in phosphorylation mediated by alpha-receptors was only 50 to 60% of that observed with glucagon and occurred in the absence of any change in the level of adenosone 3':5'-monophosphate. The effects of alpha-receptor stimulation could be completely antagonized by 20 micrometer ergotamine or 20 micrometer phentolamine. Treatment of the cells with the Ca2+ ionophore A23187 in an attempt to mimic alpha-receptor function increased the phosphorylation of 4 of the phosphoproteins altered by glucagon or catecholamines. The effects of the ionophore depended on the presence of extracellular Ca2+ ion and were similar in magnitude to those of catecholamines. It is concluded that alpha-receptor occupation alters the activity of an adenosin 3':5'-monophosphate-independent protein kinase or phosphatase with a specificity similar to those affected by cyclic nucleotides.  相似文献   

3.
Previous reports from this laboratory and others have established that both the rabbit and human erythrocyte membranes contain multiple protein kinase and phosphate acceptor activities. We now report that these membranes also contain phosphoryl acceptor sites for the soluble cyclic AMP-dependent and -independent protein kinases from rabbit erythrocytes. The rabbit erythrocyte membrane, which does not contain a cyclic AMP-dependent protein kinase, has at least four polypeptides (Bands 2.1, 2.3, 4.5, and 4.8) which are phosphorylated in the presence of the soluble cyclic AMP-dependent protein kinases I, IIa, and IIb isolated from rabbit erythrocyte lysates. The resulting phosphoprotein profile is very similar to that obtained for the cyclic AMP-mediated autophosphorylation of human erythrocyte membranes. The activities of the soluble cyclic AMP-dependent protein kinases toward the membranes have been studied at several pH values. Although the substrate specificity of the three kinases is similar, polypeptide 2.3 appears to be phosphorylated to a greater extent by kinase IIa than by I or IIb. This occurs at all pH values studied. Also apparent is that the pH profile for membrane phosphorylation is different from that of histone phosphorylation. The phosphorylation of membrane proteins can also be catalyzed by the soluble erythrocyte casein kinases. These enzymes are not regulated by cyclic nucleotides and can use either ATP or GTP as their phosphoryl donor. Polypeptides 2.1, 2.9, 4.1, 4.5, 4.8, and 5 of both human and rabbit erythrocyte membranes are phosphorylated in the presence of GTP and the casein kinases. This reaction is optimal at pH 7.5. Experiments were performed to determine whether the phosphorylation of the membranes by the soluble and membrane-bound kinases is additive or exclusive. Our results indicate that after maximal autophosphorylation of the erythrocyte membranes, phosphoryl acceptor sites are available to the soluble cyclic AMP-dependent and -independent protein kinases. Furthermore, after maximal phosphorylation of the membranes with one type of soluble kinase, further 32P incorporation can occur as a result of exposure to the other type of soluble kinase.  相似文献   

4.
Catecholamines substituted to agarose were synthesized in various ways. Norepinephrine and isoproterenol were linked to p-aminobenzamidohexyl agarose by an azo linkage to the catechol ring. Norepinephrine was also couple to hexyl agaros via the amino group, forming an amino, guanidino or amido bond. Biological activity of the immobilized catecholamines was determined by assessing their abilities to interact with adenylate cyclase in several membrane preparations and intact preparations of erythrocytes. In dog heart membranes, stimulation of adenylate cyclase by the catecholamine-gels could be accounted for by leached hormone which had been released from the gels. In frog erythrocyte membranes, leaching was minimal and no significant stimulation of adenylate cyclase was observed. Agarose-immobilized catecholamines, however, competitively inhibited isoproterenol stimulation of adenylate cyclase in these erythrocyte membranes indicating that catecholamines which are bound to agarose interact with the beta-adrenergic receptors as antagonists rather than agonists. When tested on intact frog erythrocytes, agarose immobilzed catecholamines did not increase the intracellular levels of cyclic AMP, although isoproterenol caused as 8-10 fold rise in these levels. Similarly, when tested for antagonist activity in the intact cells the agarose-catecholamines failed to inhibit the stimulation of cyclic AMP caused by isoproterenol. The difference observed in the beta-adrenergic antagonist activity of the agarose-bound catecholamines in membrane preparations and intact cells can be attributed to steric factors which could have prevented the access of the bead-bound ligands with the surface of the cell or to the possibility that receptors might be buried in the membrane matrix.  相似文献   

5.
When incubated with intact erythrocytes, low density lipoproteins (LDL) decrease the phosphate content of erythrocyte spectrin allowing the cells to undergo morphological transformation. The phosphate content of spectrin depends on the balance between the activity of membrane-associated cyclic AMP-independent protein kinases and phosphoprotein phosphates. LDL do not influence the activity of membrane-associated cyclic AMP-independent protein kinases; these lipoproteins activate by 2-fold and greater membrane-associated phosphatases as determined by hydrolysis of p-nitrophenyl phosphate and by phosphate hydrolysis of phosphorylated erythrocyte membrane proteins. We conclude that LDL interact at the exterior surface of the erythrocyte to stimulate dephosphorylation of spectrin. The significance of this conclusion is augmented by the fact that spectrin, the target for LDL-induced dephosphorylation, specifies cell morphology and modulates the distribution of cell-surface receptors. LDL also render erythrocyte acetylcholinesterase less susceptible to inhition by F-. Lipoproteins in the high density class (HDL) do not stimulate dephosphorylation of spectrin, and they are consequently unable to alter erythrocyte morphology. HDL do prevent the LDL-induced activation of membrane phosphatase. The inhibitory capacity of HDL is observed over the range of LDL:HDL (w/w) which exists in the plasma of normolipemic humans.  相似文献   

6.
Mobilization and aggregation of intramembrane particles (IMPs) are physiological events observed in various cells. In erythrocyte membranes, aggregation of IMPs can be induced by the exposure of partially desprectrinized erythrocyte membranes to acidic pH. We investigated the association between IMPs aggregation, protein mobility, and membrane fluidity in erythrocyte membranes of healthy controls and Duchenne muscular dystrophy (DMD) patients by using electron spin resonance and specific spin labels for membrane proteins and lipids. In erythrocyte membranes of control subjects, the partial spectrin removal induced a decreased segmental motion of protein spin label indicating an increase of protein-protein interactions. Stearic acid spin labels 5- and 16-(N-oxyl-4,4'-dimethyloxazolidine) showed that the treatment induces an increase of membrane fluidity. In DMD patients, both treated and untreated erythrocyte membranes showed changes of membrane fluidity when compared to those of the controls. Our results suggest that defects in the interactions between skeletal proteins and/or between membrane and skeleton components may contribute to the alterations of erythrocyte membranes in DMD.  相似文献   

7.
"Spare" beta-adrenergic receptors of rat white adipocyte membranes   总被引:1,自引:0,他引:1  
The apparent equilibrium dissociation constants for the interaction of isoproterenol with beta-receptors and adenylate cyclase were determined under the same conditions in rat adipocyte membranes and were compared with the apparent dissociation constant for the interaction of isoproterenol with cyclic AMP accumulation in the adipocyte. From these determinations, it was calculated that the occupancy of less than 4% of the receptor population is required for half-maximal stimulation of adenylate cyclase in membranes and cyclic AMP accumulation in intact cells, provided that receptor-binding and adenylate cyclase assays are performed in the presence of guanine nucleotides. Since guanine nucleotides are also required for adenylate cyclase activation in intact cells, it is concluded that the beta-receptors of rat adipocytes are "spare" receptors.  相似文献   

8.
Electron spin resonance studies of erythrocyte membranes from patients with Huntington's disease and normal controls have been performed. Intact erythrocytes in each case were either untreated or subjected to proteolysis with the membrane impermeable enzymes, pronase, chymotrypsin, or trypsin. Membrane ghosts were prepared from untreated and protease-treated intact cells and spin labeled with protein- or lipid-specific spin probes. Comparison of the resulting electron spin resonance spectra confirmed our previous findings that in untreated samples the relevant parameter of the protein-specific spin label was increased in Huntington's disease (P < 0.02) suggesting an altered physical state of membrane proteins in this disorder, while no difference in erythrocyte lipid fluidity could be discerned. No significant difference in the physical state of membrane proteins in Huntington's disease and control as judged as spin labeling methods could be detemined in membrane ghosts prepared from protease-treated intact cells. These results, together with the known specificity of the proteases used in this study, suggest that a molecular defect in Huntington's disease erythrocytes is manifested in an exterior part of a membrane protein and supports our hypothesis that Huntington's disease is associated with a generalized cell membrane defect.  相似文献   

9.
When cells are infected with viruses, they notify the immune system by presenting fragments of the virus proteins at the cell surface for detection by T cells. These proteins are digested in the cytoplasm, bound to the major histocompatibility complex I glycoprotein (MHC-I) in the endoplasmic reticulum, and transported to the cell surface. The peptides are cleaved to the precise lengths required for MHC-I binding and detection by T cells. We have developed fluorescent indicators to study the cleavage of peptides in living cells as they are transported from the endoplasmic reticulum to the Golgi apparatus. Specific viral peptides known to be "trimmed" prior to cell surface presentation were labeled with two dyes undergoing fluorescence resonance energy transfer (FRET). When these fluorescent peptides were proteolytically processed in living cells, FRET was halted, so that each labeled fragment and the intact peptide exhibited different fluorescence spectra. Such fluorescent cleavage indicators can be used to study a wide range of biological behaviors dependent on peptide or protein cleavage. However, labeling a peptide with two dyes at precise positions can present a major obstacle to using this technique. Here, we describe two approaches for preparing doubly labeled cleavage indicator peptides. These methods are accessible to researchers using standard laboratory techniques or, for more demanding applications, through cooperation with commercial or core peptide synthesis services using minor modifications of standard synthetic procedures.  相似文献   

10.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play an important role in regulating electrical activity in the heart and brain. They are gated by the binding of cyclic nucleotides to a conserved, intracellular cyclic nucleotide-binding domain (CNBD), which is connected to the channel pore by a C-linker region. Binding of cyclic nucleotides increases the rate and extent of channel activation and shifts it to less hyperpolarized voltages. We probed the allosteric mechanism of different cyclic nucleotides on the CNBD and on channel gating. Electrophysiology experiments showed that cAMP, cGMP, and cCMP were effective agonists of the channel and produced similar increases in the extent of channel activation. In contrast, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) on the isolated CNBD indicated that the induced conformational changes and the degrees of stabilization of the active conformation differed for the three cyclic nucleotides. We explain these results with a model where different allosteric mechanisms in the CNBD all converge to have the same effect on the C-linker and render all three cyclic nucleotides similarly potent activators of the channel.  相似文献   

11.
12.
Receptor-mediated phosphorylation of spermatozoan proteins   总被引:2,自引:0,他引:2  
These studies are the first to report egg peptide-mediated stimulation of protein phosphorylation in spermatozoa. Speract (Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly) or resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-Leu-NH2) stimulated the incorporation of 32P into various proteins of isolated spermatozoan membranes in the presence, but not absence, of GTP. The Mr of three of the phosphorylated proteins were 52,000, 75,000, and 100,000. GTP gamma S (guanosine 5'-O-(3-thiotriphosphate] but not GDP beta S (guanosine 5'-O-(2-thiodiphosphate] or GMP-PNP (guanylyl imidodiphosphate) also supported the peptide-mediated stimulation of protein phosphorylation. The peptides markedly stimulated guanylate cyclase activity, and GTP gamma S or GTP but not GMP-PNP served as effective substrates for the enzyme. The accumulation of cyclic AMP was not stimulated by the peptides. Subsequently, it was shown that added cyclic GMP or cyclic AMP increased 32P incorporation into the same membrane proteins as those observed in the presence of peptide and GTP. The amount of cyclic GMP (up to 3 microM) formed by membranes in the presence of peptide and 100 microM GTP equated with the amount of added cyclic GMP required to increase the 32P content of a Mr 75,000 protein selected for further study. 32P-Peptide maps of the Mr 75,000 protein indicated that the same domains were phosphorylated in response to cyclic nucleotides or to egg peptide and GTP. Intact cells were subsequently incubated with 32P to determine if the radiolabeled proteins observed in isolated membranes also would be obtained in intact cells. The 32P contents of proteins of Mr 52,000, 75,000, and 100,000 were significantly increased by the addition of resact. Peptide maps confirmed that the increased 32P incorporation obtained in a Mr 75,000 protein of isolated membranes occurred on the same protein domains as the 32P found on the Mr 75,000 protein of intact cells. These results suggest that a GTP or GTP gamma S requirement for peptide-mediated protein phosphorylation in spermatozoan membranes is mainly due to the enhanced formation of cyclic GMP, and it therefore is likely that peptide-induced elevations of cyclic nucleotide concentrations in spermatozoa are responsible for the specific increases in 32P associated with at least three sperm proteins, all apparently localized on the plasma membrane.  相似文献   

13.
Prostaglandin E1 is known to alter the structural and functional characteristics of red blood cells, yet, little is understood about the membrane receptors mediating this process. We therefore studied the binding of tritium-labeled prostaglandin E1 to the intact human erythrocyte membrane and demonstrated that the interaction is highly specific, rapid, saturable and reversible. Scatchard analysis of prostaglandin E1 binding to the membrane preparations showed the presence of two independent classes of prostaglandin E1 binding sites which differed in their affinity for the autacoid. The high-affinity class had Kd = 3.6 X 10(-9) M and the low-affinity class had Kd = 5.6 X 10(-5) M. The optimum pH for the binding of [3H]prostaglandin E1 to the erythrocyte membrane was found to be around 7.5 and maximum specific binding occurred at a concentration of 5 mM Mg2+ in the incubation mixture. [3H]Prostaglandin E1 bound to the membrane preparation could not be displaced by GTP or by its stable derivative Gpp[NH]p. However, prostaglandin E1 bound to the erythrocyte membrane preparation could be rapidly displaced by cyclic AMP. The IC50 (concentration of the nucleotide displacing 50% bound [3H]prostaglandin E1 from the membrane) was 75 nM. Other adenine nucleotides or cyclic GMP could not substitute for cyclic AMP. Unlike the right-side-out erythrocyte membrane, the inside-out membrane preparations do not bind [3H]prostaglandin E1. Treatment of right-side-out erythrocyte membrane preparation with neuraminidase markedly decreases the binding of prostaglandin E1. Incubation of the erythrocyte membrane preparation with trypsin resulted in total loss of the binding activity. These results indicate that the prostaglandin E1 binding sites located on the cell surface and sialic acid residues are required for prostaglandin E1 binding to the human erythrocytes. These results also indicated that the binding sites are glycoprotein in nature.  相似文献   

14.
New derivatives of GDP and GTP have been synthesized for the spectroscopic investigation of the interaction between guanosine nucleotides and guanosine nucleotide-binding proteins. The 3'-hydroxyl group in these nucleotides was replaced by a 3'-amino group, which was further derivatized by the introduction of a spin-label reporter group. The biological activity of 3'SL-GDP and 3'SL-GTP could be demonstrated by measuring the interaction of these spin-labelled derivatives with bacterial elongation factor Tu. The amino modification and spin labelling only slightly influenced the affinity of the guanosine nucleotides for EF-Tu from Escherichia coli or Thermus thermophilus. Electron paramagnetic resonance (EPR) measurements revealed a strong immobilization of the labelled nucleotides upon binding to T. thermophilus EF-Tu. Significant differences between the spectra of EF-Tu X 3'SL-GDP, EF-Tu X 3'SL-GTP and aminoacyl-tRNA X EF-Tu X 3'SL-GTP ternary complexes were observed. Our data demonstrate that spin-labelled guanosine nucleotides can be used as sensitive spectroscopic probes for the investigation of the local environment of the nucleotide-binding site during distinct functional states of a guanosine nucleotide-binding protein.  相似文献   

15.
The association of two high molecular weight (HMW) structural proteins with the cytoskeletons of rat pheochromocytoma cells, PC12, is regulated by ATP and other nucleotides. Exposure of PC12 cytoskeletons to ATP resulted in the selective solubilization of two HMW proteins, identified as myosin and a 280 kD microtubule-associated protein. These two proteins were rapidly released from the cytoskeleton following incubation with ATP, GTP, CTP, and ADP; non-hydrolysable ATP analog caused protein release to a less marked extent. The effect of the latter two nucleotides indicated that the release of the myosin and the HMW microtubule-associated protein was likely to be the result of nucleotide-induced conformational changes in one or both proteins. Myosin and the HMW microtubule-associated proteins interact with actin in vitro in a nucleotide-sensitive manner. The present data demonstrate that similar interactions are likely to exist within the intact cytoskeleton and suggest that the associations of these structural proteins with the cytoskeleton are regulated by common mechanisms. The results also suggest that the cells may differentially regulate the stability of a subset of these structural proteins in their interactions with other cytoskeletal elements.  相似文献   

16.
We have investigated the effect of staurosporine-type protein kinase inhibitors, displaying different enzyme specificity, on the association of actin with the neutrophil cytoskeleton. In resting cells, nanomolar concentrations of staurosporine induced a rapid increase in cytoskeleton-associated actin. Other inhibitors, more specific for protein kinase C (PKC) or kinases dependent on cyclic nucleotides, induced a much smaller response, indicating that inhibition of these enzymes is not involved in the staurosporine-dependent rise. Therefore, inhibition of an unknown staurosporine-sensitive enzyme, not identical with PKC or one of the cyclic nucleotide-dependent kinases, can trigger an increase in cytoskeletal actin. It is well known that chemotactic peptide induces a rapid rise in cytoskeletal actin, followed by a decrease at later times after the onset of activation. Preincubation with CGP 41,251, a relatively specific inhibitor for PKC, did not affect these two events at concentrations of the drug which, in separate experiments, inhibited markedly phorbol ester induced protein phosphorylation in intact neutrophils. Thus the chemotactic peptide-induced changes in the level of cytoskeletal actin appear to be independent of PKC activation.  相似文献   

17.
We have purified the high molecular weight actin-binding protein, filamin from guinea pig vas deferens. We find this mammalian filamin is very similar to chicken gizzard filamin in subunit molecular weight, amnio acid composition, actin-binding properties, immunological cross-reactivity, and the ability to be phosphorylated by cyclic AMP-dependent protein kinase. Anti-filamin antibodies cross-react with a high molecular weight macrophage actin-binding protein, and with a high molecular weight protein in platelets and fibroblasts. Furthermore like filamin, these proteins are also phosphorylated and cyclic AMP stimulates their phosphorylation. Anti-filamin antibodies do not cross-react with the erythrocyte membrane protein spectrin or with high molecular weight proteins in brain extracts. We conclude that filamin from avian and mammalian smooth muscle are very similar proteins and furthermore that many, but not all, non-muscle cells contain a protein closely related to filamin.  相似文献   

18.
The level of carboxyl methylation of membrane proteins has been measured in intact human erythrocyte populations of different ages separated by density gradient centrifugation. Age separation was confirmed by measurement of cytosolic pyruvate kinase specific activity in each fraction. When cells of different ages were incubated with L-[methyl-3H]methionine, the steady state level of 3H radioactivity covalently bound to membrane proteins is observed to be at least 3-fold higher in older erythrocytes. Because the specific radioactivity of the methyl group donor S-adenosyl-L-[methyl-3H]methionine was identical in all age fractions, this represents an increase in the extent of modification of membrane proteins by carboxyl methylation. Of the three major methylated erythrocyte membrane proteins, this increase in carboxyl methylation with age is 4 to 7-fold for bands 2.1 and 3, while the increase in band 4.1 is 3 to 4-fold. This increase in the steady state level of methylation with age cannot be explained by changes in either the intrinsic rate of methyl transfer or by changes in the rate constant of methyl turnover. We, therefore, propose that the age-dependent change in carboxyl methylation is due to an increase in the number of available acceptor sites as the erythrocyte ages in vivo. Since methylation of acidic residues on erythrocyte membrane proteins has been detected exclusively on D-aspartic acid residues (McFadden, P. N., and Clarke, S. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 2460-2464), these results are consistent with an accumulation of D-aspartic acid in membrane protein due to spontaneous racemization a the cell ages. The relationship of these observations to possible functions of erythrocyte membrane protein carboxyl methylation is discussed.  相似文献   

19.
Sequestration of nucleotides in cells through protein binding could influence the availability of nucleotides and free energy for metabolic reactions and, therefore, affect rates of physiological processes. We have estimated the proportion of nucleotides bound to proteins in maize (Zea mays L.) root tips. Binding of nucleoside mono- and diphosphates to total root-tip protein was studied in vitro using high-performance liquid chromatography and a new ligand-binding technique. We estimate that approximately 40% of the ADP, 65% of the GDP, 50% of the AMP, and virtually all the GMP in aerobic cells are bound to proteins. In hypoxic cells, free concentrations of these nucleotides increase proportionately much more than total intracellular concentrations. Little or no binding of CDP, UDP, CMP, and UMP was observed in vitro. Binding of nucleoside triphosphate (NTP) to protein was estimated from in vivo 31P-nuclear magnetic resonance relaxation measurements. In aerobic root tips most (approximately 70%) of the NTP is free, whereas under hypoxia NTP appears predominantly bound to protein. Our results indicate that binding of nucleotides to proteins in plant cells will significantly influence levels of free purine nucleotides available to drive and regulate respiration, protein synthesis, ion transport, and other physiological processes.  相似文献   

20.
Comparison of electron spin resonance spectra of spin labeled erythrocyte membranes from patients with the dystrophic conditions Duchenne and myotonic muscular dystrophy with those of normal controls suggests that alterations in membrane protein conformation and/or organization are present in these disease states. These protein alterations are not apparent in the non-dystrophic disease congenital myotonia. The results suggest a correlation between changes in the physical state of proteins in membranes with the presence of dystrophy. In addition, the present results from erythrocytes lend support for the concept of a generalized membrane defect in these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号