首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nicotinamide phosphoribosyltransferase, (EC 2.4.2.12) was examined in extracts of diploid human fibroblasts grown in culture. The enzyme was found to have an apparent Km for nicotinamide of 1.6 × 10?6M, to be specific for nicotinamide, stimulated by adenosine triphosphate (ATP) and inhibited by nicotinamide adenine dinucleotide (NAD). In these respects it is very similar to rat liver nicotinamide phosphoribosyltransferase but not like the enzyme previously observed in human tissue extracts which had a Km for nicotinamide of approximately 0.1 M and was insensitive to ATP. Discovery of this enzyme activity supports previous studies using radiolabeled nicotinamide which show that human fibroblasts can incorporate nicotinamide into NAD directly through nicotinamide mononucleotide.  相似文献   

2.
A simple enzymatic method is described for the measurement of NMN pyrophosphorylase in tissue homogenates at levels as low as 10(-12) to 10(-9) mol. The product, nicotinamide mononucleotide, is converted to NAD using NAD pyrophosphorylase and the NAD is quantified in an enzymatic cycling assay. The enzyme described here is stimulated more at low concentrations of Mn2+ than Mg2+. ATP is not required for NMN pyrophosphorylase activity; the reaction is neither stimulated nor inhibited by ATP concentrations as high as 3 mM. The enzyme is totally dependent on phosphoribosylpyrophosphate. The method is highly reproducible in all tissues examined. Various cell lines and tissues from mouse were analyzed for NMN pyrophosphorylase.  相似文献   

3.
NAD kinase was purified 93-fold from Escherichia coli. The enzyme was found to have a pH optimum of 7.2 and an apparent Km for NAD+, ATP, and Mg2+ of 1.9, 2.1, and 4.1 mM, respectively. Several compounds including quinolinic acid, nicotinic acid, nicotinamide, nicotinamide mononucleotide, AMP, ADP, and NADP+ did not affect NAD kinase activity. The enzyme was not affected by changes in the adenylate energy charge. In contrast, both NADH and NADPH were potent negative modulators of the enzyme, since their presence at micromolar concentrations resulted in a pronounced sigmoidal NAD+ saturation curve. In addition, the presence of a range of concentrations of the reduced nucleotides resulted in an increase of the Hill slope (nH) to 1.7 to 2.0 with NADH and to 1.8 to 2.1 with NADPH, suggesting that NAD kinase is an allosteric enzyme. These results indicate that NAD kinase activity is regulated by the availability of ATP, NAD+, and Mg2+ and, more significantly, by changes in the NADP+/NADPH and NAD+/NADH ratios. Thus, NAD kinase probably plays a role in the regulation of NADP turnover and pool size in E. coli.  相似文献   

4.
5.
Burgos ES  Schramm VL 《Biochemistry》2008,47(42):11086-11096
Human nicotinamide phosphoribosyltransferase (NAMPT, EC 2.4.2.12) catalyzes the reversible synthesis of nicotinamide mononucleotide (NMN) and inorganic pyrophosphate (PP i) from nicotinamide (NAM) and alpha- d-5-phosphoribosyl-1-pyrophosphate (PRPP). NAMPT, by capturing the energy provided by its facultative ATPase activity, allows the production of NMN at product:substrate ratios thermodynamically forbidden in the absence of ATP. With ATP hydrolysis coupled to NMN synthesis, the catalytic efficiency of the system is improved 1100-fold, substrate affinity dramatically increases ( K m (NAM) from 855 to 5 nM), and the K eq shifts -2.1 kcal/mol toward NMN formation. ADP-ATP isotopic exchange experiments support the formation of a high-energy phosphorylated intermediate (phospho-H247) as the mechanism for altered catalytic efficiency during ATP hydrolysis. NAMPT captures only a small portion of the energy generated by ATP hydrolysis to shift the dynamic chemical equilibrium. Although the weak energetic coupling of ATP hydrolysis appears to be a nonoptimized enzymatic function, closer analysis of this remarkable protein reveals an enzyme designed to capture NAM with high efficiency at the expense of ATP hydrolysis. NMN is a rate-limiting precursor for recycling to the essential regulatory cofactor, nicotinamide adenine dinucleotide (NAD (+)). NMN synthesis by NAMPT is powerfully inhibited by both NAD (+) ( K i = 0.14 muM) and NADH ( K i = 0.22 muM), an apparent regulatory feedback mechanism.  相似文献   

6.
1. The effects of injecting nicotinamide, 5-methylnicotinamide, ethionine, nicotinamide+5-methylnicotinamide and nicotinamide+ethionine on concentrations in rat liver of NAD, NADP and ATP were investigated up to 5hr. after injection. 2. Nicotinamide induced three- to four-fold increases in hepatic NAD concentration even in the presence of 5-methylnicotinamide or ethionine, whereas 5-methylnicotinamide or ethionine alone did not cause marked changes in hepatic NAD concentration. 3. Nicotinamide alone also induced a twofold increase in hepatic NADP concentration. However, in the presence of 5-methylnicotinamide+nicotinamide, the NADP concentration decreased by 25% after 5hr., and in the presence of nicotinamide+ethionine by 30% in the same time. In the presence of 5-methylnicotinamide or ethionine alone hepatic NADP concentrations fell by 50% after 5hr. 4. 5-Methylnicotinamide inhibited the microsomal NAD(+) glycohydrolase (EC 3.2.2.6) by 60% at a concentration of 1mm and the NADP(+) glycohydrolase by 40% at the same concentration. 5. The rat liver NAD(+) kinase (EC 2.7.1.23) was found to have V(max.) 4.83mumoles/g. wet wt./hr. and K(m) (NAD(+)) 5.8mm. This enzyme was also inhibited by 5-methylnicotinamide in a ;mixed' fashion. 6. The results are discussed with respect to the control of NAD synthesis. It is suggested that in vivo the NAD(P)(+) glycohydrolases are effectively inactive and that the increased NAD concentrations induced by nicotinamide are due to increased substrate concentration available to both the nicotinamide and nicotinic acid pathways of NAD formation.  相似文献   

7.
Two major species of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) differing in size, pyridine nucleotide specificity, and susceptibility to inhibition by adenosine 5'-triphosphate (ATP) were detected in extracts of Pseudomonas multivorans (which has recently been shown to be synonymous with the species Pseudomonas cepacia) ATCC 17616. The large species (molecular weight ca. 230,000) was active with nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) and was markedly inhibited by ATP, which decreased its affinity for glucose-6-phosphate and for pyridine nucleotides. This form of the enzyme exhibited homotropic effects for glucose-6-phosphate. The small species (molecular weight ca. 96,000) was active with NADP but not with NAD, was not inhibited by ATP, and exhibited no homotropic effects for glucose-6-phosphate. Under certain conditions multiplicity of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) activities was also noted. One form of the enzyme (80,000 molecular weight) was active with either NAD or NADP and was inhibited by ATP, which decreased its affinity for 6-phosphogluconate. The other form (120,000 molecular weight) was highly specific for NADP and was not susceptible to inhibition by ATP. Neither form of the enzyme exhibited homotropic effects for 6-phosphogluconate. The possible relationships between the different species of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase are discussed.  相似文献   

8.
The stereospecificity of IMP dehydrogenase (IMP:NAD+ oxidoreductase, EC 1.1.1.205) from two different sources was determined. The enzyme preparations were obtained from murine lymphoblasts and from Escherichia coli. Both enzymes transferred the 2-3H of IMP to the pro-S position of carbon atom C-4 of the nicotinamide ring in NAD. Thus, B-sided stereospecificity is common to the enzyme from two very different species. In addition, the studies described here demonstrate that alcohol dehydrogenase and NADH peroxidase, used as auxiliary enzymes, in combination with a microdistillation procedure, should permit rapid determination of the stereospecificity of any NAD-dependent dehydrogenase for which the appropriate tritiated substrate is available.  相似文献   

9.
NAD kinase is a ubiquitous enzyme that catalyzes the phosphorylation of NAD to NADP using ATP or inorganic polyphosphate (poly(P)) as phosphate donor, and is regarded as the only enzyme responsible for the synthesis of NADP. We present here the crystal structures of an NAD kinase from the archaeal organism Archaeoglobus fulgidus in complex with its phosphate donor ATP at 1.7 A resolution, with its substrate NAD at 3.05 A resolution, and with the product NADP in two different crystal forms at 2.45 A and 2.0 A resolution, respectively. In the ATP bound structure, the AMP portion of the ATP molecule is found to use the same binding site as the nicotinamide ribose portion of NAD/NADP in the NAD/NADP bound structures. A magnesium ion is found to be coordinated to the phosphate tail of ATP as well as to a pyrophosphate group. The conserved GGDG loop forms hydrogen bonds with the pyrophosphate group in the ATP-bound structure and the 2' phosphate group of the NADP in the NADP-bound structures. A possible phosphate transfer mechanism is proposed on the basis of the structures presented.  相似文献   

10.
Streptococcus faecalis grown with glucose as the primary energy source contains a single, nicotinamide adenine dinucleotide phosphate (NADP)-specific 6-phosphogluconate dehydrogenase. Extracts of gluconate-adapted cells, however, exhibited 6-phosphogluconate dehydrogenase activity with either NADP or nicotinamide adenine dinucleotide (NAD). This was shown to be due to the presence of separate enzymes in gluconate-adapted cells. Although both enzymes catalyzed the oxidative decarboxylation of 6-phosphogluconate, they differed from one another with respect to their coenzyme specificity, molecular weight, pH optimum, K(m) values for substrate and coenzyme, and electrophoretic mobility in starch gels. The two enzymes also differed in their response to certain effector ligands. The NADP-linked enzyme was specifically inhibited by fructose-1,6-diphosphate, but was insensitive to adenosine triphosphate (ATP) and certain other nucleotides. The NAD-specific enzyme, in contrast, was insensitive to fructose-1,6-diphosphate, but was inhibited by ATP. The available data suggest that the NAD enzyme is involved primarily in the catabolism of gluconate, whereas the NADP enzyme appears to function in the production of reducing equivalents (NADPH) for use in various reductive biosynthetic reactions.  相似文献   

11.
Rape alcohol dehydrogenase is competitively inhibited with respect to NAD by nicotinamide, as well as by compounds containing adenine (adenine, adenosine, AMP, ADP, ATP). Adenine and adenosine are bound more firmly to the enzyme than nicotinamide. The two types of compound, as component parts of the NAD coenzyme, are bound to different sites on the enzyme. Adenine and adenosine compete for the adenine nucleotide bonding site, but they do not compete for the o-phenanthroline bonding site. Nicotinamide competes with o-phenanthroline for the binding site at which the metal is apparently present.  相似文献   

12.
Cell extracts from fermentatively grown Rhodospirillum rubrum reduced about 80 nmol of nicotinamide adenine dinucleotide (NAD) per mg of protein per min under anaerobic conditions with sodium pyruvate. The reaction was specific for pyruvate and NAD; NAD phosphate was not reduced. Results indicated that pyruvate-linked NAD reduction occurred via pyruvate:lipoate oxidoreductase. The reaction required catalytic amounts of both coenzyme A and thiamine pyrophosphate. Addition of sodium arsenite inhibited enzyme activity by 90%. Pyruvate:lipoate oxidoreductase was the only system detected in anaerobic, dark-grown R. rubrum cell extracts which operated to produce reduced NAD. The low activity of the enzyme system suggested that it was not quantitatively important in ATP formation.  相似文献   

13.
DNA strand breaks that occur after irradiation activate the repair enzyme adenosine diphosphoribosyl transferase, which consumes NAD as a substrate and causes depletion first of neuronal NAD and then of the ATP pool. This is considered to be the crucial link in the mechanism underlying the cerebral radiation syndrome (CRS). In this study, two ways to correct the CRS metabolically were examined: (a) prevention of depletion of NAD after irradiation by administration of the enzyme inhibitor nicotinamide and (b) shunting the NAD-dependent oxidative phosphorylation pathway of ATP resynthesis by administration of a substrate of NAD-independent oxidation, succinate. Cerebral lesions induced by radiation were modeled by irradiation of rats or rat brain homogenates with 150 Gy of X rays. The manifestations of CRS in rats (excitement, convulsions, etc.) closely resembled those seen after acute hypoxia. In brain homogenates, pyruvate tetrazolium-reductase activity decreased after irradiation and could be corrected by addition of NAD after irradiation. Succinate tetrazolium-reductase activity was not affected by irradiation. Oxygen consumption by brain homogenates after irradiation in vitro and in situ decreased, as did oxygen consumption by rats in vivo after cranio-caudal irradiation. Administration of nicotinamide or succinate prevented both the postirradiation decrease in respiration (in both rats in vivo and brain homogenates in vitro) and the development of cerebral radiation syndrome. These results help to clarify the mechanisms underlying CRS and its metabolic correction.  相似文献   

14.
The mode of [14C]nicotinamide conversion to NAD and 1-methylnicotinamide and the effects of exogenous 1-methylnicotinamide on this metabolic conversion were studied using rat liver slices incubated in a chemically defined culture medium. It was shown that at the physiological nicotinamide concentrations tested (11-500 microM), 1-methylnicotinamide is preferentially produced, rather than NAD. Upon increasing nicotinamide concentration to the levels that cause cytotoxicity (1-10 mM and higher), the rate of NAD synthesis dramatically increased and reached a level 6-fold higher than that of 1-methylnicotinamide. A dose-dependent inhibition (up to 60%) of NAD synthesis was seen by the exogenous addition of 1-methylnicotinamide; the degree of inhibition is affected also by the concentration of nicotinamide present as a precursor. A large depletion of intracellular ATP, associated with a marked accumulation of NAD, occurred in slices in response to the addition of high amounts of nicotinamide. However, the loss of ATP was overcome, when nicotinamide was given together with 1-methylnicotinamide. Finally, 1-methylnicotinamide per se was proven active in regulating cell growth by comparing the cytosolic activity of 1-methylnicotinamide oxidation of cultured RLC cells with that of rat liver. Thus, the previously observed growth stimulation of hepatic cells by 1-methylnicotinamide can reasonably been explained by its ATP-sparing effect due to the inhibition of NAD synthesis, a reaction which requires ATP.  相似文献   

15.
Pyridine Nucleotide Transhydrogenase from Azotobacter vinelandii   总被引:5,自引:0,他引:5       下载免费PDF全文
A method is described for the partial purification of pyridine nucleotide transhydrogenase from Azotobacter vinelandii (ATCC 9104) cells. The most highly purified preparation catalyzes the reduction of 300 mumoles of nicotinamide adenine dinucleotide (NAD(+)) per min per mg of protein under the assay conditions employed. The enzyme catalyzes the reduction of NAD(+), deamino-NAD(+), and thio-NAD(+) with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as hydrogen donor, and the reduction of nicotinamide adenine dinucleotide phosphate (NADP(+)) and thio-NAD(+) with reduced NAD (NADH) as hydrogen donor. The reduction of acetylpyridine AD(+), pyridinealdehyde AD(+), acetylpyridine deamino AD(+), and pyridinealdehydedeamino AD(+) with NADPH as hydrogen donor was not catalyzed. The enzyme catalyzes the transfer of hydrogen more readily from NADPH than from NADH with different hydrogen acceptors. The transfer of hydrogen from NADH to NADP(+) and thio-NAD(+) was markedly stimulated by 2'-adenosine monophosphate (2'-AMP) and inhibited by adenosine diphosphate (ADP), adenosine triphosphate (ATP), and phosphate ions. The transfer of hydrogen from NADPH to NAD(+) was only slightly affected by phosphate ions and 2'-AMP, except at very high concentrations of the latter reagent. In addition, the transfer of hydrogen from NADPH to thio-NAD(+) was only slightly influenced by 2'-AMP, ADP, ATP, and other nucleotides. The kinetics of the transhydrogenase reactions which utilized thio-NAD(+) as hydrogen acceptor and NADH or NADPH as hydrogen donor were studied in some detail. The results suggest that there are distinct binding sites for NADH and NAD(+) and perhaps a third regulator site for NADP(+) or 2'-AMP. The heats of activation for the transhydrogenase reactions were determined. The properties of this enzyme are compared with those of other partially purified transhydrogenases with respect to the regulatory functions of 2'-AMP and other nucleotides on the direction of flow of hydrogen between NAD(+) and NADP(+).  相似文献   

16.
BACKGROUND: Nicotinamide adenine dinucleotide (NAD(+)) is an essential cofactor involved in fundamental processes in cell metabolism. The enzyme nicotinamide mononucleotide adenylyltransferase (NMN AT) plays a key role in NAD(+) biosynthesis, catalysing the condensation of nicotinamide mononucleotide and ATP, and yielding NAD(+) and pyrophosphate. Given its vital role in cell life, the enzyme represents a possible target for the development of new antibacterial agents. RESULTS: The structure of NMN AT from Methanococcus jannaschii in complex with ATP has been solved by X-ray crystallography at 2.0 A resolution, using a combination of single isomorphous replacement and density modification techniques. The structure reveals a hexamer with 32 point group symmetry composed of alpha/beta topology subunits. The catalytic site is located in a deep cleft on the surface of each subunit, where one ATP molecule and one Mg(2+) are observed. A strictly conserved HXGH motif (in single-letter amino acid code) is involved in ATP binding and recognition. CONCLUSIONS: The structure of NMN AT closely resembles that of phosphopantetheine adenylyltransferase. Remarkably, in spite of the fact that the two enzymes share the same fold and hexameric assembly, a striking difference in their quaternary structure is observed. Moreover, on the basis of structural similarity including the HXGH motif, we identify NMN AT as a novel member of the newly proposed superfamily of nucleotidyltransferase alpha/beta phosphodiesterases. Our structural data suggest that the catalytic mechanism does not rely on the direct involvement of any protein residues and is likely to be carried out through optimal positioning of substrates and transition-state stabilisation, as is proposed for other members of the nucleotidyltransferase alpha/beta phosphodiesterase superfamily.  相似文献   

17.
The reversibility of the NAD+ kinase reaction was established, and the kinetic parameters of the rate equation in the reverse direction were determined. The equilibrium constant of the reaction was determined by using the purified pigeon liver enzyme and radioactively labelled nicotinamide nucleotides. The relationship between kinetic parameters of the forward and reverse reactions is in reasonable agreement with the measured equilibrium constant. As expected from the proposed mechanism of action, the enzyme does not catalyse isotope exchange between NAD+ and NADP+ in the absence of ADP and ATP. Although homogeneous as judged by polyacrylamide-gel electrophoresis, the enzyme preparation exhibits ADP/ATP isotope-exchange activity which could not be separated from NAD+ kinase activity, but kinetic evidence suggests that this is probably due to a contaminant.  相似文献   

18.
The mode of [14C]lnicotinamide conversion to NAD and 1-methylnicotinamide and the effects of exogenous 1-methylnicotinamide on this metabolic conversion were studied using rat livers slices incubated in a chemically defined culture medium. It was shown that at the physiological nicotinamide concentrations tested (11–500 μM), 1-methylnicotinamide is preferentially produced, rather than NAD. Upon increasing nicotinamide concentration to the levels that cause cytotoxicity (1–10 mM and higher), the rate of NAD synthesis dramatically increased and reached a level 6-fold higher than that of 1-methylnicotinamide. A dose-dependent inhibition (up to 60%) of NAD synthesis was seen by the exogenous addition of 1-methylnicotinamide; the degree of inhibition is affected also by the concentrations of nicotinamide present as a precursor. A large depletion of intracellular ATP, associated with a marked accumulation of NAD, occurred in slices in response to the addition of high amounts of nicotinamide. However, loss of ATP was overcome, when nicotinamide was given together with 1-methylnicotinamide. Finally, 1-methylnicotinamide per se was proven active in regulating cell growth by comparing the cytosolic activity of 1-methylnicotinamide oxidation of cultured RLC cells with that of rat liver. Thus, the previously observed growth stimulation of hepatic cells by 1-methylnicotinamide can reasonably been explained by its ATP-sparing effect due to the inhibition of NAD synthesis, a reaction which requires ATP.  相似文献   

19.
A 60- to 70-fold purification of an NAD+ glycohydrolase from the inner membrane of rat liver mitochondria to apparent homogeneity on sodium dodecyl sulfate (SDS)-polyacrylamide slab gel is described. The minimum molecular weight of the enzyme on polyacrylamide gels in the presence of SDS is around 62,000. The enzyme splits NAD+ to ADP-ribose and, presumably, nicotinamide. No phosphatase or phosphodiesterase activity is detected in the purified enzyme preparation. The enzyme shows high activity with NAD+ and moderate activity with NADP+ as substrates NAD(P)Hs are poor substrates. ATP and nicotinamide inhibit the enzyme. A possible participation of the enzyme in the mechanism of calcium release from rat liver mitochondria is discussed.  相似文献   

20.
Utilization and metabolism of NAD by Haemophilus parainfluenzae   总被引:2,自引:0,他引:2  
The utilization of exogenous nicotinamide adenine dinucleotide (NAD) by Haemophilus parainfluenzae was studied in suspensions of whole cells using radiolabelled NAD, nicotinamide mononucleotide (NMN), and nicotinamide ribonucleoside (NR). The utilization of these compounds by H. parainfluenzae has the following characteristics. (1) NAD is not taken up intact, but rather is degraded to NMN or NR prior to internalization. (2) Uptake is carrier-mediated and energy-dependent with saturation kinetics. (3) There is specificity for the beta-configuration of the glycopyridine linkage. (4) An intact carboxamide groups is required on the pyridine ring. The intracellular metabolism of NAD was studied in crude cell extracts and in whole cells using carbonyl-14C-labelled NR, NMN, NAD, nicotinamide, and nicotinic acid as substrates in separate experiments. A synthetic pathway from NR through NMN to NAD that requires Mg2+ and ATP was demonstrated. Nicotinamide was found as an end-product of NAD degradation. Nicotinic acid mononucleotide and nicotinic acid adenine dinucleotide were not found as intermediates. The NAD synthetic pathway in H. parainfluenzae differs from the Preiss-Handler pathway and the pyridine nucleotide cycles described in other bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号