首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of a 12.5-day spaceflight (Cosmos 1887 biosatellite) on the geometric, biomechanical, and biochemical characteristics of humeri of male specific pathogen-free rats were examined. Humeri of age-matched basal control, synchronous control, and vivarium control rats were contrasted with the flight bones to examine the influence of growth and space environment on bone development. Lack of humerus longitudinal growth occurred during the 12.5 days in spaceflight. In addition, the normal mid-diaphysial periosteal appositional growth was affected; compared with their controls, the spaceflight humeri had less cortical cross-sectional area, smaller periosteal circumferences, smaller anterior-posterior periosteal diameters, and smaller second moments of area with respect to the bending and nonbending axes. The flexural rigidity of the flight humeri was comparable to that of the younger basal control rats and significantly less than that of the synchronous and vivarium controls; the elastic moduli of all four groups, nonetheless, were not significantly different. Generally, the matrix biochemistry of the mid-diaphysial cross sections showed no differences among groups. Thus, the spaceflight differences in humeral mechanical strength and flexural rigidity were probably a result of the differences in humeral geometry rather than material properties.  相似文献   

2.
As part ofan experiment to study the role of corticosteroids in bone changesduring spaceflight, male Sprague-Dawley rats (6 wk old, 165 g bodyweight) were placed in orbit for 17 days, in groups of six, inanimal-enclosure modules (AEMs) aboard the space shuttle Columbia(STS-78). Control rats were group housed in a similar manner inground-based AEMs or standard vivarium cages. Adrenal hypertrophyoccurred in flight rats, but bone histomorphometric analyses revealed alack of significant changes in bone mass and bone formation in theseanimals. Cancellous bone volume and osteoblast surface in the proximaltibial metaphysis were nearly the same in flight and ground-based rats.Normal levels of cancellous bone mass and bone formation were alsodetected in the lumbar vertebrae and femoral necks of flight rats. Inthe tibial diaphysis, periosteal bone formation rate was found to beidentical in flight and ground-based rats. The results indicate that,under conditions of group housing in AEMs, spaceflight has minimaleffects on bone mass and bone formation in rapidly growingrats. These findings emphasize the need to investigate theimportance of rat age, strain, and especially housing conditions forstudies of the skeletal effects of spaceflight.

  相似文献   

3.
The rat has been used extensively as an animal model to study the effects of spaceflight on bone metabolism. The results of these studies have been inconsistent. On some missions, bone formation at the periosteal bone surface of weight-bearing bones is impaired and on others it is not, suggesting that experimental conditions may be an important determinant of bone responsiveness to spaceflight. To determine whether animal housing can affect the response of bone to spaceflight, we studied young growing (juvenile) rats group housed in the animal enclosure module and singly housed in the research animal holding facility under otherwise identical flight conditions (Spacelab Life Science 1). Spaceflight reduced periosteal bone formation by 30% (P < 0.001) and bone mass by 7% in single-housed animals but had little or no effect on formation (-6%) or mass (-3%) in group-housed animals. Group housing reduced the response of bone to spaceflight by as much as 80%. The data suggest that housing can dramatically affect the skeletal response of juvenile rats to spaceflight. These observations explain many of the discrepancies in previous flight studies and emphasize the need to study more closely the effects of housing (physical-social interaction) on the response of bone to the weightlessness of spaceflight.  相似文献   

4.
Ground studies indicate that spaceflight may diminish vascular contraction. To examine that possibility, vascular function was measured in spontaneously hypertensive rats immediately after an 18-day shuttle flight. Isolated mesenteric resistance arterial responses to cumulative additions of norepinephrine, acetylcholine, and sodium nitroprusside were measured using wire myography within 17 h of landing. After flight, maximal contraction to norepinephrine was attenuated (P < 0.001) as was relaxation to acetylcholine (P < 0.001) and sodium nitroprusside (P < 0.05). At high concentrations, acetylcholine caused vascular contraction in vessels from flight animals but not in vessels from vivarium control animals (P < 0.05). The results are consistent with data from ground studies and indicate that spaceflight causes both endothelial-dependent and endothelial-independent alterations in vascular function. The resulting decrement in vascular function may contribute to orthostatic intolerance after spaceflight.  相似文献   

5.
Recent experimental data suggest that the anabolic response of bone to changes in physical activity and mechanical loading may vary among different skeletal elements, and even within different regions of the same bone. In order to better understand site-specific variation in bone modeling we used an experimental protocol in which locomotor activity was increased in laboratory mice with regular treadmill exercise for only 30 min/day. We predicted that the regular muscle contractions that occur during exercise would significantly increase cortical bone formation in these animals, and that the increase in cortical bone mass would vary between metaphyseal and diaphyseal regions. Cortical bone mass, density, and bone geometry were compared between these two regions using pQCT technology. Results indicate that exercise increases bone mineral content (BMC) in the mid-diaphysis by approximately 20%, whereas bone mass in the metaphyseal region is increased by approximately 35%. Endosteal and periosteal circumference at the midshaft are increased with exercise, whereas increased periosteal circumference is accompanied by marked endosteal contraction at the metaphysis, resulting in an increase in cortical area of more than 50%. These findings suggest that the osteogenic response of cortical bone to exercise varies significantly along the length of a bone, and more distal regions appear most likely to exhibit morphologic changes when loading conditions are altered.  相似文献   

6.
Morphological, histochemical and ultrastructural investigations on epiphyseal apparatus of Rana Esculenta were made. The most important findings were the following: 1) metaphyseal cartilage is localized inside proximal diaphyseal compact bone as a plug; 2) metaphyseal cartilage do not reduce in thickness during ageing; 3) metaphyseal cartilage do not show vascular invasion and do not mineralize in degenerative zone; 4) trabecular bone was not at all evident in this animal; 5) external periosteum is well vascularized and proliferates in correspondence to marginal epiphyseal end of the diaphyseal. From these results the hypothesis that the ranid frog bone growth is not due to metaphyseal metabolism (as in avian and mammals) but to bone periosteal marginal mineralization is reached.  相似文献   

7.
Despite the important physiological role of periosteum in the pathogenesis and treatment of osteoporosis, little is known about the structural and cellular characteristics of periosteum in osteoporosis. To study the structural and cellular differences in both diaphyseal and metaphyseal periosteum of osteoporotic rats, samples from the right femur of osteoporotic and normal female Lewis rats were collected and tissue sections were stained with hematoxylin and eosin, antibodies or staining kit against tartrate resistant acid phosphatase (TRAP), alkaline phosphatase (ALP), vascular endothelial growth factor (VEGF), von Willebrand (vWF), tyrosine hydroxylase (TH) and calcitonin gene-related peptide (CGRP). The results showed that the osteoporotic rats had much thicker and more cellular cambial layer of metaphyseal periosteum compared with other periosteal areas and normal rats (P < 0.001). The number of TRAP+ osteoclasts in bone resorption pits, VEGF+ cells and the degree of vascularization were found to be greater in the cambial layer of metaphyseal periosteum of osteoporotic rats (P < 0.05), while no significant difference was detected in the number of ALP+ cells between the two groups. Sympathetic nerve fibers identified by TH staining were predominantly located in the cambial layer of metaphyseal periosteum of osteoporotic rats. No obvious difference in the expression of CGRP between the two groups was found. In conclusion, periosteum may play an important role in the cortical bone resorption in osteoporotic rats and this pathological process may be regulated by the sympathetic nervous system.  相似文献   

8.
Sprague-Dawley rats were subjected to two 8-day spaceflights on the space shuttle. Rats housed in the National Aeronautics and Space Administration's animal enclosure were injected (iv or sc) with pegylated interleukin-2 (PEG-IL-2) or a placebo. We tested the hypothesis that PEG-IL-2 would ameliorate some of the effects of spaceflight. We measured body and organ weights; blood cell differentials; plasma corticosterone; colony-forming units (macrophage and granulocyte macrophage); lymphocyte mitogenic, superantigenic, and interferon-gamma responses; bone marrow cell and peritoneal macrophage cytokine secretion; and bone strength and mass. Few immunological parameters were affected by spaceflight. However, some spaceflight effects were observed in each flight. Specifically, peritoneal macrophage spontaneous secretion of tumor necrosis factor-alpha occurred in the first but not in the second flight. A significant monocytopenia and lymphocytopenia were detected in the second but not in the first flight. The second mission produced bone changes more consistent with past spaceflight investigations. PEG-IL-2 did not appear to be beneficial; however, this was mostly due to the lack of spaceflight effects. These studies reflect the difficulty in reproducing experimental models by using current space shuttle conditions.  相似文献   

9.
Prologned spaceflight results in bone loss in astronauts, but there is considerable individual variation. The goal of this rat study was to determine whether gender influences bone loss during simulated weightlessness. Six-month-old Fisher 344 rats were hindlimb unweighted for 2 wk, after which the proximal tibiae were evaluated by histomorphometry. There were gender differences in tibia length, bone area, cancellous bone architecture, and bone formation. Compared with female rats, male rats had an 11.6% longer tibiae, a 27.8% greater cortical bone area, and a 37.6% greater trabecular separation. Conversely, female rats had greater cortical (316%) and cancellous (145%) bone formation rates, 28.6% more cancellous bone, and 30% greater trabecular number. Hindlimb unweighting resulted in large reductions in periosteal bone formation and mineral apposition rate in both genders. Unweighting also caused cancellous bone loss in both genders; trabecular number was decreased, and trabecular separation was increased. There was, however, no change in trabecular thickness in either gender. These architectural changes in cancellous bone were associated with decreases in bone formation and steady-state mRNA levels for bone matrix proteins and cancellous bone resorption. In conclusion, there are major gender-related differences in bone mass and turnover; however, the bone loss in hindlimb unweighted adult male and female rats appears to be due to similar mechanisms.  相似文献   

10.
Objective:Characterise the spatiotemporal trabecular and cortical bone responses to complete spinal cord injury (SCI) in young rats.Methods:8-week-old male Wistar rats received T9-transection SCI and were euthanised 2-, 6-, 10- or 16-weeks post-surgery. Outcome measures were assessed using micro-computed tomography, mechanical testing, serum markers and Fourier-transform infrared spectroscopy.Results:The trabecular and cortical bone responses to SCI are site-specific. Metaphyseal trabecular BV/TV was 59% lower, characterised by fewer and thinner trabeculae at 2-weeks post-SCI, while epiphyseal BV/TV was 23% lower with maintained connectivity. At later-time points, metaphyseal BV/TV remained unchanged, while epiphyseal BV/TV increased. The total area of metaphyseal and mid-diaphyseal cortical bone were lower from 2-weeks and between 6- and 10-weeks post-SCI, respectively. This suggested that SCI-induced bone changes observed in the rat model were not solely attributable to bone loss, but also to suppressed bone growth. No tissue mineral density differences were observed at any time-point, suggesting that decreased whole-bone mechanical properties were primarily the result of changes to the spatial distribution of bone.Conclusion:Young SCI rat trabecular bone changes resemble those observed clinically in adult and paediatric SCI, while cortical bone changes resemble paediatric SCI only.  相似文献   

11.
The novel G protein-coupled receptor APJ, recently paired with the proposed cognate peptide ligand apelin, mediates potent vasodilator and positive inotropic actions in rats. Radioligand binding showed apelin receptors in rat and human heart and human large conduit vessels. The specific cell types expressing the receptor, however, have not been determined. Apelin, the cognate receptor ligand, is present in endothelial cells. However, the exact pathway of endothelial apelin synthesis and secretion is not known. We therefore investigated the cellular distribution of APJ receptor-like immunoreactivity (APJ-LI) in a range of human tissues using immunocytochemistry and fluorescent double staining confocal microscopy. The same techniques were applied to determine the intracellular localisation of apelin-like immunoreactivity (apelin-LI) in cultured human umbilical vein endothelial cells (HUVECs). APJ-LI is present in endothelial cells, vascular smooth muscle cells and cardiomyocytes. Apelin-LI localises to secretory vesicles and the Golgi complex/endoplasmic reticulum of HUVECs. Apelin-LI does not co-localise with von Willebrand factor in Weibel-Palade bodies, suggesting synthesis of apelin via the constitutive pathway. The proximity of receptor and ligand in the human vasculature, together with evidence for local vascular apelin synthesis, suggests an important role for APJ/apelin as a paracrine cardiovascular regulator system.  相似文献   

12.
There are substantial changes in maternal skeletal dynamics during pregnancy, lactation, and after lactation. The purpose of this study was to correlate changes in cortical and cancellous bone mass, structure, and dynamics with mechanical properties during and after the first reproductive cycle in rats. Rats were mated and groups were taken at parturition, end of lactation and 8 wk after weaning, and were compared with age-matched, nulliparous controls. Measurements were taken on femoral cortical bone and lumbar vertebral body cancellous bone. At the end of pregnancy, there was an increase in cortical periosteal bone formation and an increase in cortical volume, but a suppression of turnover in cancellous bone with no change in cancellous or cortical mechanical properties. Lactation was associated with a decrease in cortical and cancellous bone strength with a decrease in bone volume, but an increase in turnover on cancellous and endocortical surfaces. After lactation, there was a partial or full restoration of mechanical properties. This study demonstrates substantial changes in bone mechanics that correlate with changes in bone structure and dynamics during the first reproductive cycle in rats. The greatest changes were observed during the lactation period with partial or full recovery in the postlactational period.  相似文献   

13.
During embryogenesis, the development and differentiation of the eye requires the concomitant formation of the neural/glial elements along with a dense vascular network. The adult neural retina is supported by two distinct vascular systems, the proper retinal vessels and the choroidal vessels. The two beds differ not only in their pattern of embryonic differentiation, but also in their function in the adult organism. The retinal vasculature has barrier properties similar to those observed in the brain, whereas the choroidal vessels display a highly fenestrated phenotype. The hyaloid vasculature is a transient embryonic vascular bed which is complete at birth in mammals and regresses contemporaneously with the formation of the retinal vasculature. The dependence of the retina on its blood supply makes it highly vulnerable to any vascular changes and indeed ocular diseases, such as proliferative retinopathy, age-related macular degeneration and the hyperplastic primary vitreous, which are associated with abnormalities of the different vascular beds of the eye. A number of factors have been implicated in developmental and pathological changes in vessel formation and regression, including fibroblast growth factors, platelet-derived endothelial growth factor and vascular endothelial growth factor, among others. The purpose of this review is to describe and discuss new insights into the mechanisms and molecular cues involved in the development of the normal and pathological vascular systems of the eye. The characterization of the molecules and cell-cell interactions involved in the formation, stabilization and regression of new vessels has led to the identification of potential control points for therapeutic intervention.  相似文献   

14.
The skeleton accommodates changes in mechanical environments by increasing bone mass under increased loads and decreasing bone mass under disuse. However, little is known about the adaptive changes in micromechanical behavior of cancellous and cortical tissues resulting from loading or disuse. To address this issue, in vivo tibial loading and hindlimb unloading experiments were conducted on 16-week-old female C57BL/6J mice. Changes in bone mass and tissue-level strains in the metaphyseal cancellous and midshaft cortical bone of the tibiae, resulting from loading or unloading, were determined using microCT and finite element (FE) analysis, respectively. We found that loading- and unloading-induced changes in bone mass were more pronounced in the cancellous than cortical bone. Simulated FE-loading showed that a greater proportion of elements experienced relatively lower longitudinal strains following load-induced bone adaptation, while the opposite was true in the disuse model. While the magnitudes of maximum or minimum principal strains in the metaphyseal cancellous and midshaft cortical bone were not affected by loading, strains oriented with the long axis were reduced in the load-adapted tibia suggesting that loading-induced micromechanical benefits were aligned primarily in the loading direction. Regression analyses demonstrated that bone mass was a good predictor of bone tissue strains for the cortical bone but not for the cancellous bone, which has complex microarchitecture and spatially-variant strain environments. In summary, loading-induced micromechanical benefits for cancellous and cortical tissues are received primarily in the direction of force application and cancellous bone mass may not be related to the micromechanics of cancellous bone.  相似文献   

15.
The adaptation of a slow (soleus, Sol) and a fast (medial gastrocnemius, MG) skeletal muscle to spaceflight was studied in five young male rats. The flight period was 12.5 days and the rats were killed approximately 48 h after returning to 1 g. Five other rats that were housed in cages similar to those used by the flight rats were maintained at 1 g for the same period of time to serve as ground-based controls. Fibers were classified as dark or light staining for myosin adenosine triphosphatase (ATPase). On the average, the fibers in the Sol of the flight rats atrophied twice as much as those in the MG. Further, the fibers located in the deep (close to the bone and having the highest percentage of light ATPase and high oxidative fibers in the muscle cross section) region of the MG atrophied more than the fibers located in the superficial (away from the bone and having the lowest percentage of light ATPase and high oxidative fibers in the muscle cross-section) region of the muscle. Based on quantitative histochemical assays of single muscle fibers, succinate dehydrogenase (SDH) activity per unit volume was unchanged in fibers of the Sol and MG. However, in the Sol, but not the MG, the total amount of SDH activity in a 10-microns-thick section of a fiber decreased significantly in response to spaceflight. Based on population distributions, it appears that the alpha-glycerophosphate dehydrogenase (GPD) activities were elevated in the dark ATPase fibers in the Sol, whereas the light fibers in the Sol and both fiber types in the MG did not appear to change. The ratio of GPD to SDH activities increased in the dark (but not light) fibers of the Sol and was unaffected in the MG. Immunohistochemical analyses indicate that approximately 40% of the fibers in the Sol of flight rats expressed a fast myosin heavy chain compared with 22% in control rats. Further, 31% of the fibers in the Sol of flight rats expressed both fast and slow myosin heavy chains compared with 8% in control rats. Immunohistochemical changes in the MG were minimal. These data suggest that the magnitude and direction of enzymatic activity and cell volume changes are dependent on the muscle, the region of the muscle, and the type of myosin expressed in the fibers. Further, the ability of fibers to maintain normal or even elevated activities per unit volume of some metabolic enzymes is remarkable considering the marked and rapid decrease in fiber volume.  相似文献   

16.
Myotenclinous junctions (MTJs) transmit contractile force from skeletal muscles to tendons. The effects of a 14-d spaceflight on MTJ were studied in the soleus muscle of male adult Sprague Dawley rats by transmission electron microscopy and histomorphometric techniques. We showed that the length of the junctional membrane relative to the muscle fiber diameter increased by 58% after 14 d of spaceflight. This increase accompanies morphological changes at MTJs. The flight MTJs appeared more shredded. The ends of the muscle fibers exhibited T tubule dilatation, swollen mitochondria, Z-disk streaming, loss of myofilaments, a thinning down of subplasmalemmal densities, multivesicular bodies and signs of junctional membrane and basal lamina remodelling. The ultrastructural observations suggest that the increase in myotendinous interface could result from the extracellular matrix spreading into remodelling muscle fiber, whereas the constraints related to unloading were reduced by spaceflight conditions.  相似文献   

17.
Vascular degeneration is present in endometrial vessels of multiparous aged mares. The lesions associated with vascular degeneration consist of enlargement, duplication and splitting of the membrana elastica interna and perivascular deposits of elastin. However, there are no similar data available for deep myometrial vessels and the vascular layer. The objectives of the present study were to characterize the status of vasculature in full-thickness uterine necropsy samples and to correlate these findings to endometrial grade, age, and parity. Elastosis was present in myometrial vessels, as well as in large arteries and veins located between the circular and longitudinal myometrial layers. Vascular degeneration was associated with number of foals (P < 0.001) and endometrial grade (P < 0.05), but not with mare age (P > 0.05). Endometrial grade was associated with age (P < 0.001) and vascular grade (P < 0.05), but not with number of foals (P > 0.05). The presence of elastosis in the myometrial vessels was related to problems associated with chronic uterine infection (CUI) and delayed uterine clearance (DUC) of infertile mares. Uterine contractility was impaired in mares affected by CUI and/or DUC and could be related to a lack of myometrial blood flow. Additionally, degeneration of large vessels in the vascular layer may indicate a general compromise in uterine blood flow and fertility. The main conclusions were the presence of vascular elastosis in large deep myometrial vessels as well as in endometrial vessels, and that the factor with the strongest association with vascular degeneration was number of foals (P < 0.001), followed by endometrial grade (P < 0.05), but no association with mare age.  相似文献   

18.
Previous studies have shown that the changes seen in the bones of growing rats exposed to microgravity are due in part to changes that occur in the growth plate during spaceflight. In this study, growth plates of rats flown aboard Cosmos 1887 (12.5-day flight plus 53.5-h recovery at 1 g) were analyzed using light and electron microscopy and computerized planimetry. The proliferative zone of flight animals was found to be significantly (P less than or equal to 0.01) larger than that of controls, while the reserve and hypertrophic/calcification zones were significantly reduced. Flight animals also had more cells per column in the proliferative zone than did controls and less in the hypertrophic/calcification region. The total number of cells, however, was significantly greater in flight animals. No difference was found in perimeter or in shape factor, but area was significantly less in flight animals. Electron microscopy showed that collagen fibrils in flight animals were wider than in controls. Since the time required for a cell to cycle through the growth plate is 2-3 days at 1 g, the results reported here represent both the effects of exposure to microgravity and the initial stages of recovery from that exposure.  相似文献   

19.
Rib periosteum was transplanted to the groins of 9 dogs. In half of the periosteal grafts, no microvascular anastomoses were done (free grafts); at 6 weeks after grafting they had become resorbed. The other periosteal grafts were revascularized by microvascular anastomoses of the intercostal vessels to local muscular vessels; at 6 weeks those with confirmed vascular patency had all formed substantial amounts of new bone. Five cm, full-thickness defects were created in the tibias of 10 dogs. The control animals (without grafting) did not heal in two months. However, the experimental dogs, with vascularized periosteal grafts in the defects regenerated their tibias with healthy new bone by 6 weeks--and were walking on them then.  相似文献   

20.

Background

Angiogenesis contributes to proliferation and metastatic dissemination of cancer cells. Anatomy of blood vessels in tumors has been characterized with 2D techniques (histology or angiography). They are not fully representative of the trajectories of vessels throughout the tissues and are not adapted to analyze changes occurring inside the bone marrow cavities.

Methodology/Principal Findings

We have characterized the vasculature of bone metastases in 3D at different times of evolution of the disease. Metastases were induced in the femur of Wistar rats by a local injection of Walker 256/B cells. Microfil®, (a silicone-based polymer) was injected at euthanasia in the aorta 12, 19 and 26 days after injection of tumor cells. Undecalcified bones (containing the radio opaque vascular casts) were analyzed by microCT, and a first 3D model was reconstructed. Bones were then decalcified and reanalyzed by microCT; a second model (comprising only the vessels) was obtained and overimposed on the former, thus providing a clear visualization of vessel trajectories in the invaded metaphysic allowing quantitative evaluation of the vascular volume and vessel diameter. Histological analysis of the marrow was possible on the decalcified specimens. Walker 256/B cells induced a marked osteolysis with cortical perforations. The metaphysis of invaded bones became progressively hypervascular. New vessels replaced the major central medullar artery coming from the diaphyseal shaft. They sprouted from the periosteum and extended into the metastatic area. The newly formed vessels were irregular in diameter, tortuous with a disorganized architecture. A quantitative analysis of vascular volume indicated that neoangiogenesis increased with the development of the tumor with the appearance of vessels with a larger diameter.

Conclusion

This new method evidenced the tumor angiogenesis in 3D at different development times of the metastasis growth. Bone and the vascular bed can be identified by a double reconstruction and allowed a quantitative evaluation of angiogenesis upon time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号