首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
细胞质雄性不育辣椒育性恢复基因特异分子标记的筛选   总被引:6,自引:0,他引:6  
利用集团分离分析法(Bulked segregant analysis BSA),以辣椒细胞质雄性不育系BU-12、恢复系RF-12为材料共筛选了336条RAPD引物,其中引物S418在恢复系中呈现特异性扩增,得到一条约3000bp的特异片段。回扩得到两条片段,测序表明大小为1515bp,1162bp。荧光原位杂交证实1515bp片段为恢复系特有,命名为S4181515。序列分析表明S4181515为一新发现的序列,Blastn序列比对同源性小于40%,tBlastx比对发现该序列与水稻2、4、7、10号染色体的几个BAC克隆上的序列高度同源。推测可能与其具有相似的编码功能,为进一步从分子水平研究辣椒育性恢复打下了坚实的基础。根据测序结果设计特异引物,将S4181515转化成特异PCR标记,证明能用于候选材料的初筛。  相似文献   

2.
通过生物信息学分析得到正确的水稻镁离子螯合酶H亚基(Mg-chelatase H subunit,CHLH)的cDNA.以超级杂交稻母本株1 S为材料提取总RNA,并反转录成cDNA,用得到的序列设计特异引物,经PCR扩增出株1 S cDNA片段,eDNA片段经T-A克隆后进行测序,获得一条长1 350 bp序列.提交NCBI的GenBank数据库后接收,登录号为EU569725.  相似文献   

3.
以花椰菜细胞质雄性不育系NK-6和相应保持系NK-6B为材料进行RAPD分析,筛选了406条RAPD引物,共获得了2160条清晰可辨的条带,平均每个引物产生5-10条。其中引物S2121在两系的扩增中表现出多态性,在保持系中特异扩增出一条934bp的片段。克隆、测序,根据测序结果设计特异性引物,将RAPD标记转化成特异PCR标记,命名为S2121900。经Southern点杂交分析及对单株和多份候选材料的检测证实该标记为花椰菜保持系所特有,可用于候选保持系的早期筛查。序列分析表明该片段与油菜、拟南芥线粒体上的序列有较高相似性,因此推测该片段亦可能来源于线粒体基因组。本研究为从另一角度解释花椰菜细胞质雄性不育的分子机制提供了新线索。  相似文献   

4.
利用两类不同的引物,即通用引物(L1490,H219S)与特异引物(Pat,Jerry)分别对4种常见金龟子线粒体细胞色素C氧化酶I(COI)基因片段序列进行扩增和测序,获得长度为689 bp与775 bp的序列.对测序结果进行遗传距离分析,并构建了4种金龟子系统进化树.结果表明,特异引物扩增序列的遗传距离在种内稳定性与种间的差异性都明显优于通用引物扩增序列,利用特异引物扩增序列所构建的系统进化树最符合实际情况,因此利用特异引物扩增序列更能够准确的对金龟子进行分类.  相似文献   

5.
利用两类不同的引物,即通用引物(L1490,H2198)与特异引物(Pat,Jerry)分别对4种常见金龟子线粒体细胞色素C氧化酶I(COⅠ)基因片段序列进行扩增和测序,获得长度为689 bp与775 bp的序列。对测序结果进行遗传距离分析,并构建了4种金龟子系统进化树。结果表明,特异引物扩增序列的遗传距离在种内稳定性与种间的差异性都明显优于通用引物扩增序列,利用特异引物扩增序列所构建的系统进化树最符合实际情况,因此利用特异引物扩增序列更能够准确的对金龟子进行分类。  相似文献   

6.
以来自Polima胞质甘蓝型油菜雄性不育源转育获得的不育白菜'Bpol97-05A'和其回交亲本即保持系'Bajh97-01B'为材料,利用cDNA扩增片段长度多态性(cDNA-AFLP)技术获得一条长约330bp的特异片段P1708,RT-PCR验证确认该序列为不育白菜材料所特有,经测序和BLAST比对,发现该片段除54bp的插入序列外,其余部分与大白菜和甘蓝叶绿体ndhJ-trnF基因之间的一段序列完全一致.根据基因区域两端的保守部位设计引物,以Polima不育白菜DNA和可育甘蓝型油菜的DNA为模板,分别获得了长约1900bp的序列,比较序列发现:不育白菜与可育白菜、甘蓝型油菜的DNA序列存在一定差异,'Bpol97-05A'中除多个位点发生变异外,另有108bp的插入序列,该插入由2个长度为54bp的重复序列组成,重复序列中除5′端3个碱基CTT外,其余部分均与trnF基因3′端51bp完全相同.  相似文献   

7.
根据已知的酯酶基因的保守性氨基酸序列设计简并引物 ,通过逆转录 -聚合酶链反应 (RT PCR)扩增出小菜蛾PlutellaxylostellaL .酯酶基因片段 ,然后按照测序结果再设计 1对特异引物 ,利用PCR方法 ,筛选小菜蛾的cDNA文库。将RT PCR获得的 1条长度为 3 3 0bp的目的条带 ,亚克隆入T -载体 ,测序结果表明共得到了 1 0个不同的酯酶基因片段。利用特异引物对小菜蛾的cDNA文库进行初筛 ,显示文库中存在有小菜蛾的酯酶基因。  相似文献   

8.
辣椒胞质雄性不育保持基因的分子标记   总被引:3,自引:0,他引:3  
利用RAPD标记技术,以辣椒胞质雄性不育系8A及其同型保持系8B为材料,对辣椒胞质雄性不育基因和保持基因进行比较分析.结果表明:引物H7只在保持基因池有1条稳定的特异扩增带,在不育基因池未扩增出此条带,该标记可能与辣椒胞质雄性不育保持基因相连锁,命名为H7-F850.序列分析结果表明,标记H7-F850序列全长857 bp,GenBank登录号为GU208822.1.核酸序列比对结果显示,H7-F850与其具有部分同源性的片段大小均小于340 bp,未发现与其具有较高同源性的DNA序列.该RAPD标记H7-F850已成功转化为SCAR标记SF640.  相似文献   

9.
以来自Polima胞质甘蓝型油菜雄性不育源转育获得的不育白菜‘Bpol97-05A’和其回交亲本即保持系‘Bajh97-01B’为材料,利用cDNA扩增片段长度多态性(cDNA-AFLP)技术获得一条长约330 bp的特异片段P1708,RT-PCR验证确认该序列为不育白菜材料所特有,经测序和BLAST比对,发现该片段除54 bp的插入序列外,其余部分与大白菜和甘蓝叶绿体ndhJ-trnF基因之间的一段序列完全一致. 根据基因区域两端的保守部位设计引物,以Polima不育白菜DNA和可育甘蓝型油菜的DNA为模板,分别获得了长约1 900 bp的序列,比较序列发现:不育白菜与可育白菜、甘蓝型油菜的DNA序列存在一定差异,‘Bpol97-05A’中除多个位点发生变异外,另有108 bp的插入序列,该插入由2个长度为54 bp的重复序列组成,重复序列中除5′端3个碱基CTT外,其余部分均与trnF基因3′端51 bp完全相同.  相似文献   

10.
采用27 份不同来源的胡椒属( Piper) 材料和1 份不同属的草胡椒( Peperomia pellucida) 材料用引物OPQ-03 扩增得到一条约400 碱基对( bp) 卡瓦胡椒特异片段。对该片段进行了克隆和序列分析, 并根据序列分析结果将上述RAPD 分子标记转化为重复性和特异性更好的SCAR ( sequence characterized amplified regions, 序列特征化扩增区) 分子标记。本研究设计出了1 对卡瓦胡椒特异SCAR 引物P7. 1 ( 5′-GGT CAC CTC ACC GCA GCA GGA TGA ACG-3′) 和P7 . 2 (5′-GGT CAC CTC AAT GAC ATG GGA TGA ATC-3′) , 用这对特异引物对本次试验的28 份材料进行PCR 扩增, 结果只有不同属的草胡椒材料无任何扩增, 其它材料均扩增出了预期大小440 bp 的特异带。  相似文献   

11.
萝卜细胞质雄性不育恢复基因的RAPD标记   总被引:3,自引:0,他引:3  
以萝卜恢复系9802和不育系9802A配制杂交组合,并以174株个体组成的F2分离群体作为恢复基因的标记群体.以分离群体的不育株和可育株分别建立不育池和恢复池,利用100个RAPD引物对两池间的多态性进行研究.分析表明引物OPC6在两池间扩增出稳定的多态性差异.经连锁分析,证明标记OPC61900与萝卜细胞质雄性不育恢复基因连锁,遗传距离为11.6cM(Centimorgan).这个标记可应用于对育性恢复基因的标记辅助选择.  相似文献   

12.
Up to now a single cytoplasmic male sterility (CMS) source, PET1, is used worldwide for hybrid breeding in sunflower. Introgression of the restorer gene Rf1, responsible for fertility restoration, into new breeding material requires tightly linked markers to perform an efficient marker-assisted selection. A survey of 520 decamer primers by bulked segregant analyses identified five RAPD markers linked to the restorer gene Rf1. In a F(2) population of 183 individuals one of the RAPD markers, OPK13_454, mapped 0.8 cM from Rf1, followed by OPY10_740 with 2 cM. Bulked segregant analyses using 48 AFLP primer combinations identified 17 polymorphisms, which could be mapped in the same linkage group as Rf1. E33M61_136, and E41M48_113 were mapped 0.3 cM and 1.6 cM from the gene, respectively. Conversion of E41M48_113 into a sequence-specific marker resulted in a monomorphic pattern. However, two of the RAPD markers, OPK13_454 and OPY10_740, were successfully converted into SCAR markers, HRG01 and HRG02, which are now available for marker-assisted selection. To investigate the utility of these SCAR markers in other cross-combinations they were tested in a set of 20 lines. Comparison of the patterns of 11 restorer and nine maintainer lines of PET1 demonstrated that the markers OPK13_454/HRG01 and HRG02 were absent in all maintainer lines but present in all restorer lines, apart from the high oleic line RHA348 and the dwarf line Gio55. In addition, restorer lines developed from the interspecific hybrids Helianthus annuus x Helianthus mollis and H. annuus x Helianthus rigidus gave the same characteristic amplification products.  相似文献   

13.
The inheritance and molecular mapping of a fertility restorer gene in basmati quality restorer line PRR-78 was carried out using an F2 mapping population from the cross IR58025A X PRR-78 employing microsatellite markers. Dominant monogenic control of fertility restoration was observed in the F2, and further confirmed by test cross data. Out of 44 sequence tagged microsatellite (STMS) markers used in the bulked segregant analysis (BSA), four differentiated the fertile bulk from the sterile bulk as well as the two parental lines from each other. One of these markers, RM258 located on chromosome 10, was found linked to the restorer gene at a distance of9.5 cM. Considering the RM258 location, additional STMS (RM171 and RM294A) and sequence tagged site (STS) primers derived from restriction fragment length polymorphic (RFLP) clones (G2155 and C1361) linked to fertility restorer gene(s) in other populations, were also used to find out a marker more tightly linked to the restorer gene. However, of these, RM171, RM294A and G2155 based primers amplified monomorphic fragments between parental lines and no amplification was observed with C1361. Cleaved amplified polymorphic sequence (CAPS) analysis of non-polymorphic STMS and STS markers and random amplified polymorphic DNA (RAPD) analysis using five random primers reportedly linked to restorer gene in other populations, also failed to differentiate the two parents. While, the marker RM258 is being used in the restorer breeding to identify putative restorer lines, search for additional tightly linked markers is underway.  相似文献   

14.
Bulked segregant analysis was employed to identify random amplified polymorphic DNA (RAPD) markers linked to the restorer gene (Rfo) used in theOgura radish cytoplasmic male sterility of rapeseed. A total of 138 arbitrary 10-mer oligonucleotide primers were screened on the DNA of three pairs of bulks, each bulk corresponding to homozygous restored and male sterile plants of three segregating populations. Six primers produced repeatable polymorphisms between paired bulks. DNA from individual plants of each bulk was then used as a template for amplification with these six primers. DNA polymorphisms generated by four of these primers were found to be completely linked to the restorer gene with the polymorphic DNA fragments being associated either with the fertility restorer allele or with the sterility maintainer allele. Pairwise cross-hybridization demonstrated that the four polymorphic DNA fragments did not share any homology. Southern hybridization of labelled RAPD fragments on digested genomic DNA from the same three pairs of bulks revealed fragments specific to either the male sterile bulks or to the restored bulks and a few fragments common to all bulks, indicating that the amplified sequences are low copy. The four RAPD fragments that were completely linked to the restorer locus have been cloned and sequenced to develop sequence characterized amplified regions (SCARs). This will facilitate the construction of restorer lines used in breeding programs and is the first step towards map-based cloning of the fertility restorer allele.  相似文献   

15.
甘蓝型油菜Pol CMS育性恢复基因的PCR标记   总被引:10,自引:1,他引:9  
王俊霞  杨光圣  傅廷栋  孟金陵 《遗传学报》2000,27(11):1012-1017
采用恢、保回交群体和集团混合分析法,筛选了1040个10-mer随机引物,找到了与甘蓝型油菜波里马细胞质雄性不育系(Pol CMS)育性恢复基因(Rfp)连锁的两个RAPD标记S1019720和S1036810。它们位于Rfp的一侧,与该基因的遗传图距分别为5.8cM和12.3cM。随后,克隆并测序这2个多态性片段,根据其2端序列设计了2对20~24-mer的特异引物,它们在138株的回交群体中P  相似文献   

16.
A novel genic male sterile (GMS) line in Brassica napus L., which was identified in 1999, was found to be controlled by a monogenic dominant gene, which we have designated as MDGMS. The microspores of the MDGMS abort before the degradation of the tapetal cell layer. The F1 fertility from any fertile lines crossed with MDGMS segregated and the ratio was close to 1:1. Bulked segregation analysis (BSA) was employed to identify random amplified polymorphic DNA (RAPD) markers linked to the Ms gene in MDGMS. Among 880 random 10-mer oligonucleotide primers screened against the bulk DNA of sterile and fertile, one primer S243 (5′-CTATGCCGAC-3′) gave a repeatable 1500-bp DNA polymorphic segment S2431500 between the two bulks. Analysis of individual plants of each bulks and other types of GMS and cytoplasmic male sterility (CMS) lines suggest that the RAPD marker S2431500 is closely linked to the MDGMS locus in rapeseed. This RAPD marker has been converted into sequence characterized amplified region (SCAR) marker to aid identification of male-fertility genotypes in segregating progenies of MDGMS in marker-assisted selection (MAS) breeding programs.  相似文献   

17.
The cytoplasmic male sterility (CMS) of wild-abortive (WA) cytoplasm has been widely used for breeding hybrid rice. Two restorer genes for the CMS have been found by traditional genetic analysis. To tag the restorer genes we used a set of near-isogenic lines (NILs) of Zhenshan 97 carrying different genotypes for fertility restoration from IR24, to perform RAPD analysis. From the survey of 720 random primers, six RAPD markers were identified to be associated with Rf-3. Three of these OPK05-800, OPU10-1100 and OPW01-350, were mapped on chromosome 1. Two populations from the crosses between Zhenshan 97 A and a near-isogenic restorer line ZSR21 and between Zhenshan 97 A and IR24 were used for mapping Rf-3. The three RAPD markers and three RFLP markers, RG532, RG140 and RG458, were found to be closely linked to Rf-3 in the two populations. The same location of Rf-3 was also found in a population from the cross of IR58025 A//IR36/IR58025 B. At the RG532 locus, different alleles were found between two CMS lines, Zhenshan 97 A and IR58025 A, and between two restorer lines, IR24 and IR36. The use of these molecular markers closely linked to Rf-3 in facilitating the development of hybrid rice is discussed. Received: 3 January 1996 / Accepted: 17 May 1996  相似文献   

18.
Cytoplasmic male sterility (CMS) is a maternally inherited trait in which plants do not produce viable pollen. Fertility in plants with CMS can be recovered by nuclear restorer genes. Most restorer genes cloned so far are members of the pentatricopeptide repeat (PPR) protein family. The objective of our study was to use the CMS-D8 and restoration (Rf2) system of cotton (Gossypium hirsutum L.) to develop more DNA markers for the Rf2 gene. In a backcross population with 112 plants, segregation of male fertility was 1 fertile : 1 sterile. Three new RAPD markers were identified for Rf2, one of which was converted to a CAPS marker. In addition, 2 AFLP markers and 1 SSR marker were identified to be linked to the fertility restorer gene (Rf2). PPR motif primers were designed based on the conserved PPR motifs and used in combination with AFLP primers to test the mapping population, and 1 PPR-AFLP marker was identified. A linkage map with 9 flanking markers including 1 from a previous study was constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号