首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hormones and sensory stimuli activate serpentine receptors, transmembrane switches that relay signals to heterotrimeric guanine nucleotide-binding proteins (G proteins). To understand the switch mechanism, we subjected 93 amino acids in transmembrane helices III, V, VI, and VII of the human chemoattractant C5a receptor to random saturation mutagenesis. A yeast selection identified 121 functioning mutant receptors, containing a total of 523 amino acid substitutions. Conserved hydrophobic residues are located on helix surfaces that face other helices in a modeled seven-helix bundle (Baldwin, J. M., Schertler, G. F., and Unger, V. M. (1997) J. Mol. Biol. 272, 144-164), whereas surfaces predicted to contact the surrounding lipid tolerate many substitutions. Our analysis identified 25 amino acid positions resistant to nonconservative substitutions. These appear to comprise two distinct components of the receptor switch, a surface at or near the extracellular membrane interface and a core cluster in the cytoplasmic half of the bundle. Twenty-one of the 121 mutant receptors exhibit constitutive activity. Amino acids substitutions in these activated receptors predominate in helices III and VI; other activating mutations truncate the receptor near the extracellular end of helix VI. These results identify key elements of a general mechanism for the serpentine receptor switch.  相似文献   

2.
G protein-coupled receptors are one of the largest protein families in nature; however, the mechanisms by which they activate G proteins are still poorly understood. To identify residues on the intracellular face of the human C5a receptor that are involved in G protein activation, we performed a genetic analysis of each of the three intracellular loops and the carboxyl-terminal tail of the receptor. Amino acid substitutions were randomly incorporated into each loop, and functional receptors were identified in yeast. The third intracellular loop contains the largest number of preserved residues (positions resistant to amino acid substitutions), followed by the second loop, the first loop, and lastly the carboxyl terminus. Surprisingly, complete removal of the carboxyl-terminal tail did not impair C5a receptor signaling. When mapped onto a three-dimensional structural model of the inactive state of the C5a receptor, the preserved residues reside on one half of the intracellular surface of the receptor, creating a potential activation face. Together these data provide one of the most comprehensive functional maps of the intracellular surface of any G protein-coupled receptor to date.  相似文献   

3.
L M Petti  V Reddy  S O Smith    D DiMaio 《Journal of virology》1997,71(10):7318-7327
The bovine papillomavirus E5 protein forms a stable complex with the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in receptor activation and cell transformation. Amino acids in both the putative transmembrane domain and extracytoplasmic carboxyl-terminal domain of the E5 protein appear important for PDGF receptor binding and activation. Previous analysis indicated that the transmembrane domain of the receptor was also required for complex formation and receptor activation. Here we analyzed receptor chimeras and point mutants to identify specific amino acids in the PDGF beta receptor required for productive interaction with the E5 protein. These receptor mutants were analyzed in murine Ba/F3 cells, which do not express endogenous receptor. Our results confirmed the importance of the transmembrane domain of the receptor for complex formation, receptor tyrosine phosphorylation, and mitogenic signaling in response to the E5 protein and established that the threonine residue in this domain is required for these activities. In addition, a positive charge in the extracellular juxtamembrane domain of the receptor was required for E5 interaction and signaling, whereas replacement of the wild-type lysine with either a neutral or acidic amino acid inhibited E5-induced receptor activation and transformation. All of the receptor mutants defective for activation by the E5 protein responded to acute treatment with PDGF and to stable expression of v-Sis, a form of PDGF. The required juxtamembrane lysine and transmembrane threonine are predicted to align precisely on the same face of an alpha helix packed in a left-handed coiled-coil geometry. These results establish that the E5 protein and v-Sis recognize distinct binding sites on the PDGF beta receptor and further clarify the nature of the interaction between the viral transforming protein and its cellular target.  相似文献   

4.
Two aryl hydrocarbon receptors (rtAHR2alpha and rtAHR2beta) have been identified in the rainbow trout (Oncorhynchus mykiss). These receptors share 98% amino acid identity, yet their functional properties differ. Both rtAHR2alpha and rtAHR2beta bind 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), dimerize with rainbow trout ARNTb (rtARNTb), and recognize dioxin response elements in vitro. However, in a transient transfection assay the two proteins show differential ability to recognize enhancers, produce transactivation, and respond to TCDD. To identify the sequence differences that confer the functional differences between rtAHR2alpha and rtAHR2beta, we constructed chimeric rtAHRs, in which segments of one receptor form was replaced with the corresponding part from the other isoform. This approach progressively narrowed the region being examined to a single residue, corresponding to position 111 in rtAHR2beta. Altering this residue in rtAHR2beta from the lysine to glutamate found in rtAHR2alpha produced an rtAHR2beta with the properties of rtAHR2alpha. All other known AHRs resemble rtAHR2alpha and carry glutamate at this position, located at the N terminus of the PAS-A domain. We tested the effect of altering this glutamate in the human and zebrafish AHRs to lysine. This lysine substitution produced AHRs with transactivation properties that were similar to rtAHR2beta. These results identify a critical residue in AHR proteins that has an important impact on transactivation, enhancer site recognition, and regulation by ligand.  相似文献   

5.
Tetherin, also known as BST-2/CD317/HM1.24, is an antiviral cellular protein that inhibits the release of HIV-1 particles from infected cells. HIV-1 viral protein U (Vpu) is a specific antagonist of human tetherin that might contribute to the high virulence of HIV-1. In this study, we show that three amino acid residues (I34, L37, and L41) in the transmembrane (TM) domain of human tetherin are critical for the interaction with Vpu by using a live cell-based assay. We also found that the conservation of an additional amino acid at position 45 and two residues downstream of position 22, which are absent from monkey tetherins, are required for the antagonism by Vpu. Moreover, computer-assisted structural modeling and mutagenesis studies suggest that an alignment of these four amino acid residues (I34, L37, L41, and T45) on the same helical face in the TM domain is crucial for the Vpu-mediated antagonism of human tetherin. These results contribute to the molecular understanding of human tetherin-specific antagonism by HIV-1 Vpu.  相似文献   

6.
In mammals, the vasopressin V(1b) receptor (V(1b)-R) is known to regulate ACTH secretion and, more recently, stress and anxiety. The characterization of the molecular determinant responsible for its pharmacological selectivity was made possible by the recent discovery of the first V(1b) antagonist, SSR149415. Based upon the structure of the crystallized bovine rhodopsin, we established a three-dimensional molecular model of interaction between the human V(1b)-R (hV(1b)-R) and SSR149415. Four amino acids located in distinct transmembrane helices (fourth, fifth, and seventh) were found potentially responsible for the hV(1b)-R selectivity. To validate these assumptions, we selectively replaced the leucine 181, methionine 220, alanine 334, and serine 338 residues of hV(1a)-R by their corresponding amino acids present in the hV(1b)-R (phenylalanine 164, threonine 203, methionine 324, and asparagine 328, respectively). Four mutants, which all exhibited nanomolar affinities for vasopressin and good coupling to phospholipase C pathway, were generated. hV(1a) receptors mutated at position 220 and 334 exhibited striking increase in affinity for SSR149415 both in binding and phospholipase C assays at variance with the hV(1a)-R modified at position 181 or 338. In conclusion, this study provides the first structural features concerning the hV(1b)-R and highlights the role of few specific residues in its pharmacological selectivity.  相似文献   

7.
Release of soluble growth hormone binding protein (GHBP) corresponding to the extracellular domain of the GH receptor (GHR) occurs via distinct mechanisms depending on species. In human, proteolysis of full length GHR results in liberation of GHBP into the extracellular medium. A putative protease responsive for GHR cleavage has been identified, however, the residues involved are still unknown. In this study, using the mutational approach to the extracellular domain of the human GHR, we demonstrated that deletion of three residues located close to the transmembrane domain abolishes constitutive GHBP shedding without change in cellular GH binding. Deletion also significantly decreased the phorbol 12-myristate 13-acetate (PMA)-induced release of GHBP and the accumulation of membrane-anchored remnant proteins. Taken together, these results suggest that integrity of the juxtamembrane region of GHR is necessary for its biochemical cleavage and that a common mechanism is involved in constitutive and PMA-induced shedding.  相似文献   

8.
Stitham J  Stojanovic A  Ross LA  Blount AC  Hwa J 《Biochemistry》2004,43(28):8974-8986
Relaxation of vascular smooth muscle and prevention of blood coagulation are mediated by ligand-induced activation of the human prostacyclin (hIP) receptor, a seven-transmembrane-domain G-protein-coupled receptor (GPCR). In this study, we elucidate the molecular requirements for receptor activation within the region of the ligand-binding pocket, identifying transmembrane residues affecting potency. Eleven of 30 mutated residues in the region of the ligand-binding domain exhibited defective activation (decreased potency). These critical residues localized to four distinct clusters (analysis via a rhodopsin-based human prostacyclin receptor homology model). Residues Y75(2.65) (TMII), F95(3.28) (TMIII), and R279(7.40) (TMVII) comprised the immediate binding-pocket cluster and were shown to be essential for proper receptor activation, compared to equivalent expression levels of the wild-type hIP (WT EC(50) = 1.2 +/- 0.1 nM; Y75(2.65)A EC(50) = 347.3 +/- 62.8 nM, p < 0.001; F95(3.28)A EC(50) = 8.0 +/- 0.6 nM, p < 0.001; R279(7.40)A EC(50) = 130 +/- 63.0 nM, p < 0.001). Residues S20(1.39) (TMI), F24(1.43) (TMI), and F72(2.62) (TMII) were localized to a cluster involving P17(1.36), a critical residue thought to facilitate transmembrane movement during changes in activation conformation. A third cluster formed around amino acid D60(2.50) (TMII), containing the highly conserved (100% of prostanoid receptors) D288(7.49)/P289(7.50) motif located in TMVII. Last, a large hydrophobic cluster composed of aromatic residues F146(4.52) (TMIV), F150(4.56) (TMIV), F184(5.40) (TMV), and Y188(5.44) (TMV) was observed away from the ligand-binding pocket, but still necessary for hIP activation. These results assist in delineating the potential molecular requirements for agonist-induced signaling through the transmembrane domain. Such observations may be generally applicable, as many of these clusters are highly conserved among the prostanoid receptors as well as other class A GPCRs.  相似文献   

9.
The activation functions AF1 and AF2 of nuclear receptors mediate the recruitment of coregulators in gene regulation. AF1 is mapped to the highly variable and intrinsically unstructured N terminal domain and AF2 lies in the conserved ligand binding domain. The unstructured nature of AF1 offers structural plasticity and hence functional versatility in gene regulation. However, little is known about the key functional residues of AF1 that mediates its interaction with coregulators. This study focuses on the progesterone receptor (PR) and reports the identification of K464, K481 and R492 (KKR) as the key functional residues of PR AF1. The KKR are monomethylated and function cooperatively. The combined mutations of KKR to QQQ render PR isoform B (PRB) hyperactive, whereas KKR to FFF mutations abolishes as much as 80% of PR activity. Furthermore, the hyperactive QQQ mutation rescues the loss of PR activity due to E911A mutation in AF2. The study also finds that the magnitudes of the mutational effect differ in different cell types as a result of differential effects on the functional interaction with coregulators. Furthermore, KKR provides the interface for AF1 to physically interact with p300 and SRC-1, and with AF2 at E911. Intriguingly, the inactive FFF mutant interacts strikingly stronger with both SRC-1 and AF2 than wt PRB. We propose a tripartite model to describe the dynamic interactions between AF1, AF2 and SRC-1 with KKR of AF1 and E911 of AF2 as the interface. An overly stable interaction would hamper the dynamics of disassembly of the receptor complex.  相似文献   

10.
G protein-coupled receptors (GPCRs) comprise one of the largest protein families found in nature. Here we describe a new experimental strategy that allows rapid identification of functionally critical amino acids in the rat M(3) muscarinic acetylcholine receptor (M3R), a prototypic class I GPCR. This approach involves low-frequency random mutagenesis of the entire M3R coding sequence, followed by the application of a new yeast genetic screen that allows the recovery of inactivating M3R single point mutations. The vast majority of recovered mutant M3Rs also showed substantial functional impairments in transfected mammalian (COS-7) cells. A subset of mutant receptors, however, behaved differently in yeast and mammalian cells, probably because of the specific features of the yeast expression system used. The screening strategy described here should be applicable to all GPCRs that can be expressed functionally in yeast.  相似文献   

11.
We have probed the structural organization of the human immunodeficiency virus type 1 integrase protein by limited proteolysis and the functional organization by site-directed mutagenesis of selected amino acid residues. A central region of the protein was relatively resistant to proteolysis. Proteins with altered amino acids in this region, or in the N-terminal part of the protein that includes a putative zinc-binding motif, were purified and assayed for 3' processing, DNA strand transfer, and disintegration activities in vitro. In general, these mutations had parallel effects on 3' processing and DNA strand transfer, suggesting that integrase may utilize a single active site for both reactions. The only proteins that were completely inactive in all three assays contained mutations at conserved amino acids in the central region, suggesting that this part of the protein may be involved in catalysis. In contrast, none of the mutations in the N-terminal region resulted in a protein that was inactive in all three assays, suggesting that this part of integrase may not be essential for catalysis. The disintegration reaction was particularly insensitive to these amino acid substitutions, indicating that some function that is important for 3' processing and DNA strand transfer may be dispensable for disintegration.  相似文献   

12.
Identification of the polymorphonuclear leukocyte C5a receptor   总被引:9,自引:0,他引:9  
The peptide C5a is thought to play an important role in the inflammatory response primarily through its action on the polymorphonuclear leukocyte (PMN). The receptor for C5a on human PMN has now been identified by affinity labeling. Cross-linking 125I-C5a to intact PMN with disuccinimidyl suberate produced a species that had a molecular mass on sodium dodecyl sulfate gels of 5.2 X 10(4) daltons. We believe this species represents a complex between C5a and its receptor for the following reasons. The band is eliminated if the cross-linking experiment is performed in the presence of a large excess of unlabeled C5a, but is unaffected by the presence of nonspecific protein or the chemotactic factors N-formyl-Met-Leu-Phe and leukotriene B4. The 5.2 X 10(4)-dalton species is not observed if the cross-linker is omitted. Finally, the dose-response curves for the inhibition of binding of 125I-C5a by unlabeled C5a and the inhibition of cross-linking are similar. Subtraction of the molecular mass of C5a from that of the complex gives a molecular mass for the binding moiety of the C5a receptor of 4.0 X 10(4) daltons.  相似文献   

13.
The human C3a anaphylatoxin receptor (C3aR) is a G protein-coupled receptor (GPCR) composed of seven transmembrane alpha-helices connected by hydrophilic loops. Previous studies of chimeric C3aR/C5aR and loop deletions in C3aR demonstrated that the large extracellular loop2 plays an important role in noneffector ligand binding; however, the effector binding site for C3a has not been identified. In this study, selected charged residues in the transmembrane regions of C3aR were replaced by Ala using site-directed mutagenesis, and mutant receptors were stably expressed in the RBL-2H3 cell line. Ligand binding studies demonstrated that R161A (helix IV), R340A (helix V), and D417A (helix VII) showed no binding activity, although full expression of these receptors was established by flow cytometric analysis. C3a induced very weak intracellular calcium flux in cells expressing these three mutant receptors. H81A (helix II) and K96A (helix III) showed decreased ligand binding activity. The calcium flux induced by C3a in H81A and K96A cells was also consistently reduced. These findings suggest that the charged transmembrane residues Arg161, Arg340, and Asp417 in C3aR are essential for ligand effector binding and/or signal coupling, and that residues His81 and Lys96 may contribute less directly to the overall free energy of ligand binding. These transmembrane residues in C3aR identify specific molecular contacts for ligand interactions that account for C3a-induced receptor activation.  相似文献   

14.
15.
The binding of the CD4 receptor by the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein is important for virus entry and cytopathic effect. To investigate the CD4-binding region of the gp120 glycoprotein, we altered gp120 amino acids, excluding cysteines, that are conserved among the primate immunodeficiency viruses utilizing the CD4 receptor. Changes in two hydrophobic regions (Thr-257 in conserved region 2 and Trp-427 in conserved region 4) and two hydrophilic regions (Asp-368 and Glu-370 in conserved region 3 and Asp-457 in conserved region 4) resulted in significant reductions in CD4 binding. For most of the mutations affecting these residues, the observed effects on CD4 binding did not apparently result from global conformational disruption of the gp120 molecule, as assessed by measurements of precursor processing, subunit association, and monoclonal antibody recognition. The two hydrophilic regions exhibit a strong propensity for beta-turn formation, are predicted to act as efficient B-cell epitopes, and are located adjacent to hypervariable, glycosylated regions. This study defines a small number of gp120 residues important for CD4 binding, some of which might constitute attractive targets for immunologic intervention.  相似文献   

16.
Glutamate receptors (GluRs) mediate excitatory neurotransmission and may have important roles in central nervous system disorders. To characterize the human GLUR5 gene, which is located on human chromosome 21q22.1, we isolated cDNAs, genomic phage lambda clones, and yeast artificial chromosomes (YACs) and developed sequence tagged sites (STSs) and simple sequence length polymorphisms (SSLPs) for GLUR5. Genetic mapping with a tetranucleotide AGAT repeat named GLUR5/AGAT (six alleles observed, 70% heterozygosity) placed GLUR5 5 cM telomeric to APP (D21S210) and 3cM centromeric to SOD1 (D21S223). The humanGLUR5 gene is located near the familial amyotrophic lateral sclerosis (FALS) locus; linkage analysis of GLUR5 SSLPs in FALS pedigrees yielded negative lod scores, consistent with the recent association of the FALS locus with the SOD1 gene. Physical mapping of GLUR5 using a YAC contig suggested that the GLUR5 gene spans approximately 400–500kb, and is within 280kb of D21S213. The large size of the GLUR5 gene raises questions regarding its functional significance. Our GLUR5 YAC contig includes clones found in the Genethon chromosome 21 YAC contig, and reference to the larger contig indicates the orientation centromere — D21S213 — GLUR5 5 end-GLUR5/ AGAT — GLUR5 3 end — SODI. The development of GLUR5/AGAT should permit rapid determination of the status of the GLUR5 gene in individuals with partial trisomy or monosomy of chromosome 21. Such studies may provide insights concerning the possible role of GLUR5 in Down syndrome.  相似文献   

17.
Nine different murine anti-human C5a monoclonal antibodies have been produced and characterized. They exhibit Kas for the 125I-labeled ligand that range from 0.4 to 48 X 10(8) M-1, and they display limited cross-reactivity with C5a from other species. Each of these antibodies has been found to compete with the granulocyte C5a receptor for binding site(s) on the C5a polypeptide. Exploration of the antigenic topography of C5a revealed that the immunodominant portion of this glycopolypeptide resides between residues Lys20 and Arg37, with the area surrounding Cys27 being particularly important. In addition, a specific C5a derived tryptic peptide containing these amino acid residues competes with 125I-C5a for binding to the receptor. These observations are consistent with previously published data and suggest that this area of the C5a molecule is an important part of the receptor "recognition domain", and thus plays a critical role in the C5a receptor interaction.  相似文献   

18.
Anaphylatoxin C5a is a potent inflammatory mediator associated with pathogenesis and progression of several inflammation-associated disorders. Small molecule C5a receptor (C5aR) antagonist development is hampered by species-specific receptor biology and the associated inability to use standard rat and mouse in vivo models. Gerbil is one rodent species reportedly responsive to small molecule C5aR antagonists with human C5aR affinity. We report the identification of the gerbil C5aR cDNA using a degenerate primer PCR cloning strategy. The nucleotide sequence revealed an open reading frame encoding a 347-amino acid protein. The cloned receptor (expressed in Sf9 cells) bound recombinant human C5a with nanomolar affinity. Alignment of the gerbil C5aR sequence with those from other species showed that a Trp residue in transmembrane domain V is the only transmembrane domain amino acid unique to small molecule C5aR antagonist-responsive species (i.e. gerbil, human, and non-human primate). Site-directed mutagenesis was used to generate human and mouse C5aRs with a residue exchange of this Trp residue. Mutation of Trp to Leu in human C5aR completely eliminated small molecule antagonist-receptor interaction. In contrast, mutation of Leu to Trp in mouse C5aR enabled small molecule antagonist-receptor interaction. This crucial Trp residue is located deeper within transmembrane domain V than residues reportedly involved in C5a- and cyclic peptide C5a antagonist-receptor interaction, suggesting a novel interaction site(s) for small molecule antagonists. These data provide insight into the basis for small molecule antagonist species selectivity and further define sites critical for C5aR activation and function.  相似文献   

19.
15 amino acid peptide from the transmembrane 5-intracellular loop 3 region of the human 5HT1a receptor produced concentration-dependent decreases in agonist binding. This result is consistent with a competitive interaction between peptide, receptor, and G protein at the receptor-G protein interface. Bombesin and a 13 amino acid peptide from the carboxyl terminus region of the receptor were inactive. Additionally, the peptide decreased forskolin-mediated cAMP elevation. Overall, these results suggest that amino acid residues from this region of the receptor are involved in receptor-G protein coupling and that G protein is activated by the receptor.  相似文献   

20.
Despite the well documented involvement of thromboxane A(2) receptor (TPR) signaling in the pathogenesis of thrombotic diseases, there are currently no rationally designed antagonists available for clinical use. To a large extent, this derives from a lack of knowledge regarding the topography of the TPR ligand binding pocket. On this basis, the purpose of the current study was to identify the specific amino acid residues in the TPR protein that regulate ligand coordination and binding. The sites selected for mutation reside within or in close proximity to a region we previously defined as a TPR ligand binding region (i.e. the C terminus of the second extracellular loop and the leading edge of the fifth transmembrane domain). Mutation of these residues caused varying effects on the TPR-ligand coordination process. Specifically, the D193A, D193Q, and D193R mutants lost SQ29,548 (antagonist) binding and exhibited a dramatically reduced calcium response, which could not be restored by elevated U46619 (agonist) doses. The F184Y mutant lost SQ29,548 binding and exhibited a reduced calcium response (which could be restored by elevated U46619); and the T186A and S191T mutants lost SQ29,548 binding and retained a normal U46619-induced calcium response. Furthermore, these last three mutants also revealed a divergence in the binding of two structurally different antagonists, SQ29,548 and BM13.505. Two separate mutants that exhibited SQ29,548 binding yielded either a normal (F196Y) or reduced (S201T) U46619 response. Finally, mutation of other residues directly adjacent to those described above (e.g. E190A and F200A) produced no detectable effects on either SQ29,548 binding or the U46619-induced response. In summary, these results identify key amino acids (in particular Asp(193)) involved in TPR ligand coordination. These findings also demonstrate that TPR-specific ligands interact with different residues in the ligand-binding pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号