首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Molecular basis of mitochondrial DNA disease   总被引:8,自引:0,他引:8  
Mitochondrial ATP production via oxidative phosphorylation (OXPHOS) is essential for normal function and maintenance of human organ systems. Since OXPHOS biogenesis depends on both nuclear- and mitochondrial-encoded gene products, mutations in both genomes can result in impaired electron transport and ATP synthesis, thus causing tissue dysfunction and, ultimately, human disease. Over 30 mitochondrial DNA (mtDNA) point mutations and over 100mtDNA rearrangements have now been identified as etiological factors in human disease. Because of the unique characteristics of mtDNA genetics, genotype/phenotype associations are often complex and disease expression can be influenced by a number of factors, including the presence of nuclear modifying or susceptibility alleles. Accordingly, these mutations result in an extraordinarily broad spectrum of clinical phenotypes ranging from systemic, lethal pediatric disease to late-onset, tissue-specific neurodegenerative disorders. In spite of its complexity, an understanding of the molecular basis of mitochondrial DNA disease will be essential as the first step toward rationale and permanent curative therapy.  相似文献   

15.
Mitochondria are cellular organelles that have been reported to be altered in diabetes, being closely related to its associated complications. Moreover, mitochondrial biogenesis and function are essential for proper embryo development throughout the placentation period, occurring during organogenesis, when a great rate of congenital malformations have been associated with diabetic pregnancy. Thus, the aim of the current work was to investigate the effect of the diabetic environment on mitochondrial function and biogenesis during the placentation period. For this purpose, we studied the oxidative phosphorylation system (OXPHOS) enzymatic activities as well as the expression of genes involved in the coordinated regulation of both mitochondrial and nuclear genome (PGC-1alpha, NRF-1, NRF-2alpha, mtSSB, and TFAM) and mitochondrial function (COX-IV, COX-I, and beta-ATPase) in rat embryos from control and streptozotocin-induced diabetic mothers. Our results reflected that diabetic pregnancy retarded and altered embryo growth. The embryos from diabetic mothers showing normal morphology presented a reduced content of proteins regulated through the PGC-1alpha mitochondriogenic pathway on gestational day 12. This fact was accompanied by several responses that entailed the activation of OXPHOS activities on the same day and the recovery of the content of the studied proteins to control levels on day 13. As a result, the mitochondria of these embryos would reach a situation close to control on day 13 that could allow them to follow the normal mitochondriogenic schedule throughout a gestational period in which the mitochondrial differentiation process is critical. Nevertheless, malformed embryos from diabetic mothers seemed to show a lower adaptation capability, which could exacerbate their maldevelopment.  相似文献   

16.
17.
18.
19.
20.
《Free radical research》2013,47(10):1179-1189
Abstract

Aim of the present study was to test, by vitamin E treatment, the hypothesis that muscle adaptive responses to training are mediated by free radicals produced during the single exercise sessions. Therefore, we determined aerobic capacity of tissue homogenates and mitochondrial fractions, tissue content of mitochondrial proteins and expression of factors (PGC-1, NRF-1, and NRF-2) involved in mitochondrial biogenesis. Moreover, we determined the oxidative damage extent, antioxidant enzyme activities, and glutathione content in both tissue preparations, mitochondrial ROS production rate. Finally we tested mitochondrial ROS production rate and muscle susceptibility to oxidative stress. The metabolic adaptations to training, consisting in increased muscle oxidative capacity coupled with the proliferation of a mitochondrial population with decreased oxidative capacity, were generally prevented by antioxidant supplementation. Accordingly, the expression of the factors involved in mitochondrial biogenesis, which were increased by training, was restored to the control level by the antioxidant treatment. Even the training-induced increase in antioxidant enzyme activities, glutathione level and tissue capacity to oppose to an oxidative attach were prevented by vitamin E treatment. Our results support the idea that the stimulus for training-induced adaptive responses derives from the increased production, during the training sessions, of reactive oxygen species that stimulates the expression of PGC-1, which is involved in mitochondrial biogenesis and antioxidant enzymes expression. On the other hand, the observation that changes induced by training in some parameters are only attenuated by vitamin E treatment suggests that other signaling pathways, which are activated during exercise and impinge on PGC-1, can modify the response to the antioxidant integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号