首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have constructed a Xenopus oocyte cDNA library in a Saccharomyces cerevisiae expression vector and used this library to isolate genes that can function in yeast cells to suppress the temperature sensitive [corrected] defect of the cdc15 mutation. Two maternally expressed Xenopus cDNAs which fulfill these conditions have been isolated. One of these clones encodes Xenopus N-ras. In contrast to the yeast RAS genes, Xenopus N-ras rescues the cdc15 mutation. Moreover, overexpression of Xenopus N-ras in S. cerevisiae does not activate the RAS-cyclic AMP (cAMP) pathway; rather, it results in decreased levels of intracellular cAMP in both mutant cdc15 and wild-type cells. Furthermore, we show that lowering cAMP levels is sufficient to allow cells with a nonfunctional Cdc15 protein to complete the mitotic cycle. These results suggest that a key step of the cell cycle is dependent upon a phosphorylation event catalyzed by cAMP-dependent protein kinase. The second clone, beta TrCP (beta-transducin repeat-containing protein), encodes a protein of 518 amino acids that shows significant homology to the beta subunits of G proteins in its C-terminal half. In this region, beta Trcp is composed of seven beta-transducin repeats. beta TrCP is not a functional homolog of S. cerevisiae CDC20, a cell cycle gene that also contains beta-transducin repeats and suppresses the cdc15 mutation.  相似文献   

3.
4.
Cortical rotation and concomitant dorsal translocation of cytoplasmic determinants are the earliest events known to be necessary for dorsoventral patterning in Xenopus embryos. The earliest known molecular target is beta-catenin, which is essential for dorsal development and becomes dorsally enriched shortly after cortical rotation. In mammalian cells cytoplasmic accumulation of beta-catenin follows reduction of the specific activity of glycogen synthase kinase 3-beta (GSK3beta). In Xenopus embryos, exogenous GSK3beta) suppresses dorsal development as predicted and GSK3beta dominant negative (kinase dead) mutants cause ectopic axis formation. However, endogenous GSK3beta regulation is poorly characterized. Here we demonstrate two modes of GSK3beta regulation in Xenopus. Endogenous mechanisms cause depletion of GSK3beta protein on the dorsal side of the embryo. The timing, location and magnitude of the depletion correspond to those of endogenous beta-catenin accumulation. UV and D(2)O treatments that abolish and enhance dorsal character of the embryo, respectively, correspondingly abolish and enhance GSK3beta depletion. A candidate regulator of GSK3beta, GSK3-binding protein (GBP), known to be essential for axis formation, also induces depletion of GSK3beta. Depletion of GSK3beta is a previously undescribed mode of regulation of this signal transducer. The other mode of regulation is observed in response to Wnt and dishevelled expression. Neither Wnt nor dishevelled causes depletion but instead they reduce GSK3beta-specific activity. Thus, Wnt/Dsh and GBP appear to effect two biochemically distinct modes of GSK3beta regulation.  相似文献   

5.
Regulation of NF-kappaB occurs through phosphorylation-dependent ubiquitination of IkappaBalpha, which is degraded by the 26S proteasome. Recent studies have shown that ubiquitination of IkappaBalpha is carried out by a ubiquitin-ligase enzyme complex called SCF(beta(TrCP)). Here we show that Nedd8 modification of the Cul-1 component of SCF(beta(TrCP)) is important for function of SCF(beta(TrCP)) in ubiquitination of IkappaBalpha. In cells, Nedd8-conjugated Cul-1 was complexed with two substrates of SCF(beta(TrCP)), phosphorylated IkappaBalpha and beta-catenin, indicating that Nedd8-Cul-1 conjugates are part of SCF(beta(TrCP)) in vivo. Although only a minute fraction of total cellular Cul-1 is modified by Nedd8, the Cul-1 associated with ectopically expressed betaTrCP was highly enriched for the Nedd8-conjugated form. Moreover, optimal ubiquitination of IkappaBalpha required Nedd8 and the Nedd8-conjugating enzyme, Ubc12. The site of Nedd8 ligation to Cul-1 is essential, as SCF(beta(TrCP)) containing a K720R mutant of Cul-1 only weakly supported IkappaBalpha ubiquitination compared to SCF(beta(TrCP)) containing WT Cul-1, suggesting that the Nedd8 ligation of Cul-1 affects the ubiquitination activity of SCF(beta(TrCP)). These observations provide a functional link between the highly related ubiquitin and Nedd8 pathways of protein modification and show how they operate together to selectively target the signal-dependent degradation of IkappaBalpha.  相似文献   

6.
SCF ubiquitin ligases play a pivotal role in the regulation of cell division and various signal transduction pathways, which in turn are involved in cell growth, survival, and transformation. SCF(TrCP) recognizes the double phosphorylated DSGPhiXS destruction motif in beta-catenin and IkappaB. We show that the same ligase drives endocytosis and degradation of the growth hormone receptor (GHR) in a ligand-independent fashion. The F-box protein beta-TrCP binds directly and specifically with its WD40 domain to a novel recognition motif, previously designated as the ubiquitin-dependent endocytosis motif. Receptor degradation requires an active neddylation system, implicating ubiquitin ligase activity. GHR-TrCP binding, but not GHR ubiquitination, is necessary for endocytosis. TrCP2 silencing is more effective on GHR degradation and endocytosis than TrCP1, although overexpression of either isoform restores TrCP function in silenced cells. Together, these findings provide direct evidence for a key role of the SCF(TrCP) in the endocytosis and degradation of an important factor in growth, immunity, and life span regulation.  相似文献   

7.
8.
Tiam1 (T-cell lymphoma invasion and metastasis 1) is a guanine nucleotide exchange factor that specifically controls the activity of the small GTPase Rac, a key regulator of cell adhesion, proliferation, and survival. Here, we report that in response to mitogens, Tiam1 is degraded by the ubiquitin-proteasome system via the SCFβTrCP ubiquitin ligase. Mitogenic stimulation triggers the binding of Tiam1 to the F-box protein βTrCP via its degron sequence and subsequent Tiam1 ubiquitylation and proteasomal degradation. The proteolysis of Tiam1 is prevented by βTrCP silencing, inhibition of CK1 and MEK, or mutation of the Tiam1 degron site. Expression of a stable Tiam1 mutant that is unable to interact with βTrCP results in sustained activation of the mTOR/S6K signaling and increased apoptotic cell death. We propose that the SCFβTrCP-mediated degradation of Tiam1 controls the duration of the mTOR-S6K signaling pathway in response to mitogenic stimuli.  相似文献   

9.
A P Otte  R T Moon 《Cell》1992,68(6):1021-1029
The restricted ability of embryonic tissue to respond to inductive signals is controlled by a poorly understood phenomenon, termed competence. In Xenopus, dorsal ectoderm is more competent than ventral ectoderm to become induced to neural tissue. We tested whether the Xenopus protein kinase C (PKC) isozymes alpha and beta have a role in neural induction and competence. We found that PKC alpha is predominantly localized in dorsal ectoderm, whereas PKC beta is uniformly distributed. Overexpression of PKC beta conveys a higher propensity for neural differentiation to both dorsal and ventral ectoderm, but their difference in competence remains. However, ectopic expression of PKC alpha elevates the level of neural competence of ventral ectoderm to that of dorsal ectoderm. These data indicate that different PKC isozymes have distinct roles in mediating both neural induction and competence.  相似文献   

10.
Growth hormone receptor (GHR) endocytosis is a highly regulated process that depends on the binding and activity of the multimeric ubiquitin ligase, SCF(βTrCP) (Skp Cullin F-box). Despite a specific interaction between β-transducin repeat-containing protein (βTrCP) and the GHR, and a strict requirement for ubiquitination activity, the receptor is not an obligatory target for SCF(βTrCP)-directed Lys(48) polyubiquitination. We now show that also Lys(63)-linked ubiquitin chain formation is required for GHR endocytosis. We identified both the ubiquitin-conjugating enzyme Ubc13 and the ubiquitin ligase COOH terminus of Hsp70 interacting protein (CHIP) as being connected to this process. Ubc13 activity and its interaction with CHIP precede endocytosis of GHR. In addition to βTrCP, CHIP interacts specifically with the cytosolic tails of the dimeric GHR, identifying both Ubc13 and CHIP as novel factors in the regulation of cell surface availability of GHR.  相似文献   

11.
Endodermal Nodal-related signals and mesoderm induction in Xenopus   总被引:7,自引:0,他引:7  
In Xenopus, mesoderm induction by endoderm at the blastula stage is well documented, but the molecular nature of the endogenous inductive signals remains unknown. The carboxy-terminal fragment of Cerberus, designated Cer-S, provides a specific secreted antagonist of mesoderm-inducing Xenopus Nodal-Related (Xnr) factors. Cer-S does not inhibit signalling by other mesoderm inducers such as Activin, Derrière, Vg1 and BMP4, nor by the neural inducer Xnr3. In the present study we show that Cer-S blocks the induction of both dorsal and ventral mesoderm in animal-vegetal Nieuwkoop-type recombinants. During blastula stages Xnr1, Xnr2 and Xnr4 are expressed in a dorsal to ventral gradient in endodermal cells. Dose-response experiments using cer-S mRNA injections support the existence of an endogenous activity gradient of Xnrs. Xnr expression at blastula can be activated by the vegetal determinants VegT and Vg1 acting in synergy with dorsal (beta)-catenin. The data support a modified model for mesoderm induction in Xenopus, in which mesoderm induction is mediated by a gradient of multiple Nodal-related signals released by endoderm at the blastula stage.  相似文献   

12.
Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development.  相似文献   

13.
The polycomb group protein BMI1 has been linked to proliferation, senescence, cancer progression and stem cell phenotype. At present, very little is known about its regulation. Here, we report that BMI1 contains a functional recognition motif for the F box protein βTrCP, which regulates ubiquitination and proteasome-mediated degradation of various proteins. We show that overexpression of wild-type βTrCP but not the ΔF mutant of it promotes BMI1 ubiquitination and degradation, and knockdown of βTrCP results in increased expression of BMI1. Furthermore, a mutant of BMI1 with an altered βTrCP recognition motif is much more stable than wild-type BMI1. We also show that wild-type BMI1 but not the mutant BMI1 interacts with βTrCP. Accordingly, compared to wild-type BMI1, mutant protein exhibited increased pro-oncogenic activity. In summary, our findings suggest that βTrCP regulates turnover of BMI1 and its function relevant to oncogenesis, cellular senescence and aging.Key words: BMI1, βTrCP, polycomb group proteins, senescence, breast cancer  相似文献   

14.
Smad family proteins have been identified as mediators of intracellular signal transduction by the transforming growth factor-beta (TGF-beta) superfamily. Each member of the pathway-restricted, receptor-activated Smad family cooperates and synergizes with Smad4, called co-Smad, to transduce the signals. Only Smad4 has been shown able to function as a common partner of the various pathway-restricted Smads in mammals. Here we have identified a novel Smad4-like molecule in Xenopus (XSmad4beta) as well as a Xenopus homolog of a well established Smad4 (XSmad4alpha). XSmad4beta is 70% identical to XSmad4alpha in amino acid sequence. Both of the Xenopus Smad4s can cooperate with Smad1 and Smad2, the pathway-restricted Smads specific for bone morphogenetic protein and TGF-beta, respectively. However, they show distinct properties in terms of their developmental expression patterns, subcellular localizations, and phosphorylation states. Moreover, XSmad4beta, but not XSmad4alpha, has the potent ability to induce ventralization when microinjected into the dorsal marginal region of the 4-cell stage of the embryos. These results suggest that the two Xenopus Smad4s have overlapping but distinct functions.  相似文献   

15.
The nociceptive C-fibers of the dorsal root ganglion express several sodium channel isoforms that associate with one or more regulatory beta-subunits (beta1-beta4). To determine the effects of individual and combinations of the beta-subunit isoforms, we co-expressed Nav1.8 in combination with these beta-subunits in Xenopus oocytes. Whole-cell inward sodium currents were recorded using the two-microelectrode voltage clamp method. Our studies revealed that the co-expression beta1 alone or in combination with other beta-subunits enhanced current amplitudes, accelerated current decay kinetics, and negatively shifted the steady-state curves. In contrast, beta2 alone and in combination with beta1 altered steady-state inactivation of Nav1.8 to more depolarized potentials. Co-expression of beta3 shifted steady-state inactivation to more depolarized potentials; however, combined beta1beta3 expression caused no shift in channel availability. The results in this study suggest that the functional behavior of Nav1.8 will vary depending on the type of beta-subunit that expressed under normal and disease states.  相似文献   

16.
Multiple factors, including members of the FGF, TGF beta, and Wnt family of proteins, are important mediators in the regulation of dorsal-ventral pattern formation during vertebrate development. By using an expression cloning approach to identify novel factors that could regulate dorsal-ventral patterning in the Xenopus embryo, we isolated the Xenopus homologue of the human Os4 gene by virtue of its ability to induce a secondary dorsal axis. While Os4 homologues have been identified in a variety of species, and human Os4 is overexpressed in human tumors, the biological function of Os4 is unknown. To explore the mechanism by which Xenopus Os4 (XOs4) induces a secondary dorsal axis, we used Xenopus explant and whole-embryo assays. The secondary axis induced by XOs4 is distinct from that induced by activation of Wnt or FGF pathways but similar to that induced by inhibition of BMP signaling or activation of an Activin pathway. However, XOs4 did not inhibit BMP signaling in dissociated animal cap explants, indicating that XOs4 does not inhibit BMP signaling. Similar to activation of an Activin-like pathway, expression of XOs4 induces molecular markers for mesoderm in animal cap explants, although expression of gastrula-stage mesodermal markers was very weak and substantially delayed. Yet, XOs4 does not require activity of the Activin signal-transduction pathway for mesoderm induction as dominant-negative components of the Activin/Nodal/Vg1 pathway did not prevent XOs4-mediated induction of mesodermal derivatives. Finally, like Activin/Nodal/Vg1 pathways, XOs4 requires FGF signaling for expression of mesoderm markers. Results presented in this study demonstrate that XOs4 can induce mesoderm and dorsalize ventral mesoderm resulting in ectopic dorsal axis formation, suggesting a role for this large evolutionarily conserved gene family in early development.  相似文献   

17.
DEPTOR is a recently identified inhibitor of the mTOR?kinase that is highly regulated at the posttranslational level. In response to mitogens, we found that DEPTOR was rapidly phosphorylated on three serines in a conserved degron, facilitating binding and ubiquitylation by the F box protein βTrCP, with consequent proteasomal degradation of DEPTOR. Phosphorylation of the βTrCP degron in DEPTOR is executed by CK1α after a priming phosphorylation event mediated by either the mTORC1 or mTORC2 complexes. Blocking the βTrCP-dependent degradation of DEPTOR via βTrCP knockdown or expression of a stable DEPTOR mutant that is unable to bind βTrCP results in mTOR inhibition. Our findings reveal that mTOR cooperates with CK1α and βTrCP to generate an auto-amplification loop to promote its own full activation. Moreover, our results suggest that pharmacologic inhibition of CK1 may be?a viable therapeutic option for the treatment of cancers characterized by activation of mTOR-signaling pathways.  相似文献   

18.
19.
The polycomb group protein BMI1 has been linked to proliferation, senescence, cancer progression and stem cell phenotype. At present, very little is known about its regulation. Here, we report that BMI1 contains a functional recognition motif for the F box protein βTrCP, which regulates ubiquitination and proteasome-mediated degradation of various proteins. We show that overexpression of wild-type βTrCP but not the ΔF mutant of it promotes BMI1 ubiquitination and degradation, and knockdown of βTrCP results in increased expression of BMI1. Furthermore, a mutant of BMI1 with an altered βTrCP recognition motif is much more stable than wild-type BMI1. We also show that wild-type BMI1 but not the mutant BMI1 interacts with βTrCP. Accordingly, compared to wild-type BMI1, mutant protein exhibited increased pro-oncogenic activity. In summary, our findings suggest that βTrCP regulates turnover of BMI1 and its function relevant to oncogenesis, cellular senescence and aging.  相似文献   

20.
Although Xenopus FKBP1A (xFKBP1A) induces an ectopic dorsal axis in Xenopus embryos, involvement of xFKBP1B, a vertebrate paralogue of FKBP1A, in embryogenesis remains undetermined. Here, we demonstrate that xFKBP1B induces ectopic dorsal axis and involves in eye formation of Xenopus embryos. Injection of the xFKBP1B mRNA in ventral blastomeres of 4-cell stage Xenopus embryos induced a secondary axis and showed multiplier effect to that of xFKBP1A on this when xFKBP1A was co-injected. In addition, BMP4 and Smad1 mRNAs did not affect the ability of xFKBP1B to induce the ectopic secondary axis when either was co-injected with xFKBP1B in ventral blastomeres, whereas they downed out that of xFKBP1A, suggesting that xFKBP1A and xFKBP1B induce the ectopic secondary axis through affecting different pathways from each other. On the other hand, the injection of the FKBP1B mRNA in dorsal blastomeres showed eye malformation, and suppressed almost completely the expression of Rx1, Mitf, and Vax2 mRNAs. xFKBP1B was expressed in the dorsal side of the embryo including the eye during embryogenesis at least until stage 46. Injection of morpholino of the xFKBP1B mRNA in dorsal blastomeres induced additional retina or failed to close tapetum nigrum in the ventral side within the optic cap, whereas it did not affect the dorsal organ development. The injection of the morpholino reduced the expression of Xotx2 and Rx1 mRNAs in the eye. These observations suggest that xFKBP1B is a key factor that regulates the expression levels of the genes involved in eye formation during Xenopus embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号