首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical probes can be valuable tools for studying protein targets, but addressing concerns about a probe's cellular target or its specificity can be challenging. A reliable strategy is to use a mutation that does not alter a target's function but confers resistance (or sensitizes) to the inhibitor in both cellular and biochemical assays. However, challenges remain in finding such mutations. Here, we discuss structure- and cell-based approaches to identify resistance- and sensitivity-conferring mutations. Further, we describe how resistance-conferring mutations can help with compound design, and the use of saturation mutagenesis to characterize a compound binding site. We highlight how genetic approaches can ensure the proper use of chemical inhibitors to pursue mechanistic studies and test therapeutic hypotheses.  相似文献   

2.
Footprinting mRNA-ribosome complexes with chemical probes.   总被引:11,自引:3,他引:8       下载免费PDF全文
We footprinted the interaction of model mRNAs with 30S ribosomal subunits in the presence or absence of tRNA(fMet) or tRNA(Phe) using chemical probes directed at the sugar-phosphate backbone or bases of the mRNAs. When bound to the 30S subunits in the presence of tRNA(fMet), the sugar-phosphate backbones of gene 32 mRNA and 022 mRNA are protected from hydroxyl radical attack within a region of about 54 nucleotides bounded by positions -35 (+/- 2) and +19, extending to position +22 when tRNA(Phe) is used. In 70S ribosomes, protection is extended in the 5' direction to about position -39 (+/- 2). In the absence of tRNA, the 30S subunit protects only nucleotides -35 (+/- 2) to +5. Introduction of a stable tetraloop hairpin between positions +10 and +11 of gene 32 mRNA does not interfere with tRNA(fMet)-dependent binding of the mRNA to 30S subunits, but results in loss of protection of the sugar-phosphate backbone of the mRNA downstream of position +5. Using base-specific probes, we find that the Shine-Dalgarno sequence (A-12, A-11, G-10 and G-9) and the initiation codon (A+1, U+2 and G+3) of gene 32 mRNA are strongly protected by 30S subunits in the presence of initiator tRNA. In the presence of tRNA(Phe), the same Shine-Dalgarno bases are protected, as are U+4, U+5 and U+6 of the phenylalanine codon. Interestingly, A-1, immediately preceding the initiation codon, is protected in the complex with 30S subunits and initiator tRNA, while U+2 and G+3 are protected in the complex with tRNA(Phe) in the absence of initiator tRNA. Additionally, specific bases upstream from the Shine-Dalgarno region (U-33, G-32 and U-22) as well as 3' to the initiation codon (G+11) are protected by 30S subunits in the presence of either tRNA. These results imply that the mRNA binding site of the 30S subunit covers about 54-57 nucleotides and are consistent with the possibility that the ribosome interacts with mRNA along its sugar-phosphate backbone.  相似文献   

3.
As key components in nearly every signal transduction pathway, protein kinases are attractive targets for the regulation of cellular signaling by small-molecule inhibitors. We report the structure-guided development of 6-acrylamido-4-anilinoquinazoline irreversible kinase inhibitors that potently and selectively target rationally designed kinases bearing two selectivity elements that are not found together in any wild-type kinase: an electrophile-targeted cysteine residue and a glycine gatekeeper residue. Cocrystal structures of two irreversible quinazoline inhibitors bound to either epidermal growth factor receptor (EGFR) or engineered c-Src show covalent inhibitor binding to the targeted cysteine (Cys797 in EGFR and Cys345 in engineered c-Src). To accommodate the new covalent bond, the quinazoline core adopts positions that are different from those seen in kinase structures with reversible quinazoline inhibitors. Based on these structures, we developed a fluorescent 6-acrylamido-4-anilinoquinazoline affinity probe to report the fraction of kinase necessary for cellular signaling, and we used these reagents to quantitate the relationship between EGFR stimulation by EGF and its downstream outputs-Akt, Erk1 and Erk2.  相似文献   

4.
5.
Knight ZA  Shokat KM 《Cell》2007,128(3):425-430
Genetics and pharmacology can elicit surprisingly different phenotypes despite targeting the same protein. This Essay explores these unexpected differences and their implications for biology and medicine.  相似文献   

6.
7.
The genetics of cellular senescence.   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

8.
9.
Proteins require a unique, native structure to perform their functions. Water molecules play an important role to develop and maintain this three-dimensional structure. Water is also necessary for several forms of enzyme catalysis, and is a constituent of many protein-protein, protein-DNA, or protein-RNA interfaces. Larger proteins acquire their native structure in a complicated folding pathway having several folding traps. Recent data indicated a key role of water molecules in this process. Protein flexibility, structural rearrangements, conformational transitions all require the fluctuating changes in hydrogen bond structure provided by interacting water molecules. Besides proteins, RNA and DNA structure is also heavily influenced by the presence of water. This review summarizes the important aspects of these fields, and draws attention to several open questions and hypotheses.  相似文献   

10.
11.
Human cellular sequences detectable with adenovirus probes   总被引:1,自引:0,他引:1  
Previous studies suggesting homology between human cellular DNA and the DNAs from adenovirus types 2 and 5 are extended in the present paper. A clone (ChAdh), isolated from a human genomic DNA library using an adenovirus probe, hybridized to discrete regions of adenovirus 2 DNA, including part of the transforming genes E1a and E1b, as well as to repeated sequences within human DNA. The E1a and E1b genes both hybridize to the same 300 base pair Sau3AI fragment within ChAdh although there is no obvious homology between E1a and E1b. The Ad 2 E1a gene was also used as a probe to screen other cellular DNAs to determine whether repeated sequences detectable with Ad 2 DNA probes were conserved over long evolutionary periods. Hybridization was detected to the genomes of man, rat, mouse and fruit fly, but not to those of yeast and bacteria. In addition to a smear hybridization, discrete fragments were detected in both rodent and fruit fly DNAs. The experiments reported suggest the existence of two different types of cellular sequences detected by Ad 2 DNA: (1) repeated sequences conserved in a variety of eukaryote genomes and (2) a possible unique sequence detected with an E1a probe different from that responsible for hybridization to repeated sequences. This unique sequence was detected as an EcoRI fragment in mouse DNA and had a molecular size of about 8.8 kb.  相似文献   

12.
Trinitrobenzenesulfonate (TNBS), fluorodinitrobenzene (FDNB) and suberimidate have been reacted with intact human erythrocytes. TNBS does not penetrate the cell membrane significantly at 23 degrees C in bicarbonate-NaCl buffer, pH 8.6, as estimated by the labeling of the N-terminal valine of hemoglobin. Hence, under these conditions it can be used as a vectorial probe. However, at 37 degrees C, especially in phosphate buffer, at pH 8.6, TNBS does penetrate the cell membrane. FDNB and suberimidate both penetrate the erythrocyte membrane. The time course reaction of TNBS with intact erythrocytes over a 24-hr period at 23 degrees C is complex and shows transition zones for both membrane phosphatidylethanolamine (PE) and membrane proteins. No significant cell lysis occurs up to 10 hr. The fraction of total PE or phosphatidylserine (PS) which reacts with TNBS by this time period can be considered to be located on the outer surface of the cell membrane. Under these conditions it can be located on the outer surface of the cell membrane. Under these conditions it can be shown that 10 to 20% of the total PE and no PS is located on the outer surface of the membrane and hence these amino phospholipids are asymmetrically arranged. The pH gradient between the inside and outside of the cell in our system is 0.4 pH units. Nigericin has no effect on the extent of labeling of PE or PS by TNBS. Isotonic sucrose gives a slight enhancement of the labeling of PE by TNBS. Hence, the inability of PE and PS to react with the TNBS is considered not due to the inside of the cell having a lower pH. The extent of reaction of TNBS with PE is not influenced by changing the osmolarity of the medium or by treatment of cells with pronase, trypsin, phospholipase A or phospholipase D. However, bovine serum albumin (BSA) does protect some of the PE molecules from reacting with TNBS. Cels treated with suberimidate were suspended in either isotonic NaCl or in distilled water. In both cases the suberimidate-treated cells became refractory to hypotonic lysis. Pretreatment of cells with TNBS did not prevent them from interacting with suberimidate and becoming refractory to lysis. However, pretreatment of cells with the penetrating probe FDNB abolished the suberimidate effect. Electron-microscopic analysis of the cells showed a continuous membrane in the case of cells suspended in isotonic saline. The cells suspended in water did not lyse but their membranes had many large holes, sufficient to let the hemoglobin leak out. Since the hemoglobin did not leak out we know that the hemoglobin is cross-linked into a large supramolecular aggregate.  相似文献   

13.
The major aims of this study were to determine the degree of phospholipid asymmetry and the neighbor analysis of phospholipids in different types of cell membranes. For this study a penetrating probe (FDNB), a non-penetrating probe (TNBS) and a cross-linking probe (DFDNB) were used. The reaction of hemoglobin, membrane protein and membrane PE and PS of erythrocytes with DFNB and TNBS was studied over a concentration range of 0.5 to 10 mM probe. TNBS reacts to an extremely small extend with hemoglobin over the concentration range 0.4 to 4 mM whereas FDNB reacts with hemoglobin to a very large extent (50 fold more than TNBS). The reaction of membrane protein of intact erythrocytes reaches a sharp plateau at 1 mM TNBS whereas the reaction of membrane protein goes to a much larger extent with FDNB with no plateau seen up to 4 mM FDNB. This data shows that TNBS does not significantly penetrate into the cell under our conditions whereas FDNB does penetrate into the cell. The results show that there are four fold more reactive sites on proteins localized on the inner surface of the erythrocyte membrane as compared to the outer surface. TNBS at 0.5 to 2 mM concentration does not label membrane PS and labels membrane PE to a small extent. The reaction of PE with TNBS shows an initial plateau at 2 mM probe and a second slightly higher plateau between 4 to 10 mM probe. TNBS from 0.5-2.0 mM does not react with PS, but between 3 to 10 mM concentration, a very small amount of PS reacts with TNBS. Hence above 2 mM TNBS or FDNB a perturbation occurs in the membrane such that more PE and PS are exposed and react with these probes. These results demonstrate that essentially no PS is localized on the outer surface of the membrane and only 5% of the total membrane PE is localized on the outer surface of the erythrocyte membrane. TNBS and FDNB were reacted with yeast, E. coli, and Acholeplasma cells. With yeast cells, FDNB reacts to a much larger extent with PE than does TNBS, indicating that FDNB penetrates into the cell and labels more PE molecules. With E. coli, but not with erythrocytes or yeast cells, phospholipase A activity was very pronounced at pH 8.5 giving rise to a large amount of DNP-GPE from DNP-PE. A phosphodiesterase was also present which hydrolyized DNP-GPE to DNP-ethanolamine. The multilayered structure of the E. coli cell envelop did not permit a definitive interpretation of the results. It is clear, however, that TNBS and FDNB react to a different extent with PE in this cell. The Acholeplasma membrane had no detectable PE or PS but contains amino acid esters of phosphatidylglycerol. The reaction of these components with TNBS and FDNB indicate that these aminoacyl-PG are localized on both surfaces of the membrane, with 31% being on the outer surface and 69% on the inner surface...  相似文献   

14.
15.
16.
Oligodeoxynucleotides have been selectively labeled with biotin at their 5'-termini through an aminoalkylphosphoramide linker arm by an efficient chemical method. The reactions were performed in aqueous solution on unprotected oligonucleotides and were insensitive of the sequence and length of the oligonucleotide. 5'-biotin-labeled oligonucleotides were hybridized to dot, Southern and genomic blots of target plasmid DNA immobilized on nitrocellulose filters. Detection level is about 2 fmole. There is no noticeable disturbance of the strength and selectivity of hybridization of the 5'-biotin-labeled probes in comparison with non-modified DNA.  相似文献   

17.
18.
This paper shows how Python and Scipy can be used to simulate the time-dependent and steady-state behaviour of reaction networks, and introduces Pysces, a Python modelling toolkit.  相似文献   

19.
20.
Clonal selections occurring during the progression of Moloney murine leukemia virus (MuLV)-induced T-cell lymphomas in mice were examined in primary and transplanted tumors by monitoring various molecular markers: proviral integration patterns, MuLV insertions near c-myc and pim-1, and rearrangements of the immunoglobulin heavy chain and beta-chain T-cell receptor genes. The results were as follows. Moloney MuLV frequently induced oligoclonal tumors with proviral insertions near c-myc or pim-1 in the independent clones. Moloney MuLV acted as a highly efficient insertional mutagen, able to activate different (putative) oncogenes in one cell lineage. Clonal selections during tumor progression were frequently marked by the acquisition of new proviral integrations. Independent tumor cell clones exhibited a homing preference upon transplantation in syngeneic hosts and were differently affected by the route of transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号