首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Dam presence is commonly associated with strong accumulation of polluted sediments. In spite of this context of multiple stressors, physical effects are often solely considered in the ecological assessment of the dam impacts. 2. We studied four ‘reservoir/downstream reach’ systems differing in levels of sediment contamination in reservoirs. Using assemblages and biotrait (i.e. ecological or biological attribute) responses of macroinvertebrate communities and leaf litter breakdown, we examined the individual effects and potential interactions between sediment contamination and dam presence along the gradient of ecotoxic pressure. 3. Leaf breakdown rates ranged from 0.0044° per day in the most contaminated reservoir to 0.0120° per day in the reference reservoir. Comparisons of community trait profiles among reservoirs highlighted a gradient of trait responses to sediment contamination. 4. In the absence of toxic contamination, the dam‐induced modifications in biotraits of invertebrate assemblages were not related to a reduction of leaf litter breakdown. Conversely, contaminated sediment in reservoir induced strong functional disturbances (i.e. bioecological shifts and reduction of leaf litter breakdown) downstream of dams. 5. Key biotrait categories positively related to leaf litter breakdown rate have been identified. They corresponded mainly to shredders and/or small‐sized (<0.5 cm) insects, using aquatic (e.g. crawlers) or aerial (e.g. fliers) active dispersal strategies. In addition, trait categories positively correlated to contamination level have been considered as ‘response’ traits. They corresponded to large‐sized (>4 cm) species, having several generations per year (polyvoltin), using asexual reproduction and/or disseminating by drift (aquatic, passive). 6. In the current context of ecological continuity restoration, this study has identified the risks associated with the presence of historical contamination in the run‐of‐river reservoirs for downstream ecosystem health.  相似文献   

2.
Leaf litter plays a critical role in regulating ecological functions in headwater forest streams, whereas the effects of leaves on water quality in urbanized streams are not fully understood. This study examined the potential importance of leaf litter for the release and transformations of organic carbon and nutrients in urban streams, and compared the effects with other types of natural organic substrates (periphyton and stream sediment). Nutrients and organic carbon were leached from senescent leaves of 6 tree species in the laboratory with deionized water, and maximal releases, leaching rate constants, composition and bioavailability of the leached dissolved organic carbon (DOC) were determined. Stream substrates (leaf debris, rocks with periphyton, and sediment) were seasonally collected from urban and forest reference streams of the NSF Baltimore Long-term Ecological Research Site and incubated with overlying stream water to estimate areal fluxes of DOC and nitrogen. Leaf litter leaching showed large ranges in maximal releases of DOC (7.0–131 mg g?1), dissolved organic nitrogen (DON; 0.07–1.39 mg g?1) and total dissolved phosphorus (TDP; 0.14–0.70 mg g?1) among tree species. DOC leaching rate constants, carbon to nitrogen ratios, and DOC bioavailability were all correlated with organic matter quality indicated by fluorescence spectroscopy. Results from substrate incubation experiments showed far higher DOC and DON release and nitrate retention with leaf debris than with sediment, or rocks with periphyton. DOC release from leaf debris was positively correlated with stream nitrate retention at residential and urban sites, with the highest values observed during the fall and lowest during the summer. This study suggests the potential importance of leaf litter quantity and quality on fostering DOC and nutrient release and transformations in urban streams. It also suggests that species-specific impacts of leaves should be considered in riparian buffer and stream restoration strategies.  相似文献   

3.
Leaf litter decomposition is a crucial process providing matter and energy to communities inhabiting headwater streams. This process could be affected by many man-made landscape transformations and its response can vary depending on the climate setting. In this study, we test the hypothesis that the presence of small headwater reservoirs decreases litter decomposition downstream, as reported for temperate Oceanic climatic regions, and that this effect is more accentuated in the Mediterranean. The effect of small dams on the decomposition of alder (Alnus glutinosa) leaves was studied in four headwater streams in Catalonia (NE Spain). The presence of a dam affected litter decomposition rates in three of the four streams studied, and this depended on reservoir typology. In those with seasonal surface release, decomposition rates were slower downstream from the dams, but in the case of a continuous hypolimnetic release, it was faster, with higher DIN and temperature and abundance of shredders. Alder litter decomposition rates were twice those reported for Oceanic climatic conditions. In Mediterranean headwaters, the effect of small dams will even be more evident at an annual scale due to the diminished flow rates in summer and this effect will be more pronounced than in the more Oceanic.  相似文献   

4.
The hyporheic zone is a region underneath streambeds that integrates surface and groundwater. Although its location is central to biogeochemical linkages between the riparian zone, dissolved nutrients, and benthic biota, the seasonal quality and likely sources of dissolved organic matter (DOM) in the hyporheic zone are not well understood. To investigate DOM characteristics in the hyporheic zone, water from the surface and subsurface (at depths 20, 60, and 100 cm below the streambed) was sampled every 4 weeks from 2007 to 2008 in a third-order stream in southern Ontario. Using UV spectroscopy, measures of spectral slopes, aromaticity, and A 254/A 365 ratios (molecular weight) were obtained. Temporal changes in these measures were consistent with watershed processes such as shedding of leaf litter in the fall, and photochemical and biofilm influence in the spring and summer. The fluorescence index (a measure of relative DOM source) suggested that at the surface and in the downwelling zone, DOM microbial sources increased with depth in the sediment, regardless of the season. Excitation–emission matrices (EEMs) showed seasonally distinct, protein-like DOM components of bacterial origin that were stronger in the fall. Leachates from specific allochthonous DOM sources—leaf litter from Betula papyrifera (white birch) and Thuja occidentalis (white cedar)—and an autochthonous source, biofilm, were isolated and incubated with unfiltered surface water. EEMs from these leachates indicated that these sources could indeed help explain observed patterns of DOM in surface and subsurface waters. These results suggest that although DOM sources were relatively constant, biogeochemical processing within the hyporheic zone resulted a DOM pool that was temporally dynamic and altered the nature of organic matter transported downstream into lakes and rivers.  相似文献   

5.
Riparian tree planting is widely recognised as a means to improve water quality and stream habitat. However, shading of riparian pasture grasses can lead to channel widening, and riparian shade may limit the growth of macrophytes and algae that assimilate dissolved nutrients from the water column. We investigated concerns that riparian management could lead to increased yields of nutrients and sediments through a conceptual modelling exercise. A simple model of the trade-off between interception of nutrients in runoff by forest buffers versus reduction of in-stream uptake due to shade, predicted that a buffer strip alongside a small headwater stream would reduce nutrient export, while a buffer strip instigated as an isolated patch alongside a larger stream (c. >2.5 km2 upstream catchment size) would increase nutrient export, as the relative amount of nutrients trapped by the buffer decreases as the nutrient load present in the stream water increases. However, in these larger streams with width exceeding approximately 6 m, sufficient light may reach the streambed for plant and algal growth, which in turn would promote instream nutrient processing. At the peak of streambank erosion after planting, predicted total sediment yield (hillslope plus bank sources) was appreciably higher than the hillslope pasture yield, but sediment yield stabilised c. 35–40 years after planting. When planting was extended over 40 years in the model, the sediment yield never exceeded that in pasture before planting. This conceptual modelling exercise shows that riparian tree planting programmes should commence in the headwaters and progress downstream to avoid nutrient yield increases. Significant sediment yield from bank stored sediment of small streams can be expected until the channel reaches the more stable, original forested width, but progressive planting may decrease the peak loads of sediment.  相似文献   

6.
王亚如  陈乐  房玮  张盼月  吴彦  张光明  王洪杰  付川 《生态学报》2022,42(24):10214-10225
为研究湿地沉水植物腐败分解对水体的污染状况,选择典型沉水植物金鱼藻(暖季植物)和菹草(冷季植物)进行了为期60 d的凋落物分解实验。结果表明金鱼藻和菹草凋落物分解规律相似,0—15 d快速分解,15—60 d缓慢分解,60 d凋落物失重率分别达到60.43%和66.72%。菹草的有机物释放量明显高于金鱼藻,N和P释放量相反,分解释放的N主要是NH4+-N和有机氮。三维荧光光谱(Excitation-Emission Matrix Spectroscopy, EEMs)结合平行因子分析法解析出一种类色氨酸物质C2和3种类腐殖质物质C1、C3、C4,易降解的类色氨酸有机物先增加后减少,难降解的类富里酸和类腐殖酸有机物逐渐增加。EEMs和四种组分的最大荧光强度百分比表明,溶解性有机物(Dissolved organic matter, DOM)在0—15 d以易降解有机物为主,15—60 d以难降解有机物为主。两种植物凋落物分解释放的DOM含量及特性不同,整体上呈低腐殖化特征,可能是水中难降解DOM的一个重要来源。植物凋落物的分解促进了沉积物中微生物的丰富度,降低了微生物的多样性;参与分解的主要微生物包括4 d时的Pseudomonas属(26%—35%)、15 d和30 d时的Malikia属(>8%)和Bacillus属(2.6%—9%),分解难降解有机物的微生物逐渐增加,如Flavobacterium属;沉积物中微生物群落结构的变化受营养物质可利用性变化的影响。分析发现植物凋落物分解对水质的影响具有阶段性,0—15 d,N和P释放量增加暂时导致了水质恶化;15—60 d,N和P释放量降低,难降解有机物含量逐渐增加,可能会加剧水体甚至是沉积物的腐殖化程度。因此,在植物衰亡期应及时打捞或者做好植物平衡收割管理,避免因植物大量腐败导致水质恶化。  相似文献   

7.
J. Murase  M. Sakamoto 《Limnology》2000,1(3):177-184
The horizontal distribution of the abundance and isotopic composition of carbon and nitrogen was studied on surface sediment samples (0–15 cm) collected from the entire area of Lake Biwa, the largest freshwater lake in Japan. As water depth increased, a marked increase in organic matter content was observed at the sampling sites, especially in the western North Basin, characterized by a steep slope. In the northwestern North Basin, which has no major inflowing streams, the sediments contained large amounts of organic matter, suggesting the possibility of lateral transportation of sedimented matter from other places by lake currents. The total amounts of carbon and nitrogen in the top-2 cm of sediment of the entire area of Lake Biwa were estimated to be 9.2 × 104 tC and 1.0 × 104 tN. The δ15N values in the littoral sediment were low and close to those in the inflowing river sediment, suggesting selective sedimentation of allochthonous organic matter onto the littoral area. In the North Basin, vertical profiles of organic matter content and δ13C values of the sediments in the littoral area showed a smaller downward decrease than in the profundal area, whereas δ15N values decreased with sediment depth in both areas. It was suggested that the littoral sediments contained abundant amounts of allochthonous and relatively refractory organic matter. Further, it was suggested that the autochthonous organic matter originated from primary production deposited mainly on the profundal zone and was easily decomposed in early diagenesis after sedimentation. Received: July 30, 1999 / Accepted: December 10, 1999  相似文献   

8.
This study was carried out to compare the ecological function of exotic pine (Pinus radiata—Pr) and native pine (Pinus tabulaeformis—Pt) in terms of litter decomposition and its related N dynamics and to evaluate if the presence of broad-leaved tree species (Cercidiphyllum japonicum—Cj) or shrub species (Ostryopsis davidiana—Od) litter would promote the decomposition of pine needles and N cycling. Mass remaining, N release of the four single-species litters and mixed-species (Pt + Cj; Pr + Cj; Pt + Od; Pr + Od) litters and soil N dynamics were measured at microcosm scale during an 84-day incubation period. The Pt and Pr litter, with poorer substrate quality, indicated slower decomposition rates than did the Cj and Od litter. Due to their high C/N ratios, the N mass of Pt and Pr litter continuously increased during the early stage of decomposition, which showed that Pt and Pr litter immobilized exogenous N by microbes. No significant differences of soil inorganic, dissolved organic and microbial biomass N were found between the Pt and Pr microcosm at each sampling. The results showed that the exotic Pr performed similar ecological function to the native Pt in terms of litter decomposition and N dynamics during the early stage. The presence of Cj or Od litter increased the decomposition rates of pine needle litter and also dramatically increased soil N availability. So it is feasible for plantation managers to consider the use of Cj as an ameliorative species or to retain Od in pine plantations to promote the decomposition of pine litter and increase nutrient circulation. The results also suggested that different species litters induced different soil dissolved organic nitrogen (DON). As a major soluble N pool in soil, DON developed a different changing tendency over time compared with inorganic N, and should be included into soil N dynamic under the condition of our study.  相似文献   

9.
The effect of deposition of organic matter on phosphorus dynamics in sandy marine sediments was evaluated using an experimental system (boxcosms) and three different strategies: (1) no supply (2) one single addition (3) weekly additions of a suspension of algal cells (Phaeocystis spec.). Macrofauna (3 species, 6 individuals of each) were added to half of the boxes. Both in the case of the single and weekly additions a clear effect of increased organic matter loading on phosphorus dynamics was found. Following the organic matter addition, porewater phosphate concentrations in the upper sediment layer increased, phosphate release rates from the sediment increased by a factor 3–5 and in the boxes to which a single addition was applied NaOH-extractable phosphorus increased substantially. The increase in phosphate release rates from the sediment was attributed to mineralization of the added material and to direct release from the algal cells. No clear effect of the presence of macrofauna on sediment-water exchange of phosphate could be discovered. The macrofauna were very effective at reworking the sediment, however, as illustrated by the organic carbon profiles. It is hypothesized that the sediment-water exchange rates of phosphate were regulated by the layer of algal material which was present on the sediment surface in the fed boxes. In the boxes to which the single addition was applied porewater phosphate concentrations were lower and NaOH-extractable phosphorus was higher in the presence of macrofauna, suggesting that macrofauna can stimulate phosphate binding in the sediment.Publication no. 40 of the project Applied Scientific Research Netherlands Institute for Sea Research (BEWON)  相似文献   

10.
11.
Summary Thein situ breakdown ofNymphoides peltata (Gmel.) O. Kuntze has been studied with special attention for methodology by: (1) using fresh and pre-dried material to establish the influence of pre-drying on breakdown and losses of nutrient stocks during decomposition; (2) enclosing different amounts of material in litter bags; (3) using litter bags with different mesh sizes, and (4) placing litter bags in water (floating leaves, petioles), on the sediment (long shoots) and in the hydrosoil (short shoots, roots). Of the material incubated in water, the floating leaves decomposed at a faster rate than the petioles, while the long shoots had the slowest breakdown. In the sediment the short shoots disappeared at a faster rate than the roots. By incubating the same morphological structure, both in the water and the sediment it appeared that the rate of breakdown was faster in the upper layers of the sediment. Pre-dried plant parts showed in water a larger initial weight loss than normal senescent plant parts, while in the sediment dried plant parts had a significantly slower loss of mass than the freshly incubated structures. Losses of nutrient stocks during decomposition were also markedly altered by pre-drying the material. When a larger amount ofNymphoides material was enclosed in the bags a tendency of a faster decay could be demonstrated. Macro-invertebrates colonized the litter bags with the 0.5 mm mesh size but usually could not-enter the 0.25 mm mesh size bags. The browsing of the detritivores did not result in a faster disappearance of organic matter, but organic matter must have been transported into the bags resulting in a larger amount of remaining organic matter when compared with the 0.25 mm mesh size bags.  相似文献   

12.
Rhizophora apiculata leaf litter decomposition and the influence of this process on phosphorus (P) dynamics were studied in mangrove and sand flat sediments at the Bangrong mangrove forest, Phuket, Thailand. The remaining P in the mangrove leaf litter increased with time of decomposition to 174% and 220% of the initial amount in the litter in sand flat and mangrove sediment, respectively, although about 50% of the dry weight had been lost. The incorporation of P into the litter was probably associated with humic acids and metal bridging, especially caused by iron (Fe), which also accumulated in considerable amounts in the litter (5-10 times initial concentration). The addition of leaves to the sediment caused increased concentrations of dissolved reactive phosphate (DRP) in the porewater, especially in sand flat sediment. The DRP probably originated from Fe-bound P in the sediment, because decomposition of buried leaf litter caused increased respiration and reduced the redox potential (Eh) in the sediments. Binding of P to refractory organic material and oxidized Fe at the sediment-water interface explains the low release of DRP from the sediment. This mechanism also explains the generally low DRP concentration in the mangrove porewater, the low nutrient content of the R. apiculata leaves, but also the higher total sediment P concentration of the mangrove sediment as compared to sediments outside the mangrove. Both the low release rates for DRP from the sediment and the accumulation of P associated with leaf litter decomposition tend to preserve P in the sediments.  相似文献   

13.
Four gravity cores were taken from Lake Soyang, which was created by the construction of an artificial dam in 1973. The variation of organic carbon content of the bottom sediments since the construction was interpreted using a variety of sedimentological and geochemical measurements. Based on the textural properties of sediments and the total organic carbon (TOC) content, it is clear that sediment organic carbon has been deposited very consistently throughout the postconstruction period, except for local sudden inputs caused by summer flooding events near fish farms or farmland areas. The autochthonous input resulting from the enhanced primary production led by phytoplanktons each year is likely to become a major problem at downstream sites within Lake Soyang. The vertical variation of δ13C values of sediment organic matter also reflects the fact that the level of autochthonous supply of organic carbon becomes high downstream.An erratum to this article can be found at .  相似文献   

14.
This study investigated the effects of competition between binding substrates (organic matter and iron oxide) and between metals (cadmium and copper), on the partitioning of sedimentary copper and its subsequent bioavailability to an aquatic plant. Organic matter and a synthesized iron oxide, ferrihydrite, were added singly and in combination to a series of sand sediments, which were then dosed with environmentally realistic concentrations of cadmium and copper and planted with rice,Oryza sativa. Organic matter controlled copper partitioning and bioavailability, whereas the synthetic ferrihydrite bound negligible amounts of either metal, even in the absence of organic matter. As organic matter concentrations increased, operationally-defined leachable copper decreased, organic-associated copper increased and the survival of rice plants improved in an approximately linear fashion. At a nominal starting copper concentration of 5.8 μg g dry wt−1, plant survival after four weeks averaged 0–8% in sediments without organic matter, 25% in a sediment containing 0.18% organic matter and 58% in a sediment containing 0.36% organic matter. These results suggest that organic-associated forms of copper are unavailable to plants, and that the operational definition of ‘leachable’ copper (extracted with dilute ammonium acetate) adequately represents the species of copper that is (are) available to plants. Our study using a well-characterized artificial sediment supports the copper fractionation patterns and correlations between copper partitioning and bioavailability reported from the heterogeneous, poorly characterized sediments of natural lake and river sediments.  相似文献   

15.
Freshwater ecosystems have been fragmented by the construction of large numbers of dams. In addition to disruption of ecological continuity and physical disturbance downstream, accumulation of large amounts of sediment within run-of-river reservoirs constitutes a latent ecotoxic risk to aquatic communities. To date, run-of-river reservoirs and ecotoxic risks associated with contaminated sediment to the biodiversity and functioning of such systems are little studied. Therefore, the main objective of this study was to describe macroinvertebrate assemblages, and the functioning of these systems, and to propose indicators of sediment contamination to integrate in in-situ risk assessment methodology. To identify specific assemblages of run-of-river reservoirs, we first compared macroinvertebrate assemblages and their biotrait profiles (i.e. from a database of biological and ecological traits) in reservoirs (n = 6) and associated river sites (upstream and downstream of dams). Then, we compared responses of assemblages and biotrait profiles to sediment contamination of the banks and channels of reservoirs to select the most useful spatial scale to identify sediment contamination. Nineteen indicator taxa were observed to be specifically associated with channel habitats of reservoirs. Among these, the abundance of three taxa (Tanypodinae (Diptera), Ephemerella (Ephemeroptera) and Atherix (Diptera)) revealed the effect of metal sediment contamination. “Between-reservoirs” differences in their biotrait profile were found along the contamination gradient, with a shift of communities’ composition and functionality, and an increase in functional similarity. Many traits (response traits), for example “maximum size”, “transverse distribution”, “substrate preferences”, “saprobity”, “temperature”, “resistance forms”, and “locomotion”, were specifically linked to contamination of sediments by metals. This study indicates how sediment contamination can change the structural and functional composition of run-of-river reservoir assemblages. Indicator taxa and response traits identified in this study could improve current risk assessment methodology and potentially enable prediction of the risks of contaminated sediments stored in reservoirs in downstream ecosystems.  相似文献   

16.
The decomposition and the fate of 15N- labelled beech litter was monitored in a beech forest (Vosges mountains, France) over 3 years. Circular plots around beech trees were isolated from neighbouring tree roots by soil trenching. After removal of the litter layer, 15N-labelled litter was distributed on the soil. Samples [labelled litter, soil (0–15 cm depths], fine roots, mycorrhizal root tips, leaves) were collected during the subsequent vegetation periods and analysed for total N and 15N concentration. Mass loss of the 15N-labelled litter was estimated using mass loss data from a litterbag experiment set up at the field site. An initial and rapid release of soluble N from the decomposing litter was balanced by the incorporation of exogenous N into the litter. Fungal N accounted for approximately 35% of the N incorporation. Over 2 years, litter N was continuously released and rates of N and mass loss were equivalent, while litter N was preferentially lost during the 3rd year. Released 15N accumulated essentially at the soil surface. 15N from the decomposing litter was rapidly (i.e. in 6 months) detected in roots and beech leaves and its level increased regularly and linearly over the course of the labelling experiment. After 3 years, about 2% of the original litter N had accumulated in the trees. 15N budgets indicated that soluble N was the main source for soil microbial biomass. Nitrogen accumulated in storage compounds was the main source of leaf N, while soil organic N was the main source of mycorrhizal N. Use of 15N-labelled beech litter as decomposing substrate allowed assessment of the fate of litter N in the soil and tree N pools in a beech forest on different time scales. Received: 3 May 1999 / Accepted: 3 January 2000  相似文献   

17.
1. Macroinvertebrate colonization dynamics were examined on artificial substrata in a stream with terrestrial litter inputs excluded, downstream of the litter-exclusion treatment, and in a reference stream. 2. Short-term examination of the rates of organic matter accrual and invertebrate colonization demonstrated significantly lower accumulation of leaf detritus and invertebrates in the litter-excluded reach and a short distance downstream of that reach. 3. All major fractions of organic matter and invertebrates declined on artificial substrata during the 3-year litter exclusion. Further, secondary production on artificial substrata in the litter-excluded reach decreased from 6.2 to 1.5 g AFDM m−2 year−1 from pretreatment to the third year of litter exclusion, respectively. 4. Downstream, fine particulate organic matter on artificial substrata decreased during litter exclusion, and there was a significant reduction in colonization of collector-filterers. Total secondary production downstream of the litter exclusion declined >70%, demonstrating that downstream colonization dynamics are linked to upstream detritus inputs and processing by stream invertebrates.  相似文献   

18.
1. A substantial portion of particulate organic matter (POM) is stored in the sediment of rivers and streams. Leaf litter breakdown as an ecosystem process mediated by microorganisms and invertebrates is well documented in surface waters. In contrast, this process and especially the implication for invertebrates in subsurface environments remain poorly studied. 2. In the hyporheic zone, sediment grain size distribution exerts a strong influence on hydrodynamics and habitability for invertebrates. We expected that the influence of shredders on organic matter breakdown in river sediments would be influenced strongly by the physical structure of the interstitial habitat. 3. To test this hypothesis, the influence of gammarids (shredders commonly encountered in the hyporheos) on degradation of buried leaf litter was measured in experimental systems (slow filtration columns). We manipulated the structure of the sedimentary habitat by addition of sand to a gravel‐based sediment column to reproduce three conditions of accessible pore volume. Ten gammarids were introduced in columns together with litter bags containing alder leaves at a depth of 8 cm in sediment. Leaves were collected after 28 days to determine leaf mass loss and associated microbial activity (fungal biomass, bacterial abundance and glucosidase, xylosidase and aminopeptidase activities). 4. As predicted, the consumption of buried leaf litter by shredders was strongly influenced by the sediment structure. Effective porosity of 35% and 25% allowed the access to buried leaf litter for gammarids, whereas a lower porosity (12%) did not. As a consequence, leaf litter breakdown rates in columns with 35% and 25% effective porosity were twice as high as in the 12% condition. Microbial activity was poorly stimulated by gammarids, suggesting a low microbial contribution to leaf mass loss and a direct effect of gammarids through feeding activity. 5. Our results show that breakdown of POM in subsurface waters depends on the accessibility of food patches to shredders.  相似文献   

19.
To quantify organic matter mineralization at estuarine intertidal flats, we measured in situ sediment respiration rates using an infrared gas analyzer in estuarine sandy intertidal flats located in the northwestern Seto Inland Sea, Japan. In situ sediment respiration rates showed spatial and seasonal variations, and the mean of the rates is 38.8 mg CO2-C m−2 h−1 in summer. In situ sediment respiration rates changed significantly with sediment temperature at the study sites (r 2 = 0.70, p < 0.05), although we did not detect any significant correlations between the rates and sediment characteristics. We prepared a model for estimating the annual sediment respiration based on the in situ sediment respiration rates and their temperature coefficient (Q 10 = 1.8). The annual sediment respiration was estimated to be 92 g CO2-C m−2 year−1. The total amount of organic carbon mineralization for the entire estuarine intertidal flats through sediment respiration (43 t C year−1) is equivalent to approximately 25% of the annual organic carbon load supplied from the river basin of the estuary.  相似文献   

20.
Aging dams and the rising efforts to restore stream ecosystems are increasing the number of dam decommissioning programs. Although dam decommissioning aims at improving in-stream habitat, biodiversity, and ecosystem functioning in the long term, it might also cause ecological impacts in the short term due to the mobilization of the sediment accumulated in the reservoir. Benthic biofilm in particular can be impaired by episodes of high turbidity and scouring. We conducted a multiple before-after/control-impact experiment to assess the effects of the drawdown of a large dam (42 m tall), a first step to its decommissioning, on biofilm structure (biomass and chlorophyll-a) and functioning (metabolism, nutrient uptake, and organic matter breakdown). Our results show that the reservoir drawdown reduced the autotrophic biofilm biomass (chlorophyll-a) downstream from the dam, which in turn lowered metabolism. However, nitrogen and phosphorus uptake by the biofilm was not affected. Organic matter breakdown was slower below the dam than in nearby undammed reaches before and during drawdown. All drawdown effects quickly disappeared and reaches downstream from the dam approached values found in nearby undammed reaches. Thus, our results indicate that the effects of reservoir drawdown on stream biofilms exist but may be small and disappear rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号