首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Coral reef communities of the western Atlantic have changed over the past two to three decades, but the magnitude and causes of this change remain controversial. Part of the problem is that small-scale patterns observed on individual reefs have been erroneously extrapolated to landscape and geographic scales. Understanding how reef coral assemblages vary through space is an essential prerequisite to devising sampling strategies to track the dynamics of coral reefs through time. In this paper we quantify variation in the cover of hard corals in spur-and-groove habitats (13–19 m depth) at spatial scales spanning five orders of magnitude along the Florida Reef Tract. A videographic sampling program was conducted to estimate variances in coral cover at the following hierarchical levels and corresponding spatial scales: (1) among transects within sites (0.01- to 0.1-km scale), (2) among sites within reefs (0.5- to 2-km scale), (3) among reefs within sectors of the reef tract (10- to 20-km scale), and (4) among sectors of the reef tract (50- to 100-km scale). Coral cover displayed low variability among transects within sites and among sites within reefs. This means that transects from a site adequately represented the variability of the spur-and-groove habitat of the reef as a whole. Variability among reefs within sectors was highly significant, compared with marginally significant variability among sectors. Estimates from an individual reef, therefore, did not adequately characterize nearby reefs, nor did those estimates sufficiently represent variability at the scale of the sector. The structure and composition of coral reef communities is probably determined by the interaction of multiple forcing functions operating on a variety of scales. Hierarchical analyses of coral assemblages from other geographic locations have detected high variability at scales different from those in the present study. A multiscale analysis should, therefore, precede any management decisions regarding large reef systems such as the Florida Reef Tract. Accepted: 19 July 1999  相似文献   

2.

Specialist and generalist life histories are expected to result in contrasting levels of genetic diversity at the population level, and symbioses are expected to lead to patterns that reflect a shared biogeographic history and co-diversification. We test these assumptions using mtDNA sequencing and a comparative phylogeographic approach for six co-occurring crustacean species that are symbiotic with sea anemones on western Atlantic coral reefs, yet vary in their host specificities: four are host specialists and two are host generalists. We first conducted species discovery analyses to delimit cryptic lineages, followed by classic population genetic diversity analyses for each delimited taxon, and then reconstructed the demographic history for each taxon using traditional summary statistics, Bayesian skyline plots, and approximate Bayesian computation to test for signatures of recent and concerted population expansion. The genetic diversity values recovered here contravene the expectations of the specialist–generalist variation hypothesis and classic population genetics theory; all specialist lineages had greater genetic diversity than generalists. Demography suggests recent population expansions in all taxa, although Bayesian skyline plots and approximate Bayesian computation suggest the timing and magnitude of these events were idiosyncratic. These results do not meet the a priori expectation of concordance among symbiotic taxa and suggest that intrinsic aspects of species biology may contribute more to phylogeographic history than extrinsic forces that shape whole communities. The recovery of two cryptic specialist lineages adds an additional layer of biodiversity to this symbiosis and contributes to an emerging pattern of cryptic speciation in the specialist taxa. Our results underscore the differences in the evolutionary processes acting on marine systems from the terrestrial processes that often drive theory. Finally, we continue to highlight the Florida Reef Tract as an important biodiversity hotspot.

  相似文献   

3.
Siderastrea siderea is one of the most abundant corals at high latitude shallow sites along the Florida Reef Tract (25°–27°N). This species is able to tolerate wide seawater temperature fluctuations and sedimentation stress, but its reproductive status at high latitudes and under marginal environmental conditions is poorly understood. The objectives of this study were to evaluate the reproductive potential of S. siderea along a latitudinal gradient (25°–27°N) and to determine if sexual maturity occurs in small (<12.0 cm) S. siderea colonies. Samples of coral tissue were collected in 2007, 2008, and 2009 at three sites along the latitudinal gradient and were processed for histological analysis. Oocyte size, volume, and abundance were used to calculate fecundity. Results showed that fecundity decreased with increasing latitude and that oocyte volume was the major contributing factor to this variation. Mature oocytes were observed in S. siderea colonies at sizes as small as 1.1 cm in diameter. The ability of S. siderea to reach fertility at high latitude areas suggests this species is able to reproduce under marginal environmental conditions; however, reduction in oocyte size could increase local retention of larvae. The presence of mature oocytes in small colonies suggests that stress can reduce somatic growth and shift sexual maturity to smaller colony sizes.  相似文献   

4.
5.
The interstices of coral rubble, the most common deposits of many reefs, provide extensive surfaces for a variety of sessile and vagile coelobites (cavity-dwellers). In the northern Florida Reef Tract there are at least 80 different sessile coelobites in coral rubble collected from 21 stations from in-shore lagoon to fore-reef, depth 40 meters. Three microzones of coelobites on the undersides of rubble were distinguished on the bases of their dominant community assemblages; algal microzone in the peripheral area, sponge-bryozoan microzone in the transitional area, and foraminiferal microzone in the central area. In the transect that extends some 6–7 km across the reef tract, the biomass is largest in the rubble of the shallow (1–3 m) shelf margin and it decreases shoreward and in deeper water; however, the maximum variety of species comes in the fore-reef at depths of about 20–30 m. Four coelobite zones are recognized in the reef transect based on distribution pattern and relative abundance of diagnostic species; 1) in-shore lagoon zone, 2) lagoon-reef zone, 3) marginal reef zone, and 4) fore-reef zone. Although this paper does not propose a comprehensive explanation for the distribution of coelobites, it does emphasize the importance of two factors that affect coelobite development and distribution: interstitial sediment as a negative (limiting) factor and flushing as a positive factor.  相似文献   

6.
Adaptation to localised thermal regimes is facilitated by restricted gene flow, ultimately leading to genetic divergence among populations and differences in their physiological tolerances. Allozyme analysis of six polymorphic loci was used to assess genetic differentiation between nine populations of the reef-building coral Acropora millepora over a latitudinal temperature gradient on the inshore regions of the Great Barrier Reef (GBR). Small but significant genetic differentiation indicative of moderate levels of gene flow (pairwise F ST 0.023 to 0.077) was found between southern populations of A. millepora in cooler regions of the GBR and the warmer, central or northern GBR populations. Patterns of genetic differentiation at these putatively neutral allozyme loci broadly matched experimental variation in thermal tolerance and were consistent with local thermal regimes (warmest monthly-averages) for the A. millepora populations examined. It is therefore hypothesized that natural selection has influenced the thermal tolerance of the A. millepora populations examined and greater genetic divergence is likely to be revealed by examination of genetic markers under the direct effects of natural selection.  相似文献   

7.
The population structure of benthic marine organisms is of central relevance to the conservation and management of these often threatened species, as well as to the accurate understanding of their ecological and evolutionary dynamics. A growing body of evidence suggests that marine populations can be structured over short distances despite theoretically high dispersal potential. Yet the proposed mechanisms governing this structure vary, and existing empirical population genetic evidence is of insufficient taxonomic and geographic scope to allow for strong general inferences. Here, we describe the range‐wide population genetic structure of an ecologically important Caribbean octocoral, Gorgonia ventalina. Genetic differentiation was positively correlated with geographic distance and negatively correlated with oceanographically modelled dispersal probability throughout the range. Although we observed admixture across hundreds of kilometres, estimated dispersal was low, and populations were differentiated across distances <2 km. These results suggest that populations of G. ventalina may be evolutionarily coupled via gene flow but are largely demographically independent. Observed patterns of differentiation corroborate biogeographic breaks found in other taxa (e.g. an east/west divide near Puerto Rico), and also identify population divides not discussed in previous studies (e.g. the Yucatan Channel). High genotypic diversity and absence of clonemates indicate that sex is the primary reproductive mode for G. ventalina. A comparative analysis of the population structure of G. ventalina and its dinoflagellate symbiont, Symbiodinium, indicates that the dispersal of these symbiotic partners is not coupled, and symbiont transmission occurs horizontally.  相似文献   

8.
Numerous marine invertebrates form endosymbiotic relationships with dinoflagellates of the genus Symbiodinium, yet few studies have examined the population structure of these symbionts. Here, we elucidate the population genetic structure of Symbiodinium harboured by the Caribbean octocoral Gorgonia ventalina throughout the entire range of the host. We used ten microsatellite loci to survey 35 localities spanning 3124 km across the Caribbean and Western Atlantic. Diversity of Symbiodinium haplotypes was low within colonies of G. ventalina but high among colonies. Despite high haplotypic diversity, significant evidence of clonal reproduction in Symbiodinium was detected, and most clones occurred within localities, not among them. Pairwise measures of F(ST) illustrated significant differentiation in 98% of comparisons between localities, suggesting low levels of gene flow. Clustering analyses identified six genetic groups whose distribution delimited four broad biogeographic regions. There was evidence of some connectivity among regions, corresponding with known geographic and oceanographic features. Fine-scale spatial surveys of G. ventalina colonies failed to detect differentiation among Symbiodinium at the metre scale. However, significant differentiation was observed among Symbiodinium hosted by sympatric G. ventalina colonies of different size/age classes. This cohort effect suggests that Symbiodinium may have an epidemic population structure, whereby G. ventalina recruits are infected by the locally predominant symbiont strain(s), which change over time.  相似文献   

9.
Aim The downstream hydrochoric spread of seeds of aquatic and riparian plant species, without upstream compensation, can be expected to result in downstream accumulation of population genetic diversity. This idea has been termed the ‘unidirectional dispersal hypothesis’ and is the genetic equivalent of the more generally known ‘drift paradox’. Our aim was to test this unidirectional diversity hypothesis, and to present a general synthesis of the patterns of population genetic variation across different riparian and aquatic plant species along rivers. Location The Meuse River (Belgium) and rivers world‐wide. Methods First, we used amplified fragment length polymorphism markers to compare patterns of within‐ and between‐population genetic diversity among three riparian plant species (Sisymbrium austriacum, Erysimum cheiranthoides and Rorippa sylvestris), typically occurring in different habitats along a gradient perpendicular to the Meuse River. Second, we performed a meta‐analysis on studies reporting on the population genetic structure of riparian and aquatic plant species along rivers. Results Along the Meuse River, we found significant genetic differentiation among populations of all three riparian species, and significant isolation by distance for one of them (R. sylvestris). There was no clear association between the typical habitat of a species and its population genetic structure. None of the three species provided evidence for the unidirectional dispersal hypothesis. The meta‐analysis, based on 21 data records, did not support the unidirectional dispersal hypothesis either. Average weighted population genetic differentiation across species was significant. Main conclusions Important mechanisms of upstream seed dispersal, probably through zoochory, together with higher seed recruitment opportunities in upstream habitats due to density dependence of recruitment, may explain the absence of downstream accumulation of genetic diversity. Also, it seems difficult to find consistent patterns in genetic variation in species from aquatic and riparian habitats. We argue that this is due to the recurrent extinctions and colonizations characteristic of these habitats, resulting in complex genetic patterns. Our results strongly support previous suggestions that stream ecology should consistently embrace metapopulation theory to be able to understand patterns of genetic diversity, as well as species diversity.  相似文献   

10.

Temperate organisms are generally exposed to a more variable and cooler climate than tropical organisms, and are therefore expected to have broader thermal tolerance and a different thermal performance curve. This study investigated these hypotheses by comparing the thermal performance of two common tropical coral species found in the Great Barrier Reef with the two most common temperate coral species from the Mediterranean Sea. Photosynthesis rates, dark respiration rates, maximum PSII quantum yield (Fv/Fm) and electron transport rates (rETRm) were measured on coral fragments exposed to an acute temperature increase and decrease up to 5 °C above and below the average environmental seawater temperature. Dark respiration rates and Fv/Fm increased linearly with temperature, suggesting broad thermal tolerance. For photosynthesis and rETRm, the performance breadths were surprisingly similar between the tropical and temperate species. However, the thermal optimum for performance was generally below the local average temperature, and only coincided with the prevailing environmental temperature for one of the tropical species. The broad thermal tolerance for photosynthesis displayed in this study supports previous observations that corals can survive short periods of abnormally warm temperatures and suggests that corals adopt thermal generalist strategies to cope with temperature variation in the environment. Nevertheless, current mean temperatures are 10–30% above the thermal optimum for the species studied here, demonstrating that conditions are already pushing the boundaries of coral thermal tolerance.

  相似文献   

11.
As coral reefs continue to decline worldwide, it becomes ever more necessary to understand the connectivity between coral populations to develop efficient management strategies facilitating survival and adaptation of coral reefs in the future. Orbicella faveolata is one of the most important reef‐building corals in the Caribbean and has recently experienced severe population reductions. Here, we utilize a panel of nine microsatellite loci to evaluate the genetic structure of O. faveolata and to infer connectivity across ten sites spanning the wider Caribbean region. Populations are generally well‐mixed throughout the basin (FST = 0.038), although notable patterns of substructure arise at local and regional scales. Eastern and western populations appear segregated with a genetic break around the Mona Passage in the north, as has been shown previously in other species; however, we find evidence for significant connectivity between Curaçao and Mexico, suggesting that the southern margin of this barrier is permeable to dispersal. Our results also identify a strong genetic break within the Mesoamerican Barrier Reef System associated with complex oceanographic patterns that promote larval retention in southern Belize. Additionally, the diverse genetic signature at Flower Garden Banks suggests its possible function as a downstream genetic sink. The findings reported here are relevant to the ongoing conservation efforts for this important and threatened species, and contribute to the growing understanding of large‐scale coral reef connectivity throughout the wider Caribbean.  相似文献   

12.

Knowledge of the genetic structure and cryptic diversity is essential for the conservation of endangered species. We conducted a genetic survey of the federally endangered Florida bonneted bat (Eumops floridanus) sampled from its USA range in southern Florida. Florida bonneted bats are primarily found in four regions separated by approximately 100 to 250 km, including three western natural areas: Babcock Webb WMA (BW), Polk County (PC), and Collier County (CC) and one urban population on the east coast, Miami-Dade County (MD). We used 22 microsatellite loci and cytochrome b sequences to assess the extent of connectivity and levels of genetic diversity. Populations were highly differentiated at microsatellite loci (overall FST?=?0.178) and model-based and ordination analyses showed that MD was the most distinct among pairwise comparisons. Regional populations were small (Ne?<?100) with no evidence of inbreeding. Contemporary migration and historic gene flow suggested that regional populations have not frequently exchanged migrants, and thus the divergence among western regions was likely a result of genetic drift. Significantly, mitochondrial DNA revealed that haplotypes from MD were similar or shared with those recognized as Eumops ferox from Cuba and Jamaica, and divergent (1.5%) from the remainder of bonneted bats in Florida. Our data support the management of each of the four populations as distinct population segments, and that BW, PC and CC combined are on an independent evolutionary trajectory from bats in MD. Bonneted bats in Florida appear to harbor cryptic diversity that will require a reassessment of their taxonomy.

  相似文献   

13.
Over the last several decades many picture-winged Drosophila have become less common in both geographical distribution and local population size (pers. obs., Foote pers. comm., Montgomerey pers. comm.). Here we report on a study of two Hawaiian Drosophila species, D. engyochracea, and D. hawaiiensis, to determine the impact that changes in population sizes over the past thirty years have had on the genetic diversity of these species. D. engyochracea is known from only two locations on the Island of Hawai'i (Kipuka Ki and Kipuka Pua'ulu), while D. hawaiiensis is currently more wide spread across Hawai'i Island. We collected 65 D. hawaiiensis and 66 D. engyochracea from two forest patches (kipuka) isolated by a 400 year old volcanic ash deposit. DNA sequence data for 515 bases of the mitochondrial gene COII was analyzed for both species to estimate relative total genetic diversity as well as inter-kipuka gene flow. The more wide spread species, D. hawaiiensis, has more genetic diversity (23 vs. 11 unique haplotypes) than the rarer species, D. engyochracea. The distribution of haplotypes in the kipuka is consistent with more gene flow in D. engyochracea than in D. hawaiiensis. Phylogenetic analysis indicates a small number of individuals morphologically identified as one species but have DNA sequence diagnostic for the other species. These results are consistent with these individuals being descendant from hybrids between species.  相似文献   

14.
采用空间自相关分析研究两种兰科植物的群体遗传结构   总被引:8,自引:4,他引:8  
李昂  罗毅波  葛颂 《生物多样性》2002,10(3):249-257
采用空间自相关分析方法对硬叶兜兰(Paphiopedilum micranthum)和独花兰(Changnienia amoena)4个天然群体的小尺度空间遗传结构进行了研究,以探讨两种兰科植物群体内遗传变异的分布特征及其形成机制。根据来自12个(硬叶兜兰)和16个(独花兰)RAPD引物所提供的多态位点,计算出每个群体的空间自相关系数Moran I值。结果表明,在2个硬叶兜兰群体中,遗传变异在短距离(3-4m)内表现出显著的正相关,在较大的距离内表现出显著的负相关,说明其遗传变异在群体内形成一定的空间结构。而对独花兰的空间自相关分析则显示,其遗传变异在参与计算的2个群体内不存在明显的空间结构。造成上述两种兰科植物具有不同空间分布特性的原因可能与其不同的繁殖方式有关。上述研究结果有助于进一步了解物种的进化历程和濒危机制,并为制定有效的保护策略和措施提供科学依据。  相似文献   

15.
Host specificity is one of the potential factors affecting parasite diversification because gene flow may be facilitated or constrained by the number of host species that a parasite can exploit. We test this hypothesis using a costructure approach, comparing two sympatric pinworm parasites that differ in host specificity – Parapharyngodon cubensis and Spauligodon anolis – on the Puerto Rican Bank and St. Croix in the Caribbean. Spauligodon anolis specializes on Anolis lizards, whereas P. cubensis parasitizes Anolis lizards as well as many other species of lizards and snakes. We collected lizards from across the Puerto Rican Bank and St. Croix, sampled them for S. anolis and P. cubensis and generated nuclear and mitochondrial sequence data from the parasites. We used these data to show that P. cubensis is comprised of multiple cryptic species that exhibit limited population structure relative to S. anolis, which is consistent with our prediction based on their host specificity. We also provide evidence that the distribution of P. cubensis species is maintained by competitive exclusion, and in contrast to previous theoretical work, the parasites with the greatest number of host species also reach the highest prevalence rates. Overall, our results are consistent with the hypothesis that host specificity shapes parasite diversification, and suggest that even moderate differences in host specificity may contribute to substantial differences in diversification.  相似文献   

16.
Coral reefs are deteriorating at an alarming rate mainly as a consequence of the emergence of coral diseases. The white plague disease (WPD) is the most prevalent coral disease in the southwestern Caribbean, affecting dozens of coral species. However, the identification of a single causal agent has proved problematic. This suggests more complex etiological scenarios involving alterations in the dynamic interaction between environmental factors, the coral immune system and the symbiotic microbial communities. Here we compare the microbiome of healthy and WPD-affected corals from the two reef-building species Diploria strigosa and Siderastrea siderea collected at the Tayrona National Park in the Caribbean of Colombia. Microbiomes were analyzed by combining culture-dependent methods and pyrosequencing of 16S ribosomal DNA (rDNA) V5-V6 hypervariable regions. A total of 20 410 classifiable 16S rDNA sequences reads were obtained including all samples. No significant differences in operational taxonomic unit diversity were found between healthy and affected tissues; however, a significant increase of Alphaproteobacteria and a concomitant decrease in the Beta- and Gammaproteobacteria was observed in WPD-affected corals of both species. Significant shifts were also observed in the orders Rhizobiales, Caulobacteriales, Burkholderiales, Rhodobacterales, Aleteromonadales and Xanthomonadales, although they were not consistent between the two coral species. These shifts in the microbiome structure of WPD-affected corals suggest a loss of community-mediated growth control mechanisms on bacterial populations specific for each holobiont system.  相似文献   

17.
18.
Scleractinian corals harbor microorganisms that form dynamic associations with the coral host and exhibit substantial genetic and ecological diversity. Microbial associates may provide defense against pathogens and serve as bioindicators of changing environmental conditions. Here we describe the bacterial assemblages associated with two of the most common and phylogenetically divergent reef-building corals in the Caribbean, Montastraea faveolata and Porites astreoides. Contrasting life history strategies and disease susceptibilities indicate potential differences in their microbiota and immune function that may in part drive changes in the composition of coral reef communities. The ribotype structure and diversity of coral-associated bacteria within the surface mucosal layer (SML) of healthy corals were assessed using denaturing gradient gel electrophoresis (DGGE) fingerprinting and 454 bar-coded pyrosequencing. Corals were sampled at disparate Caribbean locations representing various levels of anthropogenic impact. We demonstrate here that M. faveolata and P. astreoides harbor distinct, host-specific bacteria but that specificity varies by species and site. P. astreoides generally hosts a bacterial assemblage of low diversity that is largely dominated by one bacterial genus, Endozoicomonas, within the order Oceanospirillales. The bacterial assemblages associated with M. faveolata are significantly more diverse and exhibit higher specificity at the family level than P. astreoides assemblages. Both corals have more bacterial diversity and higher abundances of disease-related bacteria at sites closer to the mainland than at those furthest away. The most diverse bacterial taxa and highest relative abundance of disease-associated bacteria were seen for corals near St. Thomas, U.S. Virgin Islands (USVI) (2.5 km from shore), and the least diverse taxa and lowest relative abundance were seen for corals near our most pristine site in Belize (20 km from shore). We conclude that the two coral species studied harbor distinct bacterial assemblages within the SML, but the degree to which each species maintains specific microbial associations varies both within each site and across large spatial scales. The taxonomic scale (i.e., phylum versus genus) at which scientists examine coral-microbe associations, in addition to host-elicited factors and environmental fluctuations, must be considered carefully in future studies of the coral holobiont.  相似文献   

19.
Coral reefs are believed to be one of the most diverse ecosystems, but the true magnitude of their biodiversity and patterns of endemism is uncertain. This uncertainty stems partly from the relative paucity of investigations on the small, difficult to collect taxa (cryptofauna) that may make up the majority of reef biodiversity and require specialized expertise for morphological identification. To assess the extent of diversity in some of the reef micro-cryptofauna, we analyzed 414 bp of the mitochondrial cytochrome oxidase subunit I gene from 556 individuals representing two brooding amphipod species (Leucothoe ashleyae and Leucothoe kensleyi). These amphipods are commensal inside the branching vase sponge Callyspongia vaginalis, and were sampled throughout Florida and the Caribbean. Phylogenetic analyses revealed 11 deeply divergent, strongly supported lineages (seven L. ashleyae and four L. kensleyi) each with very narrow geographic ranges. The level of intraspecific lineage divergence for both morphospecies was among the highest reported for any marine crustacean (12.4–26.0% uncorrected), and exceeded that of congeners from nine diverse amphipod families, as well as the patristic genetic distance suggested as a threshold for crustacean species delineation. These findings suggest a history of cryptic speciation within each morphospecies, concomitant with a pronounced period of morphological stasis involving each of the morphotypes. The observation of multiple, highly divergent, evolutionary significant units, each endemic to Florida and Caribbean island locations, supports the emerging view that coral reef biodiversity, especially in the cryptofaunal component, is likely vastly underestimated.  相似文献   

20.
Genetic diversity and genetic relationships among 42 Pseudomonas stutzeri strains belonging to several genomovars and isolated from different sources were investigated in an examination of 20 metabolic enzymes by multilocus enzyme electrophoresis analysis. Forty-two distinct allele profiles were identified, indicating that all multilocus genotypes were represented by a single strain. All 20 loci were exceptionally polymorphic, with an average of 15.9 alleles per locus. To the best of our knowledge, this P. stutzeri sample exhibited the highest mean genetic diversity (H = 0.876) found to date in all bacterial species studied by multilocus enzyme electrophoresis. A high frequency of occurrence of null alleles was identified. The index of association (I(A)) for the P. stutzeri strains analyzed was 1.10. The I(A) values were always significantly different from zero for all subgroups studied, including clinical and environmental isolates and strains classified as genomovar 1. These results suggest that the population structure of P. stutzeri is strongly clonal, indicating that there is no significant level of assortative recombination that might destroy linkage disequilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号