首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated allometric relationships between vertebral centrum cranial surface areas and body weight and skeletal lumbar length in extant platyrrhine and cercopithecid species. Platyrrhines have smaller lumbar vertebral centra regarding the cranial surface area relative to their body weight than extant catarrhines. However, the stress to the spine of quadrupeds is not only influenced by the body weight but also its length, which contributes to the amount of bending moment. Our results indicated that platyrrhines and cercopithecids have similar lumbar vertebral centrum surface areas when they are scaled on the product of the body weight and skeletal lumbar length. Platyrrhines generally tend to have relatively short lumbar columns for a given body weight. As a result of this tendency, their vertebral centra appear relatively small if only body weight is taken into account. The centrum surface area is rather constant relative to the product of the body weight and skeletal lumbar length within platyrrhines or cercopithecids, despite the fact that skeletal lumbar length is in itself rather variable relative to body weight. This result indicates that the vertebral centrum articular area, the lumbar column length and the body weight are strongly correlated with each other and that such relationships are similar between platyrrhines and cercopithecids. These relationships were observed using both the zygapophyseal and rib definitions of the lumbar vertebrae. However, they were more clearly observed when the zygapophyseal definition was adopted. It appeared that lumbar vertebrae of Proconsul nyanzae (KNM−MW 13142) had distinctively smaller surface areas relative to its body weight and lumbar length than for platyrrhines and cercopithecids, differing from extant hominoids, which have comparatively larger lumbar vertebrae. In the case of Morotopithecus, the lumbar vertebral surface area seems to be as large as in extant platyrrhines and cercopithecids if it had a reduced number of lumbar vertebrae. It is uncertain whether its lumbar vertebral surface area was as large as in extant hominoids. Electronic Publication  相似文献   

2.
Cross-sectional allometric growth patterns of the cranial and postcranial skeleton were compared between giant transgenic (MT-rGH) mice and their normal littermate controls. Body weights, external body dimensions, and a series of cranial and postcranial linear dimensions of the skeleton were determined for samples of known age. Comparative bivariate and multivariate allometric analyses were completed in order to determine whether (1) the larger transgenic mice differed significantly from the normal controls in aspects of body and skeletal proportions, and (2) any such proportion differences resulted from general allometric effects of overall weight or skeletal size increase. Results demonstrate that the transgenic mice do exhibit significantly different body and skeletal proportions than normal control adults. Allometric comparisons of the skeletal dimensions relative to body weight reveal similar coefficients of growth allometry but several differences in gamma-intercept values in the transgenic vs. control groups. The comparisons among the skeletal dimensions of the skull and postcranium generally reveal the sharing and differential extension of common growth allometries in the two groups. Thus, the elevated levels of growth hormone (GH) and insulin-like growth factor I (IGF-I) in the transgenic mice appear to result in increased overall growth for the various skeletal elements, but in the relative proportions determined by intrinsic growth controls within that system.  相似文献   

3.
There is a widely held assumption that skeletal weights of mammals increase disproportionately with increased body size. Recent empirical studies have supported this assumption, and it has been suggested that this might account for the fact that metabolic rate scales to body weight with a negative allometry. Other studies, however, have suggested that skeletal weight in primates is directly proportionate to body weight. The results of this study support this latter interpretation and also indicate that the same is true for two other orders of mammals that were a part of the earlier allometric studies. The evidence suggests that skeletal weight scales isometricallywith body weight within individual mammalian orders. From this it is concluded that skeletal weight does not play any part in determining the negatively allometric scaling of metabolic rate.  相似文献   

4.
Gorillas are the largest and among the most sexually dimorphic of all extant primates. While gorillas have been incorporated in broad-level comparisons among large-bodied hominoids or in studies of the African apes, comparisons between gorilla subspecies have been rare. During the past decade, however, behavioral, morphological, and molecular data from a number of studies have indicated that the western lowland (Gorilla gorilla gorilla) and eastern mountain (Gorilla gorilla beringei) subspecies differ to a greater extent than has been previously believed. In this study I compare patterns of relative growth of the postcranial skeleton to evaluate whether differences between subspecies result from the differential extension of common patterns of relative growth. In addition, patterns of ontogeny and sexual dimorphism are also examined. Linear skeletal dimensions and skeletal weight were obtained for ontogenetic series of male and female G.g. gorilla (n = 315) and G.g. beringei (n = 38). Bivariate and multivariate methods of analysis were used to test for differences in patterns of relative growth, ontogeny, and sexual dimorphism between sexes of each subspecies and in same-sex comparisons between subspecies. Results indicate males and females of both subspecies are ontogenetically scaled for postcranial proportions and that females undergo an earlier skeletal growth spurt compared to males. However, results also indicate that the onset of the female growth spurt occurs at different dental stages in lowland and mountain gorillas and that mountain gorillas may be characterized by higher rates of growth. Finally, data demonstrate lowland and mountain gorilla females do not differ significantly in adult body size, but mountain gorilla males are significantly larger than lowland gorilla males, suggesting mountain gorillas are characterized by a higher degree of sexual dimorphism in body size. Thus, although lowland and mountain gorillas do not appear to have evolved novel adaptations of the postcranium which correlate with differences in locomotor behavior, the present investigation establishes subspecies differences in ontogeny and sexual dimorphism which may be linked with ecological variation. Specifically, these findings are evaluated in the context of risk aversion models which predict higher growth rates and increased levels of sexual dimorphism in extreme folivores. Am. J. Primatol. 43:1–31, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Intrauterine growth restriction (IUGR) is associated with accelerated growth after birth. Together, IUGR and accelerated growth after birth predict reduced lean tissue mass and increased obesity in later life. Although placental insufficiency is a major cause of IUGR, whether it alters growth and adiposity in early postnatal life is not known. We hypothesized that placental restriction (PR) in the sheep would reduce size at birth and increase postnatal growth rate, fat mass, and feeding activity in the young lamb. PR reduced survival rate and size at birth, with soft tissues reduced to a greater extent than skeletal tissues and relative sparing of head width (P < 0.05 for all). PR did not alter absolute growth rates (i.e., the slope of the line of best fit for age vs. parameter size from birth to 45 days of age) but increased neonatal fractional growth rates (absolute growth rate relative to size at birth) for body weight (+24%), tibia (+15%) and metatarsal (+18%) lengths, hindlimb (+23%) and abdominal (+19%) circumferences, and fractional growth rates for current weight (P < 0.05) weekly throughout the first 45 days of life. PR and small size at birth reduced individual skeletal muscle weights and increased visceral adiposity in absolute and relative terms. PR also altered feeding activity, which increased with decreasing size at birth and was predictive of increased postnatal growth and adiposity. In conclusion, PR reduced size at birth and induced catch-up growth postnatally, normalizing weight and length but increasing adiposity in early postnatal life. Increased feeding activity may contribute to these alterations in growth and body composition following prenatal restraint and, if they persist, may lead to adverse metabolic and cardiovascular outcomes in later life.  相似文献   

6.
Cebus albifrons and Cebus apella, partially sympatric capuchin monkeys from South America, are known to differ substantially in adult body mass and bodily proportions. C. apella possesses a robust, stocky build in contrast to the more gracile, relatively longer limbed body design of C. albifrons. Average birth weights and adult body lengths of these two congeners, however, are remarkably similar and do not serve to distinguish them. This study examines longitudinal growth rates and patterns of ontogenetic scaling in the extremities (humerus, radius, hand, femur, tibia, foot) in order to document the nature and magnitude of skeletal changes associated with increasing age and body mass. Our data indicate that the growth rates of the six skeletal components of the limbs differ only slightly and somewhat inconsistently between the two species. Body mass, however, increases at a consistently faster rate in C. apella. Relative to body mass, therefore, the extremities of C. albifrons scale much faster than those of C. apella. This implies that at any given postnatal body mass, C. albifrons is longer limbed than C. apella. Conversely, C. apella is heavier than C. albifrons at any given limb length or age. We suggest that such differences in body mass distribution are causally related to differences in locomotor behavior and foraging strategies. Specifically, the relatively long-limbed C. albifrons is probably more cursorial and tends to travel longer distances each day than C. apella. C. apella is a much more deliberate quadruped and is also characterized by especially vigorous and powerful foraging and feeding behaviors. We also compare our results to other (mostly cross-sectional) studies of skeletal growth allometry in nonhuman primates.  相似文献   

7.
Protein, lipid, water and caloric contents of immature rainbow trout, relative to size of whole fish, growing at different rates were examined by use of allometric analysis (y = axb, Huxley, 1932). Fish grew at different rates as a result of differences in ration size (satiation, or 4–5% of dry body weight), temperature (7 and 12°C) and bGH (bovine growth hormone) administration. In fingerlings, protein, lipid and caloric contents tended to increase (v. body weight) as a percentage of body composition, whereas above fingerling size, protein decreased while lipid and caloric contents still increased. These trends occurred regardless of growth rate differences. The correlations between protein, lipid, caloric contents and body weight were high so reliable estimates of body components can be made from body weight for all experimental treatments. At satiation rations (7 and 12°C), there were no significant differences in protein content, but lipid and caloric contents were significantly higher in control fish. At low rations, protein and caloric contents were lower than those at satiation rations and lipid was lower than in the control group. On a dry weight basis, in uninjected fish at 12°C, ration size did not influence the percentage composition (protein and lipid) but the low ration group had lower energy values per unit of body dry weight. At low temperature (7°C satiation), fish had lower lipid and higher protein content (dry weight basis) than their controls (12°C satiation), thereby resembling bGH injected fish at satiation rations. Values of caloric content estimated from protein and lipid values by use of standard conversion factors differed sufficiently from caloric values directly determined by bomb calorimetry to suggest that caloric values of lipids may change during growth. The increase in body caloric content during growth apparently results mainly from an increase in the percentage of lipid. The similarity of body composition between different growth rate groups implied a tendency for conservation of relative proportions of components such that body composition can be approximated from body weight. Equations were also given to describe the relationship between water content and body constituents, and the relationship between condition factor (K) and both the body dry weight and lipid content.  相似文献   

8.
Patterns of growth and variation of the appendicular skeleton were examined in Thorius, a speciose genus of minute terrestrial plethodontid salamanders from southern Mexico. Observations were based primarily on ontogenetic series of each of five species that collectively span the range of adult body size in the genus; samples of adults of each of seven additional species provided supplemental estimates of the full range of variation of limb skeletal morphology. Limbs are generally reduced, i.e., pedomorphic, in both overall size and development, and they are characterized by a pattern of extreme variation in the composition of the limb skeleton, especially mesopodial elements, both within and between species. Fifteen different combinations of fused carpal or tarsal elements are variably present in the genus, producing at least 18 different overall carpal or tarsal arrangements, many of which occur in no other plethodontid genus. As many as four carpal or tarsal arrangements were observed in single population samples of each of several; five tarsal arrangements were observed in one population of T. minutissimus. Left-right asymmetry of mesopodial arrangement in a given specimen is also common. In contrast, several unique, nonpedomorphic features of the limb skeleton, including ossification of the typically cartilaginous adult mesopodial elements and ontogenetic increase in the degree of ossification of long bones, are characteristic of all species and distinguish Thorius from most related genera. They form part of a mechanism of determinate skeletal growth that restricts skeletal growth after sexual maturity. Interspecific differences in the timing of the processes of appendicular skeletal maturation relative to body size are well correlated with interspecific differences in mean adult size and size at sexual maturity, suggesting that shifts in the timing of skeletal maturation provide a mechanism of achieving adult size differentiation among species. Processes of skeletal maturation that confer determinate skeletal growth in Thorius are analogous to those typical of most amniotes – both groups exhibit ontogenetic reduction and eventual disappearance of the complex of stratified layers of proliferating and maturing cartilage in long bone epiphyses – but, unlike most amniotes, Thorius lacks secondary ossification centers. Thus, the presence of secondary ossification centers cannot be used as a criterion for establishing determinate skeletal growth in all vertebrates.  相似文献   

9.
Thirty uniformly prepared, disarticulated complete skeletons of adultLoris tardigradus lydekkerianus andNycticebus coucang have been weighed for preliminary study of the weight relations between different major skeletal parts. In these forms, combined relative weight of the precaudal vertebrae, ribs and sternum surpasses the averages for the rest of the skeletal parts. The weight of the skull equals one-fifth of the total skeletal weight inLoris andNycticebus. The weight of the skeletons of the limbs (including the shoulder girdle and the hip bones) contributes less than half of the total skeletal weight in lorises. The bones of the upper limbs are lighter than those of the lower limbs in the 2 series examined.Loris andNycticebus are distinguished by having the proportionately heaviest axial skeleton and skull and the lowest relative weights of the bones of the 4 limbs. The combined relative skeletal weight of the upper and lower limbs ranges between 45.34 and 50.01 inLoris andNycticebus. The relative weight of the skeletons of the hands and feet are almost similar to the corresponding weights in the 2 series.As far as the weights of the different skeletal parts are concerned, there is no relative asymmetry in the 2 series ofLoris andNycticebus examined.  相似文献   

10.
Jan Ryser 《Oecologia》1989,78(2):264-268
Summary The consequences of reproduction for body weight, growth and survival were studied in a Swiss population of the explosive breeder, Rana temporaria. Males and females continuously loss weight in the range of 0.5% of total body weight per day from the breeding migration throughout May. Females also lost about 33% (1983) and 29% (1984) due to spawning. In addition to this significant year-to-year variation, there was also considerable individual variation in reproductive output. Skeletochronological techniques indicated that breeding male or female frogs experienced a growth reduction of several millimeters relative to non-breeding frogs of the same body size. There was no relationship between an individual female's reproductive output in consecutive years or with her subsequent growth or survival. It was concluded that weight loss is caused by a seasonally elevated metabolism in combination with a lack of feeding and represents a basic energetic cost of reproduction, resulting in lowered growth. Individual variation in relative reproductive output is mostly environmentally induced and is not an expression of different reproductive strategies. This may explain the lack of trade-offs that are predicted by the cost-of-reproduction-hypothesis.  相似文献   

11.
This study presents a historical review, a meta‐analysis, and recommendations for users about weight–length relationships, condition factors and relative weight equations. The historical review traces the developments of the respective concepts. The meta‐analysis explores 3929 weight–length relationships of the type W = aLb for 1773 species of fishes. It shows that 82% of the variance in a plot of log a over b can be explained by allometric versus isometric growth patterns and by different body shapes of the respective species. Across species median b = 3.03 is significantly larger than 3.0, thus indicating a tendency towards slightly positive‐allometric growth (increase in relative body thickness or plumpness) in most fishes. The expected range of 2.5 < b < 3.5 is confirmed. Mean estimates of b outside this range are often based on only one or two weight–length relationships per species. However, true cases of strong allometric growth do exist and three examples are given. Within species, a plot of log a vs b can be used to detect outliers in weight–length relationships. An equation to calculate mean condition factors from weight–length relationships is given as Kmean = 100aLb?3. Relative weight Wrm = 100W/(amLbm) can be used for comparing the condition of individuals across populations, where am is the geometric mean of a and bm is the mean of b across all available weight–length relationships for a given species. Twelve recommendations for proper use and presentation of weight–length relationships, condition factors and relative weight are given.  相似文献   

12.
Jones W. O. and Symons L. E. A. 1982. Protein synthesis in the whole body, liver, skeletal muscle and kidney cortex of lambs infected by the nematode Trichostrongylus colubriformis. International Journal for Parasitology12: 295–301. Tyrosine flux and the synthesis of protein in the whole body, liver, skeletal muscle and kidney cortex and of albumin in lambs infected with Trichostrongylus colubriformis and uninfected lambs fed ad libitum or pair-fed with the infected group, were measured by constant infusion of 14C-l-tyrosine. Live weight gain was lower in the infected than in pairfed lambs, but rates of whole body protein synthesis were similar in both groups. On the other hand, compared with control lambs, there was a faster rate of protein synthesis per unit of protein consumed in infected but not in pair-fed lambs. Rates of protein synthesis per unit of body weight in infected were higher than in pair-fed lambs, but similar to the rate in control lambs. The fractional synthetic rates (FSR) of albumin and liver proteins and the amount of liver protein synthesized per day were increased by infection. The FSR and amount of protein synthesized per day were depressed in skeletal muscle and kidney cortex. Anorexia did not explain any of these changes. Infection caused a loss of protein from each of these tissues, but this loss was due to anorexia in only the liver. There was generally good correlation between concentration of RNA per g fresh weight or per mg nitrogen and the FSR of protein. However, although the RNADNA ratio correlated well with synthesis in skeletal muscle, it was poorly correlated for liver proteins. The relationship between the rate of growth and protein synthesis in infected lambs is discussed.  相似文献   

13.
The relative importance of the pituitary and thyroid glands for growth of infant rats was investigated in experiments which also provided information on the possible role of the milk as a source of thyroxine (T4) or TSH for suckling pups. Following neonatal hypophysectomy (H) or radiothyroidectomy (RT) body weight gain and skeletal growth (tail growth) were inhibited by about 40% compared to sham H controls. Combined H and T did not inhibit growth any more than either operation alone. Chemical thyroidectomy (CT) by tapazole injections was less effective at inhibiting body weight gain and tail growth than was RT. CT combined with H did not inhibit growth more than H alone.Total serum thyroxine (T4) levels, as measured by radioimmunoassay, correlated well with the growth occuring following each procedure. H, RT, H plus RT and H plus CT lowered serum T4 to the limit of sensitivity of the assay (0.5 ug %). CT alone was less effective in lowering serum T4 levels than was H or RT.These results demonstrate that RT is about as effective as H at inhibiting growth of infant rats. They also show that T of H pups does not further inhibit their growth. Thus, 50–60% of the growth of infant rats is independent of the pup's pituitary and thyroid. Our results also indicate that significant passage of T4 or TSH from mother to pup via milk does not occur. If TSH were transferred via milk the H pups should have grown more than the T pups. If T4 were transfered, the plasma level of T4 should not have been reduced so drastically by T or H. The reduced but steady growth of the H, T or H plus T pups may still be maintained by as yet undefined milk factors, such as tri-iodothyronine or growth factors.  相似文献   

14.
The choice of a model taxon is crucial when investigating fossil hominids that clearly do not resemble any extant species (such as Australopithecus) or show significant differences from modern human proportions (such as Homo habilis OH 62). An “interhominoid” combination is not adequate either, as scaling with body weight is strongly divergent in African apes and humans for most skeletal predictors investigated here. Therefore, in relation to a study of seven long bone dimensions, a new taxon-“independent” approach is suggested. For a given predictor, its taxonomic “independence” is restricted to the size range over which the body weight-predictor relationship for African apes and humans converges. Different predictors produce converging body weight estimates (BWEs) for different size ranges: taxon-“independent” estimates can be calculated for small- and medium-sized hominids (e. g., for weights below 50 kg) using femoral and tibial dimensions, whereas upper limb bones provide converging results for large hominids (above 50 kg). If the remains of Australopithecus afarensis really belong to one species, the relationship of male (above 60 kg) to female body weight (approximately 30 kg) does not fall within the observed range of modern hominoids. Considering Sts 14 (22 kg) to represent a small-sized Australopithecus africanus, the level of encephalization lies well above that of extant apes. If OH 62 (approximately 25 kg), with limb proportions less human-like than those of australopithecines, indeed represents Homo habilis (which has been questioned previously), an increase in relative brain size would have occurred well before full bipedality, an assumption running counter to current assumptions concerning early human evolution. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Morphological variations in bluegill, Lepomis macrochirus, including growth-related changes, sexual dimorphism and morphological differences between populations in different habitats, were examined in samples from three reservoirs in Kagawa, Japan. Body measurements demonstrated frequent growth-related proportional changes, particularly in body depth, body width, caudal peduncle length and head length, which all showed relative increases, whereas first dorsal fin length, caudal fin length and orbital diameter became relatively shorter. Body weight increased relatively with growth, with relative growth coefficients of 3.339–3.454 for regressions between total length and body weight. Such body weight increases were likely due to the relative increases in body depth and width, and caudal peduncle depth. Although counts of fin spines, fin rays and gill rakers did not change with growth, those of scales tended to increase. Males were significantly larger than females in body depth, caudal peduncle length, head length and body weight. Sexual dimorphism was also apparent in body coloration during the breeding season. In addition, a number of morphological differences were observed between individuals from different habitats.  相似文献   

16.
W Müller 《Histochemistry》1975,43(3):241-248
Training affects the properties of skeletal muscles as well as the body weight. Furthermore, the muscle weight and the cross-sectional area of the muscle fibers are related to the body weight. A method is therefore described which eliminates the influence of the body weight on the properties of skeletal muscles and thus allows the real training effects to be studied even if the animals to be compared are of different body weights. It is suggested that this method is useful also for morphometrical studies on organs other than muscle and on experimental situations other than training, e.g. for studies on growth.  相似文献   

17.
Assessments of the relative maturity of individual children have been widely used to improve estimations of future growth as well as in evaluations of physiological disorders. Skeletal age (Hand) has been the most commonly used method for these estimations. In the clinical use of skeletal ages, certain problems are inherent regardless of which standard is selected. One of these is the method of reporting so that the cliniciam may learn of the normal variation at each age as well as the operational error of the specific assessor. Another problem lies in the proper clinical interpretation to be put upon significantly variant skeletal age readings in infancy, in childhood, or in adolescence. A third problem arises in limiting the use of skeletal ages which are read from areas which are involved with osseous pathology. And fourthly, a child's level of maturity is not static throughout his growing years; even with no change in therapeutic regime, marked shifts in relative maturity have been often noted. The wealth of experience which has now been acquired with the Greulich-Pyle standard is not the least of the advantages in using the Hand for the assessment of skeletal age. The 30 centers in this small area of the body, however, may be harmonious in development or may vary in “maturity” by as much as three years in a single hand. The problems then are: Which centers best represent the individual child? Which centers are most closely related to growth? Is growth in the hand and accurate index of the growth in other areas of the body? In total stature? The clinical assessment of future growth may best be made from a consideration of the whole child: his size, his physical characteristics, and his skeletal age, as well as the pattern of change-with-age in each of these. These problems will be discussed with illustrations drawn from the longitudinal Growth Study at this institution.  相似文献   

18.
Examination of relative growth and allometry is important for our understanding of the African apes, as they represent a closely related group of species of increasing body size. This study presents a comparison of ontogenetic relative growth patterns of some postcranial dimensions in Pan paniscus, Pantroglodytes, and Gorilla gorilla. Interspecific proportion differences among the three species are also analyzed. It is stressed that reliable ontogenetic information can only be obtained if subadults are examined-growth data cannot be inferred from static adult scaling. Results indicate that some postcranial relative growth patterns are very similar in the three species, suggesting differential extrapolation of a common growth pattern, whereas for other proportion comparisons the growth trends differ markedly among the species, producing distinct shape differences in the adults Interspecific shape changes among the three species are characterized by positive allometry of chest girth and negative allometry of body height and leg length. It is suggested that relative decrease of leg length with increasing body size among the African pongids might be expected on biomechanical grounds, in order to maintain similar locomotor abilities of climbing arborealism and quadrupedal terrestrialism. Relative to body weight or trunk length, the limbs of the bonobo (Pan paniscus) are longer than in the common chimpanzee or the gorilla, with a lower intermembral index. This may most closely resemble the primitive condition for the African apes.  相似文献   

19.
Myostatin (MSTN) functions as a negative regulator of skeletal muscle mass. In mammals, MSTN-deficient animals result in an increase of skeletal muscle mass with both hyperplasia and hypertrophy. A MSTN gene is highly conserved within the fish species, allowing speculation that MSTN-deficient fish could exhibit a double-muscled phenotype. Some strategies for blocking or knocking down MSTN in adult fish have been already performed; however, these fish show either only hyperplastic or hypertrophic growth in muscle fiber. Therefore, the role of MSTN in fish myogenesis during post-hatch growth remains unclear. To address this question, we have made MSTN-deficient medaka (mstnC315Y) by using the targeting induced local lesions in a genome method. mstnC315Y can reproduce and have the same survival period as WT medaka. Growth rates of WT and mstnC315Y were measured at juvenile (1–2 wk post-hatching), post-juvenile (3–7 wk post-hatching) and adult (8–16 wk post-hatching) stages. In addition, effects of MSTN on skeletal muscle differentiation were investigated at histological and molecular levels at each developmental stage. As a result, mstnC315Y show a significant increase in body weight from the post-juvenile to adult stage. Hyper-morphogenesis of skeletal muscle in mstnC315Y was accomplished due to hyperplastic growth from post-juvenile to early adult stage, followed by hypertrophic growth in the adult stage. Myf-5 and MyoD were up-regulated in mstnC315Y at the hyperplastic growth phase, while myogenin was highly expressed in mstnC315Y at the hypertrophic growth phase. These indicated that MSTN in medaka plays a dual role for muscle fiber development. In conclusion, MSTN in medaka regulates the number and size of muscle fiber in a temporally-controlled manner during posthatch growth.  相似文献   

20.
In the present paper we describe changes of anatomical parameters in inbred Lewis strain rats, namely their body weight, body weight gain per week, absolute and relative heart, thyroid gland and skeletal muscle weights, that are assumed to reflect experimentally altered thyroid status. The hyperthyroid state was induced by DL-thyroxine or Na 3,3',5-triiodo-L-thyronine, while methimazole was employed for inducing hypothyroidism. We have found that when compared to euthyroid rats, hypothyroidism resulted in a significantly lower body weight gain, absolute and relative heart weight and, in contrast, in a significant increase of absolute and relative thyroid gland weight. On the other hand, hyperthyroidism led to a significant increase of absolute and relative heart weight and to a significant reduction of absolute and relative thyroid gland weight. However, the body mass was not significantly altered in hyperthyroidism as compared with euthyroid rats. We conclude that our protocol leads to chronic hyper- or hypothyroidism as demonstrated by body, heart and thyroid gland weight changes. These anatomical data can thus be utilized as supplemental criteria for the assessment of the thyroid state of experimental rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号