首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women of reproductive age today. Women with PCOS often demonstrate defective ovarian steroid biosynthesis and present with hyperandrogenemia. Moreover, 50-70% of PCOS women are insulin resistant and hyperinsulinemic. Insulin acts on the ovary via its own receptor and interacts with gonadotrophins, modulating steroidogenesis. The precise role of insulin and the molecular mechanisms that take place are not yet completely explicated. This review will be focused on insulin's action on the ovary and other target tissues, describing the intracellular signaling pathways implicated in steroidogenesis and their defects in women with PCOS.  相似文献   

3.
Premature ovarian failure (POF) is characterized by elevated gonadotropins and amenorrhea in women aged <40 years. In a Lebanese family with five sisters who received the diagnosis of POF, we established linkage to the long arm of the X chromosome (between Xq21.1 and Xq21.3.3), using whole-genome SNP typing and homozygosity-by-descent mapping. By sequencing one candidate gene within that region, POF1B, we identified a point mutation localized in exon 10. This substitution of a nucleotide (G-->A), at position 1123, results in an arginine-->glutamine mutation of the protein sequence at position 329 (mutation R329Q). All the affected family members were homozygous for the mutation, whereas the unaffected members were heterozygous. Because POF1B shares high homology with the tail portion of the human myosin, we assessed the ability of both wild-type and mutant POF1B proteins to bind nonmuscle actin filaments in vitro. We found that the capacity of the mutant protein to bind nonmuscle actin filaments was diminished fourfold compared with the wild type, suggesting a function of POF1B in germ-cell division. Our study suggests that a homozygous point mutation in POF1B influences the pathogenesis of POF by altering POF1B binding to nonmuscle actin filaments.  相似文献   

4.
5.
6.
Normal gonadal function is critically dependent on the integrity of pituitary-gonadal axis, where follicle-stimulating hormone (FSH) plays a key role. In the female, FSH is required for follicular growth, estrogen production and oocyte maturation. Its function is mediated by its specific receptor (FSHR), and defective FSHR has been shown to affect folliculogenesis and ovarian function. In this study, we screened the entire coding region of FSHR gene for pathogenic mutations in women with premature ovarian failure (POF) (n = 16) and polycystic ovary syndrome (PCOS) (n = 124) and found no mutations in these patients. Two known polymorphisms, Thr307Ala and Ser680Asn showed similar distributions of the allelic variations and protein isoforms in PCOS and normal control subjects (n = 236). It appears from this study that mutations in the coding regions of FSHR gene are not a causative factor of the above clinical manifestations in Chinese Singapore women.  相似文献   

7.
8.
Progesterone (P4) is involved in the regulation of essential reproductive functions affecting the target cells through both nuclear progesterone receptors (PGRs) and membrane progesterone receptors. The aim of this study was to determine the mRNA and protein expression for PGRMC1, PGRMC2, SERBP1 and PGR within the bovine endometrium during the estrous cycle and the first trimester of pregnancy. There were no changes in PGRMC1 and PGRMC2 mRNA and protein expression during the estrous cycle, however, mRNA levels of PGRMC1 and PGRMC2 were increased (P < 0.001) in pregnant animals. SERBP1 mRNA expression was increased (P < 0.05), while the level of this protein was decreased (P < 0.05) on days 11–16 of the estrous cycle. The expression of PGR mRNA was higher (P < 0.01) on days 17–20 compared to days 6–10 and 11–16 of the estrous cycle and pregnancy. PGR-A and PGR-B protein levels were elevated on days 1–5 and 17–20 of the estrous cycle as compared to other stages of the cycle and during pregnancy. In conclusion, our results indicate that P4 may influence endometrial cells through both genomic and nongenomic way. This mechanism may contribute to the regulation of the estrous cycle and provide protection during pregnancy.  相似文献   

9.
A variety of prefractionation methods (including a novel reversed-phase solid-phase-extraction (RP-SPE) combined with SDS-PAGE and proteomic based approaches (e.g., 2-dimensional gel electrophoresis (2DE) and MALDI-TOF mass spectrometry combined with Artificial Neural Network (ANN) bioinformatic tools) were used to investigate the protein/peptide signatures in patients with Polycystic Ovary Syndrome (PCOS). Four potential PCOS biomarkers were identified (complement C4alpha3c and C4gamma and haptoglobin alpha and beta chains).  相似文献   

10.
Bertini V  Viola D  Vitti P  Simi P  Valetto A 《Gene》2012,503(1):123-125
We report on a 36-year-old infertile woman, presenting a premature ovarian failure with an otherwise normal female phenotype. Cytogenetic analyses showed the presence of a supernumerary marker chromosome, that was characterized by FISH (fluorescent in situ hybridization) and array CGH (comparative genomic hybridization). This marker chromosome was derived from chromosome 15, and contained only heterochromatic material. The Prader Willi/Angelman region was not present. No duplications of the 15q regions were detected by array CGH. Supernumerary markers of chromosome 15 have been reported in cases of infertility and amenorrhea, that is also described in cases with marker derived by other acrocentric chromosomes. The case here presented constitutes a further example that etiology of POF is not always associated with a defective gene, but in some cases oocytes atresia can be the consequence of the abnormal meiotic pairing of chromosomes.  相似文献   

11.
Peluso JJ 《Steroids》2011,76(9):903-909
Various ovarian cell types including granulosa cells and ovarian surface epithelial cells express the progesterone (P4) binding protein, progesterone receptor membrane component-1 (PGRMC1). PGRMC1 is also expressed in ovarian tumors. PGRMC1 plays an essential role in promoting the survival of both normal and cancerous ovarian cell in vitro. Given the clinical significance of factors that regulate the viability of ovarian cancer, this review will focus on the role of PGRMC1 in ovarian cancer, while drawing insights into the mechanism of PGRMC1's action from cell lines derived from healthy ovaries as well as ovarian tumors.Studies using PGRMC1siRNA demonstrated that P4's ability to inhibit ovarian cells from undergoing apoptosis in vitro is dependent on PGRMC1. To confirm the importance of PGRMC1, the ability of PGRMC1-deplete ovarian cancer cell lines to form tumors in intact nude mice was assessed. Compared to PGRMC1-expressing ovarian cancer cells, PGRMC1-deplete ovarian cancer cells formed tumors in fewer mice (80% compared to 100% for controls). Moreover, the number of tumors derived from PGRMC1-deplete ovarian cancer cells was 50% of that observed in controls. Finally, the tumors that formed from PGRMC1-deplete ovarian cancer cells were about a fourth the size of tumors derived from ovarian cancer cells with normal levels of PGRMC1. One reason for PGRMC1-deplete tumors being smaller is that they had a poorly developed microvasculature system. How PGRMC1 regulates cell viability and in turn tumor growth is not known but part of the mechanism likely involves the regulation of genes that promote cell survival and inhibit apoptosis.  相似文献   

12.
This study was conducted in Turkish patients with polycystic ovary syndrome to determine the frequency of I/D polymorphism genotypes of angiotensin converting enzyme gene, and to examine the role of this polymorphism in polycystic ovary syndrome development. Genomic DNA obtained from 200 persons (100 patients with polycystic ovary syndrome and 100 healthy controls) was used in the study. DNA was multiplied by polymerase chain reaction using I and D allele-specific primers. Polymerase chain reaction products were assessed with a charge coupled device (CCD) camera by being exposed to 2% agarose gel electrophoresis. There was statistically significant difference between the groups with respect to genotype distribution (p < 0.001). The D allele frequency was indicated as 68% and I allele was as 32% in the patients, whereas it was 51.5-48.5% respectively in the control group. As a result of our study we may assert that angiotensin converting enzyme gene I/D polymorphism DD genotype should be considered as a genetic marker in polycystic ovary syndrome development in this Turkish study population.  相似文献   

13.
14.
15.
The present studies were designed to assess the roles of progesterone (P4) and Progesterone Receptor Membrane Component 1 (PGRMC1) in regulating mitosis of spontaneously immortalized granulosa cells (SIGCs) and ovarian cancer cells, SKOV-3 cells. Because PGRMC1 has been detected among the proteins of the human mitotic spindle, we theorized that P4 and PGRMC1 could affect mitosis through a microtubule-dependent process. The present study confirms that SIGC growth is slowed by either P4 treatment or transfection of a PGRMC1 antibody. In both cases, slower cell proliferation was accompanied by an increased percentage of mitotic cells, which is consistent with a P4-induced prolongation of the M phase of the cell cycle. In addition, P4 increased the stability of the spindle microtubules, as assessed by the rate of beta-tubulin disassembly in response to cooling. Also, P4 increased spindle microtubule stability of SKOV-3 cells. This effect was mimicked by the depletion of PGRMC1 in these cells. Importantly, P4 did not increase the stability of the microtubules over that observed in PGRMC1-depleted SKOV-3 cells. Immunofluorescent analysis revealed that PGRMC1 is distributed to the spindle apparatus as well as to the centrosomes at metaphase. Further in situ proximity ligation assay revealed that PGRMC1 interacted with beta-tubulin. Taken together, these results suggest that P4 inhibits mitosis of ovarian cells by increasing the stability of the mitotic spindle. Moreover, P4's actions appear to be dependent on PGRMC1's function within the mitotic spindle.  相似文献   

16.

Objectives  

It has been suggested that inhibin secretion is altered in women with the polycystic ovary syndrome (PCOS). However, the contribution of a preceding luteal phase has not been taken into account. The aim of the present study was to investigate whether progesterone in the context of a simulated luteal phase affects basal and FSH-induced inhibin secretion in women with PCOS and elevated LH.  相似文献   

17.

Background  

In lower vertebrates, steroid-induced oocyte maturation is considered to involve membrane-bound progestin receptors. Two totally distinct classes of putative membrane-bound progestin receptors have been reported in vertebrates. A first class of receptors, now termed progesterone membrane receptor component (PGMRC; subtypes 1 and 2) has been studied since 1996 but never studied in a fish species nor in the oocyte of any animal species. A second class of receptors, termed membrane progestin receptors (mPR; subtypes alpha, beta and gamma), was recently described in vertebrates and implicated in the progestin-initiated induction of oocyte maturation in fish.  相似文献   

18.
The pathogenesis of polycystic ovary syndrome (PCOS) is poorly understood. PCOS-like phenotypes are produced by prenatal androgenization (PA) of female rhesus monkeys. We hypothesize that perturbation of the epigenome, through altered DNA methylation, is one of the mechanisms whereby PA reprograms monkeys to develop PCOS. Infant and adult visceral adipose tissues (VAT) harvested from 15 PA and 10 control monkeys were studied. Bisulfite treated samples were subjected to genome-wide CpG methylation analysis, designed to simultaneously measure methylation levels at 27,578 CpG sites. Analysis was carried out using Bayesian Classification with Singular Value Decomposition (BCSVD), testing all probes simultaneously in a single test. Stringent criteria were then applied to filter out invalid probes due to sequence dissimilarities between human probes and monkey DNA, and then mapped to the rhesus genome. This yielded differentially methylated loci between PA and control monkeys, 163 in infant VAT, and 325 in adult VAT (BCSVD P<0.05). Among these two sets of genes, we identified several significant pathways, including the antiproliferative role of TOB in T cell signaling and transforming growth factor-β (TGF-β) signaling. Our results suggest PA may modify DNA methylation patterns in both infant and adult VAT. This pilot study suggests that excess fetal androgen exposure in female nonhuman primates may predispose to PCOS via alteration of the epigenome, providing a novel avenue to understand PCOS in humans.  相似文献   

19.
20.
Mammalian spermatozoa have been used recently to model the study of rapid, non-genomic effects of progesterone on cell. Our study used progesterone-BSA-fluorescein isothiocyanate conjugate to indicate the presence of a progesterone receptor on the surface of >90% of a goat sperm population. The sperm possessed the receptor at 0 h and capacitation had no modulating effect on the number of sperm responsive to P-BSA-FITC. Although a decrease in receptor bearing cells was observed during the course of capacitation, the effect may have been due to the induction of acrosome reaction (AR) by the conjugate. This decrease was blocked by the pre-treatment of the spermatozoa with EGTA. Binding of conjugate occurred at the apical portion of the acrosome and at the post-acrosomal region in all the sperm, possibly mediating sperm functions other than the acrosome reaction. The P-BSA-FITC treated cells showed a single peak in a flow cytometer suggesting that the sperm population was homogeneous. Competition studies with free progesterone and GABA with P-BSA-FITC confirmed that the binding was specific and that progesterone mediated its action via a GABA(A)/Cl(-) channel complex akin to the one present in neuronal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号