首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four ascomycete species of the genus Gaeumannomyces infect roots of monocotyledons. Gaeumannomyces graminis contains four varieties, var. tritici, var. avenae, var. graminis, and var. maydis. G. graminis varieties tritici, avenae, and graminis have Phialophora-like anamorphs and, together with the other Gaeumannomyces and Phialophora species found on cereal roots, constitute the Gaeumannomyces-Phialophora complex. Relatedness of a number of Gaeumannomyces and Phialophora isolates was assessed by comparison of DNA sequences of the 18S rRNA gene, the 5.8S rRNA gene, and the internal transcribed spacers (ITS). G. graminis var. tritici, G. graminis var. avenae, and G. graminis var. graminis isolates can be distinguished from each other by nucleotide sequence differences in the ITS regions. The G. graminis var. tritici isolates can be further subdivided into R and N isolates (correlating with ability [R] or inability [N] to infect rye). Phylogenetic analysis of the ITS regions of several oat-infecting G. graminis var. tritici isolates suggests that these isolates are actually more closely related to G. graminis var. avenae. The isolates of Magnaporthe grisea included in the analysis showed a surprising degree of relatedness to members of the Gaeumannomyces-Phialophora complex. G. graminis variety-specific oligonucleotide primers were used in PCRs to amplify DNA from cereal seedlings infected with G. graminis var. tritici or G. graminis var. avenae, and these should be valuable for sensitive detection of pathogenic isolates and for diagnosis of take-all.  相似文献   

2.
Isolates of Gaeumannomyces graminis var. tritici, the causal agent of take-all of wheat, varied in sensitivity in vitro to the antibiotics phenazine-1-carboxylic acid (PCA) and 2,4-diacetylphloroglucinol (Phl) produced by fluorescent Pseudomonas spp. shown previously to have potential for biological control of this pathogen. None of the four isolates of G. graminis var. avenae examined were sensitive to either of the antibiotics in vitro at the concentrations tested. The single isolate of G. graminis var. graminis tested was insensitive to PCA at 1.0 (mu)g/ml. Pseudomonas fluorescens 2-79 and Pseudomonas chlororaphis 30-84, both of which produce PCA, effectively suppressed take-all caused by each of two PCA-sensitive isolates of G. graminis var. tritici. PCA-producing strains exhibited a reduced ability or complete inability to suppress take-all caused by two of three isolates of G. graminis var. tritici that were insensitive to PCA at 1.0 (mu)g/ml. P. fluorescens Q2-87, which produces Phl, suppressed take-all caused by three Phl-sensitive isolates but failed to provide significant suppression of take-all caused by two isolates of G. graminis var. tritici that were insensitive to Phl at 3.0 (mu)g/ml. These findings affirm the role of the antibiotics PCA and Phl in the biocontrol activity of these fluorescent Pseudomonas spp. and support earlier evidence that mechanisms in addition to PCA are responsible for suppression of take-all by strain 2-79. The results show further that isolates of G. graminis var. tritici insensitive to PCA and Phl are present in the pathogen population and provide additional justification for the use of mixtures of Pseudomonas spp. that employ different mechanisms of pathogen suppression to manage this disease.  相似文献   

3.
Agrobacterium sp. and related species which in the soil and in the rhizosphere of wheat accompany the fungus Gaemannomyces graminis var. tritici and cause take-all of the wheat roots produced polysaccharides in pure cultures (glucans, mannoglucans and galactomannoglucans). These polysaccharides were utilized better by the mycelium of G. graminis than glucose and polysaccharides of plant origin that occurred on the surface of wheat roots (the so-called mucigel). At lower concentrations these bacterial polysaccharides stimulated growth of wheat roots, higher concentrations (more than 0.1%) were inhibitory. Bacteria inoculated on the surface of wheat first inhibited and then stimulated the development of the plants and their growth. Changes in the growth rate of wheat, the rhizosphere of which was colonized by bacteria simultaneously with the fungus G. graminis and also some changes in the course of the disease of wheat roots caused by the fungus can be explained by the inhibitory or stimulatory effect of polysaccharides of accompanying bacteria.  相似文献   

4.
Preliminary results suggest a possible relationship between lignin synthesis in wheat roots and the observed interaction between Gaeumannomyces graminis (Sacc.) Arx & Olivier and Phialophora radicicola Cain var. graminicola Deacon when they parasitise wheat roots. It was found that colonisation of wheat roots by P. radicicola resulted in a qualitative change in the lignin of the root, such that the content of the p-hydroxy type of aromatic nucleus was reduced almost to zero. It was also found that some of the metabolic precursors of lignin were inhibitory to the growth of G. graminis in Petri-dish culture. Most inhibitory of these precursors was caffeic acid, which reduced the growth rate of G. graminis by half at a concentration of 37 ppm. It is tentatively suggested that colonisation by P. radicicola results in an increased activity of polyphenol oxidase in the root tissues. This would lead to a more rapid synthesis of caffeic acid, with a depletion of the level of p-coumaric acid, and probably an increase in the levels of ferulic acid and sinapic acid. As well as bringing about a change in the composition of the lignin of the root, as the results show, the possible accumulation of caffeic acid in the root tissues might explain the greater resistance to infection by G. graminis observed in roots colonised first by P. radicicola.  相似文献   

5.
Colonisation of plant roots by endophytic fungi may confer benefits to the host such as protection against abiotic or biotic stresses or plant growth promotion. The exploitation of these properties is of great relevance at an applied level, either to increase yields of agricultural crops or in reforestation activities. Fusarium equiseti is a naturally occurring endophyte in vegetation under stress in Mediterranean ecosystems. Pochonia chlamydosporia is a nematode egg-parasitic fungus with a worldwide distribution. Both fungi have the capacity to colonise roots of non-host plants endophytically and to protect them against phytopathogenic fungi under laboratory conditions. The aim of this study was to evaluate the root population dynamics of these fungi under non-axenic practical conditions. Both fungal species were inoculated into barley roots. Their presence in roots and effects on plant growth and incidence of disease caused by the pathogen Gaeumannomyces graminis var. tritici were monitored periodically. Both fungi colonised barley roots endophytically over the duration of the experiment and competed with other existing fungal root colonisers. Furthermore, colonisation of roots by P. chlamydosporia promoted plant growth. Although a clear suppressive effect on disease could not be detected, F. equiseti isolates reduced the mean root lesion length caused by the pathogen. Results of this work suggest that both F. equiseti and P. chlamydosporia are long-term root endophytes that confer beneficial effects to the host plant.  相似文献   

6.
The linear growth rates of Gaeumannomyces graminis var. graminis, G. graminis var. tritici, Phialophora radicicola var. graminicola and a lobed hyphopodiate Phialophora sp. were studied on agar at various temperatures between 5 and 30 °C and on wheat roots at two temperature regimes (12 h at 7°/12 h at 13 °C and 12 h at 17°/12 h at 23 °C). On agar at 30 °C, the isolates of G. graminis graminis grew faster than those of G. graminis tritici and Phialophora sp. but three isolates of G. g. graminis grew more slowly than the other two fungi at 5 and 10 °C. Two other isolates of G. g. graminis were cold-tolerant and had growth rates comparable to those of G. g. tritici and Phialophora sp. at 10 °C. The growth rates of Australian isolates of P. radicicola graminicolu were similar to that of a British isolate and were about a third to a half those of the other three fungi at most temperatures. The growth rates of the fungi on wheat roots at the low and high temperature regimes were correlated with the growth rates on agar at 10 and 20 °C respectively. The correlation was better at low temperatures r= 0.81) than at high temperatures (r = 0.62). Cross-protection experiments using two G. g. graminis isolates which grow poorly at temperatures below 15 °C and a cold-tolerant isolate each of G. g. graminis and Phialophora sp. showed that, while all four fungi protected wheat against take-all at high temperatures (17/23 °C) as evidenced by less severe disease and significantly greater dry weights, only the cold-tolerant fungi were effective at low temperatures (7/13 °C). The use of cold-tolerant isolates of avirulent fungi in field experiments may result in better protection in the early stages of wheat growth when Australian soil temperatures are mostly below 15 °C.  相似文献   

7.
Pseudomonas fluorescens 2-79 (NRRL B-15132) and its rifampin-resistant derivative 2-79RN10 are suppressive to take-all, a major root disease of wheat caused by Gaeumannomyces graminis var. tritici. Strain 2-79 produces the antibiotic phenazine-1-carboxylate, which is active in vitro against G. graminis var. tritici and other fungal root pathogens. Mutants defective in phenazine synthesis (Phz-) were generated by Tn5 insertion and then compared with the parental strain to determine the importance of the antibiotic in take-all suppression on wheat roots. Six independent, prototrophic Phz- mutants were noninhibitory to G. graminis var. tritici in vitro and provided significantly less control of take-all than strain 2-79 on wheat seedlings. Antibiotic synthesis, fungal inhibition in vitro, and suppression of take-all on wheat were coordinately restored in two mutants complemented with cloned DNA from a 2-79 genomic library. These mutants contained Tn5 insertions in adjacent EcoRI fragments in the 2-79 genome, and the restriction maps of the region flanking the insertions and the complementary DNA were colinear. These results indicate that sequences required for phenazine production were present in the cloned DNA and support the importance of the phenazine antibiotic in disease suppression in the rhizosphere.  相似文献   

8.
9.
Cell death in the root cortex of cereals was assessed by an inability to detect nuclei, using acridine orangelfluorescence microscopy after fixation and mild acid hydrolysis. Seminal roots were scanned at x 100 magnification and their cortices were considered dead when nuclei were absent from all cell layers except the innermost one, adjacent to the endodermis; this cell layer remains alive long after the rest of the cortex has died. Cortical death of wheat and barley roots occurred in the absence of major pathogens. Cell death started behind the root hair zone of the main root axis, initially in the outermost cell layer of the cortex and then progressively inwards towards the endodermis; however, the cortex remained alive for a distance of c. 800 μm around emerging root laterals. The rate of cortical death was more rapid in wheat than in barley, both under field conditions and in the glasshouse at 20 °C. Thus, field-grown spring wheat (Sicca) showed 50% death of the root cortex in the top 6 cm of first seminal roots after 35 days (growth stage 1–2), whereas spring barley (Julia) showed 50% death of the root cortex after 67 days (growth stage 8). In the glasshouse, the top 9 cm of first seminal roots on 16-day plants showed 55% cortical death in wheat (Cappelle-Desprez) but only 2.5% cortical death in barley (Igri). The same rates of death were found in all subsequent seminal roots. The wheat root cortex died at the same rate in sterile and unsterile conditions, and at the same rate in the presence/absence of Phialophora radicicola Cain var. graminicola Deacon or Aureobasidium bolleyi (Sprague) von Arx. Hence, although P. radicicola and other soil microorganisms may benefit from root cortex death they do not exert biological control of take-all by enhancing or retarding the rate of this process. To study the effects of cortical death on take-all, Gaeumannomyces graminis (Sacc.) Arx & Olivier var. tritici Walker was point-inoculated at the tips and on older (5 and 15 day) regions of wheat seminal roots. After 17 days at 20 °C the fungus had grown to the same extent as runner-hyphae in all cases, but the severity of disease decreased with increasing age of the root cortex prior to inoculation; thus, G. graminis caused most extensive vascular discoloration and most intense vascular blockage in roots inoculated at their tips. Similar experiments on wheat and barley roots inoculated separately with P. radicicola and G. graminis suggest that at least three factors associated with cortical death influence infection by these fungi: (1) initially, cell death may enhance infection because nutrients are made available to the parasites and host resistance within the cortex is reduced; (2) weak parasites and soil saprophytes may colonise dead and dying cortices in competition with G. graminis and P. radicicola and thereby reduce infection by these fungi; (3) changes in the endodermis and adjacent cell layers may be associated with cortical death and may retard invasion of the stele. Future work will seek to establish the relative importance of these factors and extend this study to other cereal host-fungus combinations.  相似文献   

10.
The effect of temperature on the growth of Chrysosporium pannorum, Cylindrocarpon sp., Penicillium janthinellum, and Phoma herbarum, isolated from tundra soils, was studied. The growth in two systems, glucose-mineral agar plates and sand, moistened with glucose-mineral broth, was compared. All isolates showed an exponential increase in mass (measured as protein increase) in sand and a linear rate of extension on agar. Radial increase on agar was shown not to be a good index of growth in sand. Trends in growth rates in the sand cultures indicated that all four fungi can grow at low temperatures. The growth rate for Penicillium janthinellum at 15 degrees C was higher than at 20 degrees C, and Cylindrocarpon sp. and Phoma herbarum had higher growth rates at 2.5 degrees C than at 5 degrees C. These data suggest that there may be some adaptation by these fungi to growth in Arctic regions.  相似文献   

11.
12.
13.
The population of microorganisms in wheat rhizosphere changed in the presence of the fungus Gaeumannomyces graminis var. tritici causing the take-all of wheat. In the majority of cases when the soil was artificially contaminated by the fungus, both the number of bacteria in the rhizosphere and the bacteria/fungi ratio temporarily increased. At the beginning bacteria growing in the presence of NH4+ predominated, later bacteria utilizing organic N-substances prevailed. Pseudomonas fluorescens and the related species colonized the rhizosphere and the soil to a greater extent in the presence of G. graminis. The wheat rhizosphere with G. graminis was found to contain a higher level of the slime-producing bacterium Agrobacterium spp.; this microorganism occurred on hyphal surfaces (in hyphosphere) of both G. graminis growing in soil and Mucor spp. Changes in microbial populations in the wheat rhizosphere during the first stage of colonization by G. graminis can be partly explained by a simultaneous rhizosphere colonization by microorganisms which accompany this fungus in soil. In the period of increase in the number of bacteria in rhizosphere a temporary stimulation of wheat growth was observed.  相似文献   

14.
Phenazine antibiotics produced by Pseudomonas fluorescens 2-79 and Pseudomonas aureofaciens 30-84, previously shown to be the principal factors enabling these bacteria to suppress take-all of wheat caused by Gaeumannomyces graminis var. tritici, also contribute to the ecological competence of these strains in soil and in the rhizosphere of wheat. Strains 2-79 and 30-84, their Tn5 mutants defective in phenazine production (Phz-), or the mutant strains genetically restored for phenazine production (Phz+) were introduced into Thatuna silt loam (TSL) or TSL amended with G. graminis var. tritici. Soils were planted with three or five successive 20-day plant-harvest cycles of wheat. Population sizes of Phz- derivatives declined more rapidly than did population sizes of the corresponding parental or restored Phz+ strains. Antibiotic biosynthesis was particularly critical to survival of these strains during the fourth and fifth cycles of wheat in the presence of G. graminis var. tritici and during all five cycles of wheat in the absence of take-all. In pasteurized TSL, a Phz- derivative of strain 30-84 colonized the rhizosphere of wheat to the same extent that the parental strain did. The results indicate that production of phenazine antibiotics by strains 2-79 and 30-84 can contribute to the ecological competence of these strains and that the reduced survival of the Phz- strains is due to a diminished ability to compete with the resident microflora.  相似文献   

15.
Phenazine antibiotics produced by Pseudomonas fluorescens 2-79 and Pseudomonas aureofaciens 30-84, previously shown to be the principal factors enabling these bacteria to suppress take-all of wheat caused by Gaeumannomyces graminis var. tritici, also contribute to the ecological competence of these strains in soil and in the rhizosphere of wheat. Strains 2-79 and 30-84, their Tn5 mutants defective in phenazine production (Phz-), or the mutant strains genetically restored for phenazine production (Phz+) were introduced into Thatuna silt loam (TSL) or TSL amended with G. graminis var. tritici. Soils were planted with three or five successive 20-day plant-harvest cycles of wheat. Population sizes of Phz- derivatives declined more rapidly than did population sizes of the corresponding parental or restored Phz+ strains. Antibiotic biosynthesis was particularly critical to survival of these strains during the fourth and fifth cycles of wheat in the presence of G. graminis var. tritici and during all five cycles of wheat in the absence of take-all. In pasteurized TSL, a Phz- derivative of strain 30-84 colonized the rhizosphere of wheat to the same extent that the parental strain did. The results indicate that production of phenazine antibiotics by strains 2-79 and 30-84 can contribute to the ecological competence of these strains and that the reduced survival of the Phz- strains is due to a diminished ability to compete with the resident microflora.  相似文献   

16.
全蚀病菌在玉米上的新变种   总被引:1,自引:0,他引:1  
本文报道了玉米全蚀病菌禾顶囊壳菌(Gaeumannomyces graminis)的新变种——玉米变种[Gaeumannomyces graminis(Sacc.)Arx et Olivler var.maydis Yao Wang et Zhu var.nov.]。该变种在形态学、致病性、生物学及可溶性蛋白电泳谱带等方面,均不同于禾顶囊壳菌小麦变种[G.graminis var,tritici J.Walker)、水稻变种(G.graminis var.graminis Trans.)和燕麦变种[G.graminis var.avenae(Turner)Dennis]。模式标本保存在沈阳农业大学真菌标本室。  相似文献   

17.
Pseudomonas aureofaciens Q2-87 produces the antibiotic 2,4-diacetophloroglucinol (Phl), which inhibits Gaeumannomyces graminis var. tritici and other fungi in vitro. Strain Q2-87 also provides biological control of take-all, a root disease of wheat caused by this fungus. To assess the role of Phl in the antifungal activity of strain Q2-87, a genetic analysis of antibiotic production was conducted. Two mutants of Q2-87 with altered antifungal activity were isolated by site-directed mutagenesis with Tn5. One mutant, Q2-87::Tn5-1, did not inhibit G. graminis var. tritici in vitro and did not produce Phl. Two cosmids were isolated from a genomic library of the wild-type strain by probing with the mutant genomic fragment. Antifungal activity and Phl production were coordinately restored in Q2-87::Tn5-1 by complementation with either cosmid. Mobilization of one of these cosmids into two heterologous Pseudomonas strains conferred the ability to synthesize Phl and increased their activity against G. graminis var. tritici, Pythium ultimum, and Rhizoctonia solani in vitro. Subcloning and deletion analysis of these cosmids identified a 4.8-kb region which was necessary for Phl synthesis and antifungal activity.  相似文献   

18.
Pseudomonas aureofaciens Q2-87 produces the antibiotic 2,4-diacetophloroglucinol (Phl), which inhibits Gaeumannomyces graminis var. tritici and other fungi in vitro. Strain Q2-87 also provides biological control of take-all, a root disease of wheat caused by this fungus. To assess the role of Phl in the antifungal activity of strain Q2-87, a genetic analysis of antibiotic production was conducted. Two mutants of Q2-87 with altered antifungal activity were isolated by site-directed mutagenesis with Tn5. One mutant, Q2-87::Tn5-1, did not inhibit G. graminis var. tritici in vitro and did not produce Phl. Two cosmids were isolated from a genomic library of the wild-type strain by probing with the mutant genomic fragment. Antifungal activity and Phl production were coordinately restored in Q2-87::Tn5-1 by complementation with either cosmid. Mobilization of one of these cosmids into two heterologous Pseudomonas strains conferred the ability to synthesize Phl and increased their activity against G. graminis var. tritici, Pythium ultimum, and Rhizoctonia solani in vitro. Subcloning and deletion analysis of these cosmids identified a 4.8-kb region which was necessary for Phl synthesis and antifungal activity.  相似文献   

19.
小麦内生细菌及其对根茎部主要病原真菌的抑制作用   总被引:24,自引:1,他引:23  
对小麦植株不同生育期、不同器官的内生细菌进行了分离和数量变化分析.结果表明,根、茎、叶及未成熟籽粒等器官中存在大量的内生细菌,鲜组织中平均约含内生细菌5.0×105 CFU·g-1,其中根系中内生细菌数量达7.8×105 CFU·g-1,而茎秆、叶片和未成熟籽粒中内生细菌数量分别为4.8×105、3.2×105和2.8×105 CFU·g-1.内生细菌数量在不同生育期也存在差异,幼苗期平均约为3.1×105 CFU·g-1、拔节期和灌浆期分别为5.7×105和7.0×105 CFU·g-1.不同小麦田块之间存在明显差异,长武县一田块植物鲜组织中内生细菌的数量为6.1×105 CFU·g-1,而大荔县一田块约为3.9×105 CFU·g-1.试验结果发现,对小麦全蚀病菌具有拮抗作用的内生细菌有51株、对小麦纹枯病菌具有抑制作用的内生细菌有45株.用平板对峙法测定,有71株对两种病原真菌均有拮抗作用,对小麦全蚀病菌抑菌圈直径大于10 mm的有23株,其中来源于根系、茎秆、叶片和籽粒的分别为6株、7株、9株和1株;对小麦纹枯病菌抑菌圈超过10 mm的有20株,其中来源于根系、茎秆、叶片和籽粒的分别为7株、5株、7株和1株,说明从小麦叶片诱捕分离的内生细菌中,对小麦全蚀病菌和纹枯病菌抑菌作用较强的分离株比率最高,其次为茎秆,而根部和未成熟籽粒中比例明显较低.  相似文献   

20.
We have investigated the presence of endophytic fungi associated with rose plants (Rosa hybrida) in Colombia. Endophytic fungi were isolated from healthy leaves of ten ornamental roses plants from gardens cultured in malt extract, peptone, yeast extract agar plates (MPY). We sampled 560 leaves fragments, 56 per sample. Endophytic fungi comprised 92 isolates (16.4%); of these isolates, 41 were classified as sterile mycelium (without reproductive structures that allowed their identification), 31 isolates were identified to genus or to species, and 20 isolates could not be identified at all. The identified endophytic fungi were as follow: Nigrospora oryzae, Aureobasidium spp, Acremonium spp. The fungi Nodulisporium sp, Gliocladium virens, Cladosporium sp, Alternaria sp, Phoma sp and Chaetomium globosum were represented by one isolate each. Since the endophytic fungi are known for their capacity to produce metabolites with biological activity, it is possible that the microorganisms found in this study have potential as antagonist of rose pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号