共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
RNA silencing 总被引:7,自引:0,他引:7
Ding SW 《Current opinion in biotechnology》2000,11(2):152-156
Gene silencing through the increased degradation of mRNA appears to represent a novel cellular pathway that is functional in a broad range of organisms. Recent work has established a role for RNA silencing in host antiviral defense and transposon silencing, suggesting a potential application in plant functional genomics. 相似文献
3.
4.
5.
6.
Faithful chromosome segregation is critical in preventing genome loss or damage during cell division. Failure to properly disentangle catenated sister chromatids can lead to the formation of bulky or ultrafine anaphase bridges, and ultimately genome instability. In this review we present an overview of the current state of knowledge of how sister chromatid decatenation is carried out, with particular focus on the role of TOP2A and TOPBP1 in this process. 相似文献
7.
8.
There is strong evidence indicating a role for ceramide as a second messenger in processes such as apoptosis, cell growth and differentiation, and cellular responses to stress. Ceramide formation from the hydrolysis of sphingomyelin is considered to be a major pathway of stress-induced ceramide production with magnesium-dependent neutral sphingomyelinase (N-SMase) identified as a prime candidate in this pathway. The recent cloning of a mammalian N-SMase-nSMase2- and generation of nSMase2 knockout/mutant mice have now provided vital tools with which to further study the regulation and roles of this enzyme in both a physiological and pathological context. In the present review, we summarize current knowledge on N-SMase relating this to what is known about nSMase2. We also discuss the future areas of nSMase2 research important for molecular understanding of this enzyme and its physiological roles. 相似文献
9.
11.
12.
The tenth annual Keystone Symposium on the Mechanism and Biology of Silencing convened in Monterey, California, in March 2011. Those seeking some West Coast sunshine were, unfortunately, met with incessant precipitation throughout the meeting. Nevertheless, attendees were brightened by enlightening and vigorous scientific discussions. Here, we summarize the results presented at the meeting, which inspire and push this expanding field into new territories. 相似文献
13.
RNA silencing in Drosophila 总被引:7,自引:0,他引:7
14.
Anaïs Baudot Francisco X. Real José M. G. Izarzugaza Alfonso Valencia 《EMBO reports》2009,10(4):359-366
Cancer genome projects are now being expanded in an attempt to provide complete landscapes of the mutations that exist in tumours. Although the importance of cataloguing genome variations is well recognized, there are obvious difficulties in bridging the gaps between high‐throughput resequencing information and the molecular mechanisms of cancer evolution. Here, we describe the current status of the high‐throughput genomic technologies, and the current limitations of the associated computational analysis and experimental validation of cancer genetic variants. We emphasize how the current cancer‐evolution models will be influenced by the high‐throughput approaches, in particular through efforts devoted to monitoring tumour progression, and how, in turn, the integration of data and models will be translated into mechanistic knowledge and clinical applications. 相似文献
15.
16.
Multicellular organisms, like higher plants, need to coordinate their growth and development and to cope with environmental cues. To achieve this, various signal molecules are transported between neighboring cells and distant organs to control the fate of the recipient cells and organs. RNA silencing produces cell non-autonomous signal molecules that can move over short or long distances leading to the sequence specific silencing of a target gene in a well defined area of cells or throughout the entire plant,respectively. The nature of these signal molecules, the route of silencing spread, and the genes involved in their production, movement and reception are discussed in this review. Additionally, a short section on features of silencing spread in animal models is presented at the end of this review. 相似文献
17.
RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat 总被引:9,自引:0,他引:9 下载免费PDF全文
Insertional mutagenesis and gene silencing are efficient tools for the determination of gene function. In contrast to gain- or loss-of-function approaches, RNA interference (RNAi)-induced gene silencing can possibly silence multigene families and homoeologous genes in polyploids. This is of great importance for functional studies in hexaploid wheat (Triticum aestivum), where most of the genes are present in at least three homoeologous copies and conventional insertional mutagenesis is not effective. We have introduced into bread wheat double-stranded RNA-expressing constructs containing fragments of genes encoding Phytoene Desaturase (PDS) or the signal transducer of ethylene, Ethylene Insensitive 2 (EIN2). Transformed plants showed phenotypic changes that were stably inherited over at least two generations. These changes were very similar to mutant phenotypes of the two genes in diploid model plants. Quantitative real-time polymerase chain reaction revealed a good correlation between decreasing mRNA levels and increasingly severe phenotypes. RNAi silencing had the same quantitative effect on all three homoeologous genes. The most severe phenotypes were observed in homozygous plants that showed the strongest mRNA reduction and, interestingly, produced around 2-fold the amount of small RNAs compared to heterozygous plants. This suggests that the effect of RNAi in hexaploid wheat is gene-dosage dependent. Wheat seedlings with low mRNA levels for EIN2 were ethylene insensitive. Thus, EIN2 is a positive regulator of the ethylene-signaling pathway in wheat, very similar to its homologs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Our data show that RNAi results in stably inherited phenotypes and therefore represents an efficient tool for functional genomic studies in polyploid wheat. 相似文献
18.
RNA silencing platforms in plants 总被引:1,自引:0,他引:1
Since the discovery of RNAi, its mechanism in plants and animals has been intensively studied, widely exploited as a research tool, and used for a number of potential commercial applications. In this article, we discuss the platforms for delivering RNAi in plants. We provide a brief background to these platforms and concentrate on discussing the more recent advances, comparing the RNAi technologies used in plants with those used in animals, and trying to predict the ways in which RNAi technologies may further develop. 相似文献
19.
Kalantidis K Schumacher HT Alexiadis T Helm JM 《Biology of the cell / under the auspices of the European Cell Biology Organization》2008,100(1):13-26
Higher eukaryotes have developed a mechanism of sequence-specific RNA degradation which is known as RNA silencing. In plants and some animals, similar to the nematode Caenorhabditis elegans, RNA silencing is a non-cell-autonomous event. Hence, silencing initiation in one or a few cells leads progressively to the sequence-specific suppression of homologous sequences in neighbouring cells in an RNA-mediated fashion. Spreading of silencing in plants occurs through plasmodesmata and results from a cell-to-cell movement of a short-range silencing signal, most probably 21-nt siRNAs (short interfering RNAs) that are produced by one of the plant Dicer enzymes. In addition, silencing spreads systemically through the phloem system of the plants, which also translocates metabolites from source to sink tissues. Unlike the short-range silencing signal, there is little known about the mediators of systemic silencing. Recent studies have revealed various and sometimes surprising genetic elements of the short-range silencing spread pathway, elucidating several aspects of the processes involved. In this review we attempt to clarify commonalities and differences between the individual silencing pathways of RNA silencing spread in plants. 相似文献