首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shp-1, Shp-2 and corkscrew comprise a small family of cytoplasmic tyrosine phosphatases that possess two tandem SH2 domains. To investigate the biological functions of Shp-2, a targeted mutation has been introduced into the murine Shp-2 gene, which results in an internal deletion of residues 46-110 in the N-terminal SH2 domain. Shp-2 is required for embryonic development, as mice homozygous for the mutant allele die in utero at mid-gestation. The Shp-2 mutant embryos fail to gastrulate properly as evidenced by defects in the node, notochord and posterior elongation. Biochemical analysis of mutant cells indicates that Shp-2 can function as either a positive or negative regulator of MAP kinase activation, depending on the specific receptor pathway stimulated. In particular, Shp-2 is required for full and sustained activation of the MAP kinase pathway following stimulation with fibroblast growth factor (FGF), raising the possibility that the phenotype of Shp-2 mutant embryos results from a defect in FGF-receptor signalling. Thus, Shp-2 modulates tyrosine kinase signalling in vivo and is crucial for gastrulation during mammalian development.  相似文献   

2.
3.
We previously reported emergence and disappearance of circadian molecular oscillations during differentiation of mouse embryonic stem (ES) cells and reprogramming of differentiated cells, respectively. Here we present a robust and stringent in vitro circadian clock formation assay that recapitulates in vivo circadian phenotypes. This assay system first confirmed that a mutant ES cell line lacking Casein Kinase I delta (CKIδ) induced ∼3 hours longer period-length of circadian rhythm than the wild type, which was compatible with recently reported results using CKIδ null mice. In addition, this assay system also revealed that a Casein Kinase 2 alpha subunit (CK2α) homozygous mutant ES cell line developed significantly longer (about 2.5 hours) periods of circadian clock oscillations after in vitro or in vivo differentiation. Moreover, revertant ES cell lines in which mutagenic vector sequences were deleted showed nearly wild type periods after differentiation, indicating that the abnormal circadian period of the mutant ES cell line originated from the mutation in the CK2α gene. Since CK2α deficient mice are embryonic lethal, this in vitro assay system represents the genetic evidence showing an essential role of CK2α in the mammalian circadian clock. This assay was successfully applied for the phenotype analysis of homozygous mutant ES cells, demonstrating that an ES cell-based in vitro assay is available for circadian genetic screening.  相似文献   

4.
BACKGROUND: Mice homozygous for a loss-of-function mutation of the recombination-activating gene-2 (RAG 2), which is required for the rearrangement of antigen receptor genes, do not produce mature B and T lymphocytes. But chimeric mice that result from injection of normal embryonic stem (ES) cells into blastocysts from RAG2-deficient mice develop normal mature lymphocyte populations, all of which are derived from the injected ES cells; we have called this process RAG2-deficient blastocyst complementation. Using ES cells with homozygous mutations, RAG-2-deficient blastocyst complementation could provide a physiological assay with which to determine the potential role of almost any gene in the development and/or function of lymphocytes. To test the general utility of this system, we have used it to test the differentiation-potential of ES cells that harbor homozygous loss-of function mutations of their retinoblastoma susceptibility (Rb) gene loci. We chose Rb for this analysis because of its widespread function in the control of the cell cycle and cell differentiation, the adverse effect of homozygous germline mutations of Rb on hematopoiesis in fetal liver, and the embryonic lethality that results when the homozygous Rb mutation is introduced into the germline. RESULTS: Homozygous Rb mutant ES cells can develop into phenotypically normal, mature B and T lymphocytes in the RAG-2-deficient background. Strikingly, Rb-deficient B and T cells do not have major defects in either activation or function. CONCLUSION: We have demonstrated the efficacy of the RAG-2-deficient blastocyst complementation system for evaluating the role of critical genes in lymphocyte development. Our results indicate that Rb expression is not intrinsically required for B-cell or T-cell function, despite the normally high levels of Rb expressed in lymphoid cells.  相似文献   

5.
6.
To study the physiological role of the creatine kinase/phosphocreatine (CK/PCr) system in cells and tissues with a high and fluctuating energy demand we have concentrated on the site-directed inactivation of the B- and M-CK genes encoding the cytosolic CK protein subunits. In our approach we used homologous recombination in mouse embryonic stem (ES) cells from strain 129/Sv. Using targeting constructs based on strain 129/Sv isogenic DNA we managed to ablate the essential exons of the B-CK and M-CK genes at reasonably high frequencies. ES clones with fully disrupted B-CK and two types of M-CK gene mutations, a null (M-CK) and leaky (M-CK1) mutation, were used to generate chimaeric mutant mice via injection in strain C57BL/6 derived blastocysts. Chimaeras with the B-CK null mutation have no overt abnormalities but failed to transmit the mutation to their offspring. For the M-CK and M-CK1 mutations successful transmission was achieved and heterozygous and homozygous mutant mice were bred. Animals deficient in MM-CK are phenotypically normal but lack muscular burst activity. Fluxes through the CK reaction in skeletal muscle are highly impaired and fast fibres show adaptation in cellular architecture and storage of glycogen. Mice homozygous for the leaky M-CK allele, which have 3-fold reduced MM-CK activity, show normal fast fibres but CK fluxes and burst activity are still not restored to wildtype levels.  相似文献   

7.
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed in the liver and secreted as biliary glycoprotein 1 (BGP1) via bile canaliculi (BCs). CEACAM1-LF is a 72 amino acid cytoplasmic domain mRNA splice isoform with two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Ceacam1−/− or Ser503Ala transgenic mice have been shown to develop insulin resistance and nonalcoholic fatty liver disease; however, the role of the human equivalent residue, Ser508, in lipid dysregulation is unknown. Human HepG2 hepatocytes that express CEACAM1 and form BC in vitro were compared with CEACAM1−/− cells and CEACAM1−/− cells expressing Ser508Ala null or Ser508Asp phosphorylation mimic mutations or to phosphorylation null mutations in the tyrosine ITIMs known to be phosphorylated by the tyrosine kinase Src. CEACAM1−/− cells and the Ser508Asp and Tyr520Phe mutants strongly retained lipids, while Ser508Ala and Tyr493Phe mutants had low lipid levels compared with wild-type cells, indicating that the ITIM mutants phenocopied the Ser508 mutants. We found that the fatty acid transporter CD36 was upregulated in the S508A mutant, coexpressed in BCs with CEACAM1, co-IPed with CEACAM1 and Src, and when downregulated via RNAi, an increase in lipid droplet content was observed. Nuclear translocation of CD36 associated kinase LKB1 was increased sevenfold in the S508A mutant versus CEACAM1−/− cells and correlated with increased activation of CD36-associated kinase AMPK in CEACAM1−/− cells. Thus, while CEACAM1−/− HepG2 cells upregulate lipid storage similar to Ceacam1−/− in murine liver, the null mutation Ser508Ala led to decreased lipid storage, emphasizing evolutionary changes between the CEACAM1 genes in mouse and humans.  相似文献   

8.
The deubiquitinating enzyme heterodimeric complex USP1-UAF1 regulates the Fanconi anemia (FA) DNA repair pathway. Absence of this complex leads to increased cellular levels of ubiquitinated FANCD2 (FANCD2-Ub) and ubiquitinated PCNA (PCNA-Ub). Mice deficient in the catalytic subunit of the complex, USP1, exhibit an FA-like phenotype and have a cellular deficiency in homologous-recombination (HR) repair. Here, we have characterized mice deficient in the UAF1 subunit. Uaf1+/− mice were small at birth and exhibited reduced fertility, thus resembling Usp1−/− mice. Unexpectedly, homozygous Uaf1−/− embryos died at embryonic day 7.5 (E7.5). These mutant embryos were small and developmentally retarded. As expected, Uaf1 deficiency in mice led to increased levels of cellular Fancd2-Ub and Pcna-Ub. Uaf1+/− murine embryonic fibroblasts (MEFs) exhibited profound chromosome instability, genotoxin hypersensitivity, and a significant defect in homologous-recombination repair. Moreover, Uaf1−/− mouse embryonic stem cells (mESCs) showed chromosome instability, genotoxin hypersensitivity, and impaired Fancd2 focus assembly. Similar to USP1 knockdown, UAF1 knockdown in tumor cells caused suppression of tumor growth in vivo. Taken together, our data demonstrate the important regulatory role of the USP1-UAF1 complex in HR repair through its regulation of the FANCD2-Ub and PCNA-Ub cellular pools.  相似文献   

9.
UbiA prenyltransferase domain containing 1 (UBIAD1) is a novel vitamin K2 biosynthetic enzyme screened and identified from the human genome database. UBIAD1 has recently been shown to catalyse the biosynthesis of Coenzyme Q10 (CoQ10) in zebrafish and human cells. To investigate the function of UBIAD1 in vivo, we attempted to generate mice lacking Ubiad1, a homolog of human UBIAD1, by gene targeting. Ubiad1-deficient (Ubiad1 −/−) mouse embryos failed to survive beyond embryonic day 7.5, exhibiting small-sized body and gastrulation arrest. Ubiad1 −/− embryonic stem (ES) cells failed to synthesize vitamin K2 but were able to synthesize CoQ9, similar to wild-type ES cells. Ubiad1 +/− mice developed normally, exhibiting normal growth and fertility. Vitamin K2 tissue levels and synthesis activity were approximately half of those in the wild-type, whereas CoQ9 tissue levels and synthesis activity were similar to those in the wild-type. Similarly, UBIAD1 expression and vitamin K2 synthesis activity of mouse embryonic fibroblasts prepared from Ubiad1 +/− E15.5 embryos were approximately half of those in the wild-type, whereas CoQ9 levels and synthesis activity were similar to those in the wild-type. Ubiad1 −/− mouse embryos failed to be rescued, but their embryonic lifespans were extended to term by oral administration of MK-4 or CoQ10 to pregnant Ubiad1 +/− mice. These results suggest that UBIAD1 is responsible for vitamin K2 synthesis but may not be responsible for CoQ9 synthesis in mice. We propose that UBIAD1 plays a pivotal role in embryonic development by synthesizing vitamin K2, but may have additional functions beyond the biosynthesis of vitamin K2.  相似文献   

10.
Summary: Mouse embryos homozygous for the allele eedl7Rn5‐3354SB of the Polycomb Group gene embryonic ectoderm development (eed) display a gastrulation defect in which epiblast cells move through the streak and form extraembryonic mesoderm derivatives at the expense of development of the embryo proper. Here we demonstrate that homozygous mutant ES cells have the capacity to differentiate embryonic cell types both in vitro as embryoid bodies and in vivo as chimeric embryos. In chimeric embryos, eed mutant cells can respond to wild‐type signals and participate in normal gastrulation movements. These results indicate a non–cell‐autonomous function for eed. Evidence of mutant cell exclusion from the forebrain and segregation within somites, however, suggests that eed has cell‐autonomous roles in aspects of organogenesis. A requirement for eed in the epiblast during embryonic development is supported by the fact that high‐contribution chimeras could not be rescued by a wild‐type extraembryonic environment. genesis 31:142–146, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

11.
12.
Duan HF  Qu CK  Zhang QW  Yu WM  Wang H  Wu CT  Wang LS 《Cellular signalling》2006,18(11):2049-2055
Shp-2, a ubiquitously expressed protein tyrosine phosphatase containing two Src homology 2 domains, plays an important role in integrating signaling from the cell surface receptors to intracellular signaling mechanisms. Previous studies have demonstrated that the Shp-2 is involved in hepatocyte growth factor (HGF)-induced cell scattering. Here we report that Shp-2 is required for the HGF-induced activation of sphingosine kinase-1 (SPK1), a highly conserved lipid kinase that plays an important role in cell migration. Loss-of-function mutation of Shp-2 did not affect the expression of SPK1, but resulted in its inactivation and the blockage of HGF-induced migration in embryonic fibroblasts. Reintroduction of functional wild type (WT) Shp-2 into the mutant cells partially restored SPK1 activation, and overexpression of SPK1 in these mutant cells enhanced HGF-induced cell migration. Inhibition of expression or activity of SPK1 in WT cells markedly decreased intracellular S1P levels and HGF-induced cell migration. Furthermore, we found that Shp-2 co-immunoprecipitated with SPK1 and c-Met in embryonic fibroblasts. These studies suggest that Shp-2 is an SPK1-interacting protein and that it plays an indispensable role in HGF-induced SPK1 activation.  相似文献   

13.
Xie X  Chan RJ  Yoder MC 《FEBS letters》2002,529(2-3):361-364
Thrombopoietin (Tpo) and its receptor, c-mpl, are expressed in murine embryonic stem (ES) cells. ES cells are maintained in a pluripotent state by leukemia inhibitory factor (LIF) via activation of the Janus kinase (Jak)-STAT3 signaling pathway. Tpo, like LIF, activates STAT3. We report that Tpo increases the number of undifferentiated colonies derived from wild type or Shp-2 mutant (Shp-2(Delta46-110)) ES cells. Tpo plus LIF acted synergistically on the Shp-2(Delta46-110) ES cells to maintain undifferentiated colonies but no evidence of synergism via Jak-STAT3 activation was detected. Collectively, these data suggest that Tpo can play a role in preventing ES cell differentiation via Jak-STAT3 activation and perhaps via novel pathways that are enhanced in the absence of functional Shp-2.  相似文献   

14.
15.
We have used gene disruption to isolate two talin (−/−) ES cell mutants that contain no intact talin. The undifferentiated cells (a) were unable to spread on gelatin or laminin and grew as rounded colonies, although they were able to spread on fibronectin (b) showed reduced adhesion to laminin, but not fibronectin (c) expressed much reduced levels of β1 integrin, although levels of α5 and αV were wild-type (d) were less polarized with increased membrane protrusions compared with a vinculin (−/−) ES cell mutant (e) were unable to assemble vinculin or paxillin-containing focal adhesions or actin stress fibers on fibronectin, whereas vinculin (−/−) ES cells were able to assemble talin-containing focal adhesions. Both talin (−/−) ES cell mutants formed embryoid bodies, but differentiation was restricted to two morphologically distinct cell types. Interestingly, these differentiated talin (−/−) ES cells were able to spread and form focal adhesion-like structures containing vinculin and paxillin on fibronectin. Moreover, the levels of the β1 integrin subunit were comparable to those in wild-type ES cells. We conclude that talin is essential for β1 integrin expression and focal adhesion assembly in undifferentiated ES cells, but that a subset of differentiated cells are talin independent for both characteristics.  相似文献   

16.
Shp-2 tyrosine phosphatase: signaling one cell or many   总被引:22,自引:0,他引:22  
Shp-2, a widely expressed cytoplasmic tyrosine phosphatase with two src-homology 2 (SH2) domains, has received much attention in the signal transduction field recently. Significant progress has been made in understanding the structure and function of this phosphatase, together with its Drosophila homologue, Corkscrew, as well as the close relative Shp-1 tyrosine phosphatase. The crystal structure of Shp-2 revealed an autoinhibitory mechanism of the catalytic activity by the N-terminal SH2 domain. Shp-2 apparently participates in signaling events downstream of receptors for growth factors, cytokines, hormones, antigens, and extracellular matrixes in the control of cell growth, differentiation, migration, and death. Shp-2 is an important molecule that integrates signals among various cytoplasmic pathways and may also couple intracellular and intercellular information flow.  相似文献   

17.
Postreplicative maintenance of genomic methylation patterns was proposed to depend largely on the binding of DNA methyltransferase 1 (Dnmt1) to PCNA, a core component of the replication machinery. We investigated how the slow and discontinuous DNA methylation could be mechanistically linked with fast and processive DNA replication. Using photobleaching and quantitative live cell imaging we show that Dnmt1 binding to PCNA is highly dynamic. Activity measurements of a PCNA-binding-deficient mutant with an enzyme-trapping assay in living cells showed that this interaction accounts for a 2-fold increase in methylation efficiency. Expression of this mutant in mouse dnmt1−/− embryonic stem (ES) cells restored CpG island methylation. Thus association of Dnmt1 with the replication machinery enhances methylation efficiency, but is not strictly required for maintaining global methylation. The transient nature of this interaction accommodates the different kinetics of DNA replication and methylation while contributing to faithful propagation of epigenetic information.  相似文献   

18.
The cytoplasmic protein tyrosine kinase Syk has two amino-terminal SH2 domains that engage phosphorylated immunoreceptor tyrosine-based activation motifs in the signaling subunits of immunoreceptors. Syk, in conjunction with Src family kinases, has been implicated in immunoreceptor signaling in both lymphoid and myeloid cells. We have investigated the role of Syk in Fcγ receptor (FcγR)-dependent and -independent responses in bone marrow-derived macrophages and neutrophils by using mouse radiation chimeras reconstituted with fetal liver cells from Syk−/− embryos. Chimeric mice developed an abdominal hemorrhage starting 2 to 3 months after transplantation that was ultimately lethal. Syk-deficient neutrophils derived from the bone marrow were incapable of generating reactive oxygen intermediates in response to FcγR engagement but responded normally to tetradecanoyl phorbol acetate stimulation. Syk-deficient macrophages were defective in phagocytosis induced by FcγR but showed normal phagocytosis in response to complement. The tyrosine phosphorylation of multiple cellular polypeptides, including the FcγR γ chain, as well as Erk2 activation, was compromised in Syk−/− macrophages after FcγR stimulation. In contrast, the induction of nitric oxide synthase in macrophages stimulated with lipopolysaccharide and gamma interferon was not dependent on Syk. Surprisingly, Syk-deficient macrophages were impaired in the ability to survive or proliferate on plastic petri dishes. Taken together, these results suggest that Syk has specific physiological roles in signaling from FcγRs in neutrophils and macrophages and raise the possibility that in vivo, Syk is involved in signaling events other than those mediated by immunoreceptors.  相似文献   

19.
Latent membrane protein 2A (LMP2A) is a viral protein expressed during Epstein-Barr virus (EBV) latency in EBV-infected B cells both in cell culture and in vivo. LMP2A has important roles in modulating B-cell receptor signal transduction and provides survival and developmental signals to B cells in vivo. Although Lyn has been shown to be important in mediating LMP2A signaling, it is still unclear if Lyn is used preferentially or if LMP2A associates promiscuously with other Src family kinase (SFK) members. To investigate the role of various SFKs in LMP2A signaling, we crossed LMP2A transgenic mice (TgE) with Lyn−/−, Fyn−/−, or Blk−/− mice. TgE Lyn−/− mice had a larger immunoglobulin M (IgM)-positive B-cell population than TgE mice, suggesting that the absence of Lyn prevents LMP2A from delivering survival and developmental signals to the B cells. Both TgE Fyn−/− and TgE Blk−/− mice have an IgM-negative population of splenic B cells, similar to the TgE mice. LMP2A was also transiently transfected into the human EBV-negative B-cell line BJAB to determine which SFK members associate with LMP2A. Lyn was detected in LMP2A immunoprecipitates, whereas Fyn was not. Both Lyn and Fyn were able to bind to an LMP2A mutant which contained a sequence shown previously to bind tightly to the SH2 domain of multiple SFK members. From these results, we conclude that LMP2A preferentially associates with and signals through Lyn compared to its association with other SFKs. This preferential association is due in part to the SH2 domain of Lyn associating with LMP2A.  相似文献   

20.
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common inherited disorder of mitochondrial fatty acid β-oxidation in humans. To better understand the pathogenesis of this disease, we developed a mouse model for MCAD deficiency (MCAD−/−) by gene targeting in embryonic stem (ES) cells. The MCAD−/− mice developed an organic aciduria and fatty liver, and showed profound cold intolerance at 4 °C with prior fasting. The sporadic cardiac lesions seen in MCAD−/− mice have not been reported in human MCAD patients. There was significant neonatal mortality of MCAD−/− pups demonstrating similarities to patterns of clinical episodes and mortality in MCAD-deficient patients. The MCAD-deficient mouse reproduced important aspects of human MCAD deficiency and is a valuable model for further analysis of the roles of fatty acid oxidation and pathogenesis of human diseases involving fatty acid oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号