首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An unusual structural component, supercondensed pBR322 DNA, has been found in plasmid pBR322 DNA samples isolated from a DNA topoisomerase II mutant of Escherichia coli, SD108 (topA+, gyrB225). The supercondensed pBR322 DNA moved faster than supercoiled pBR322 DNA as a homogeneous band in agrose gels when the DNA samples were analysed by electrophoresis. The mobility of the supercondensed DNA was not substantially affected by chloroquine intercalation. The supercondensed pBR322 DNA migrated as a high density "third DNA band" when the samples were subjected to caesium chloride/ethidium bromide gradient equilibrium centrifugation. The unusual pBR322 DNA visualized by electron microscopy was a globoid-shaped particle. These observations suggest that the pBR322 plasmid can assume a tertiary structure other than a supercoiled or relaxed structure. DNA topoisomerases may be involved in the supercondensation of plasmid DNA and chromosomal DNA.  相似文献   

2.
An alternative nonradioactive method for labeling DNA using biotin   总被引:1,自引:0,他引:1  
An alternative nonradioactive labeling method and a highly sensitive technique for detecting specific DNA sequences are described. The labeling method requires the "Klenow" fragment of DNA polymerase I and random hexanucleotides (synthesized or naturally extracted) as a primer for the production of highly sensitive DNA probes. The system has three main steps: (i) labeling of DNA with biotinylated 11-dUTP; (ii) detection of biotinylated DNA by a one-step procedure with streptavidin-alkaline phosphatase complex; (iii) blocking of background with Tween 20. Twenty attograms (2 X 10(-17) g) of pBR322 plasmid DNA was detected by dot-blot hybridization. Upon Southern blot hybridization, 7.4 fg (7.4 X 10(-15) g) of pBR322 HindIII DNA was detected using the biotinylated pBR322 plasmid DNA probe; 40.8 ag and 7.4 fg of lambda HindIII DNA were detected with the biotinylated whole lambda DNA probe by dot and Southern blot hybridization, respectively. Specific bands were also detected with the biotinylated argininosuccinolyase probe upon Northern blotting of mouse poly(A+) RNA. Further applications for in situ hybridization are also described.  相似文献   

3.
4.
Reciprocal recombination between T4 DNA cloned in plasmid pBR322 and homologous sequences in bacteriophage T4 genomes leads to integration of complete plasmid molecules into phage genomes. Indirect evidence of this integration comes from two kinds of experiments. Packaging of pBR322 DNA into mature phage particles can be detected by a DNA--DNA hybridization assay only when a T4 restriction fragment is cloned in the plasmid. The density of the pBR322 DNA synthesized after phage infection is also consistent with integration of plasmid vector DNA into vegetative phage genomes. Direct evidence of plasmid integration into phage genomes in the region of DNA homology comes from genetic and biochemical analysis of cytosine-containing DNA isolated from mature phage particles. Agarose gel electrophoresis of restriction endonuclease-digested DNA, followed by Southern blot analysis with nick-translated probes, shows that entire plasmid molecules become integrated into phage genomes in the region of T4 DNA homology. In addition, this analysis shows that genomes containing multiple copies of complete plasmid molecules are also formed. Among phage particles containing at least one integrated copy, the average number of integrated plasmid molecules is almost ten. A cloning experiment done with restricted DNA confirms these conclusions and illustrates a method for walking along the T4 genome.  相似文献   

5.
Real-time QPCR based methods for determination of plasmid copy number in recombinant Escherichia coli cultures are presented. Two compatible methods based on absolute and relative analyses were tested with recombinant E. coli DH5alpha harboring pBR322, which is a common bacterial cloning vector. The separate detection of the plasmid and the host chromosomal DNA was achieved using two separate primer sets, specific for the plasmid beta-lactamase gene (bla) and for the chromosomal d-1-deoxyxylulose 5-phosphate synthase gene (dxs), respectively. Since both bla and dxs are single-copy genes of pBR322 and E. coli chromosomal DNA, respectively, the plasmid copy number can be determined as the copy ratio of bla to dxs. These methods were successfully applied to determine the plasmid copy number of pBR322 of E. coli host cells. The results of the absolute and relative analyses were identical and highly reproducible with coefficient of variation (CV) values of 2.8-3.9% and 4.7-5.4%, respectively. The results corresponded to the previously reported values of pBR322 copy number within E. coli host cells, 15-20. The methods introduced in this study are convenient to perform and cost-effective compared to the traditionally used Southern blot method. The primer sets designed in this study can be used to determine plasmid copy number of any recombinant E. coli with a plasmid vector having bla gene.  相似文献   

6.
Plasmid pBR322 replication is inhibited after bacteriophage T4 infection. If no T4 DNA had been cloned into this plasmid vector, the kinetics of inhibition are similar to those observed for the inhibition of Escherichia coli chromosomal DNA. However, if T4 DNA has been cloned into pBR322, plasmid DNA synthesis is initially inhibited but then resumes approximately at the time that phage DNA replication begins. The T4 insert-dependent synthesis of pBR322 DNA is not observed if the infecting phage are deleted for the T4 DNA cloned in the plasmid. Thus, this T4 homology-dependent synthesis of plasmid DNA probably reflects recombination between plasmids and infecting phage genomes. However, this recombination-dependent synthesis of pBR322 DNA does not require the T4 gene 46 product, which is essential for T4 generalized recombination. The effect of T4 infection on the degradation of plasmid DNA is also examined. Plasmid DNA degradation, like E. coli chromosomal DNA degradation, occurs in wild-type and denB mutant infections. However, neither plasmid or chromosomal degradation can be detected in denA mutant infections by the method of DNA--DNA hybridization on nitrocellulose filters.  相似文献   

7.
Bacteriophage lambda gt11 has been used quite extensively for producing cDNA libraries. The cDNA inserts are usually subcloned into a plasmid vector for large scale production and analysis. However, isolating the recombinant DNA of interest from the phage clones can be a tedious task. Since the E. coli strain Y1088 used for lambda gt11 phage infection carries a pBR322-derived plasmid endogenously, we reasoned that this endogenous plasmid could be used directly for cloning the cDNA phage insert. In this report, we describe a method in which cDNA inserts from lambda gt11 phage were cloned directly into the pBR322 plasmid vector, bypassing the time-consuming procedures of preparing plasmid DNA as a subcloning vector. This method is likely to be extended to the cloning of DNA inserts derived from other phage lambda vectors when bacteria containing endogenous pBR322 are used as host cells.  相似文献   

8.
H Horiuchi  M Takagi    K Yano 《Journal of bacteriology》1984,160(3):1017-1021
The relaxation of plasmid DNA was observed after the visible light irradiation of Escherichia coli AB1157 harboring plasmid pBR322 or some other plasmids in the presence of a photosensitizing dye, such as toluidine blue or acridine orange, and molecular oxygen. Treatment of the cells with hydroperoxides, such as tert-butyl hydroperoxide, cumene hydroperoxide, and hydrogen peroxide, also caused the plasmid DNA relaxation in vivo. Relaxation was not observed in these treatments of purified pBR322 DNA in vitro. Plasmid DNA relaxation was also detected after near-UV irradiation. Far-UV irradiation did not induce such relaxation.  相似文献   

9.
Bacteriophage λgt11 has been used quite extensively for producing cDNA libraries. The cDNA inserts are usually subcloned into a plasmid vector for large scale production and analysis. However, isolating the recombinant DNA of interest from the phage clones can be a tedious task. Since the E. coli strain Y1088 used for λgt11 phage infection carries a pBR322-derived plasmid endogenously, we reasoned that this endogenous plasmid could be used directly for cloning the cDNA phage insert. In this report, we describe a method in which cDNA inserts from λgt11 phage were cloned directly into the pBR322 plasmid vector, by-passing the time-consuming procedures of preparing plasmid DNA as a subcloning vector. This method is likely to be extended to the cloning of DNA inserts derived from other phage λ vectors when bacteria containing endogenous pBR322 are used as host cells.  相似文献   

10.
11.
F Bolivar 《Gene》1978,4(2):121-136
In vitro recombinant DNA techniques were used to construct two new cloning vehicles, pBR324 and pBR235. These vectors, derived from plasmid pBR322, are relaxed replicating elements. Plasmid pBR324 carries the genes from pBR322 coding for resistance to the antibiotics ampicillin (Apr) and tetracycline (Tcr) and the colicin E1 structural and immunity genes derived from plasmid pMBI. Plasmid pBR325 carries the Apr and Tcr genes from pBR322 and the cloramphenicol resistance gene (Cmr) from phage P1Cm. In these plasmids the unique EcoRI restriction site present in the DNA molecule is located either in the colicin E1 structural gene (pBR324) or in the Cmr gene (pBR325). These vectors were constructed in order to have a single EcoRI site located in the middle of a structural gene which when inactivated would allow, for the easy selection of plasmid recombinant DNA molecules. These plasmids permit the molecular cloning and easy selection of EcoRI, BamHI, HindIII, PstI, HincII, SalI, (XamI), Smal, (XmaI), BglII and DpnII restriction generated DNA molecules.  相似文献   

12.
A method is suggested for chemical modification of preselected regions of plasmid DNA by complementary single-stranded restriction fragments of DNA (srf DNA), carrying alkylating reagents. The gene coding for tetracycline resistance of plasmid pBR322 was used as a target. Srf DNA was prepared by a partial digestion of a double-stranded EcoRI-BamHI restriction fragment (377 base pairs) from Tcr by E. coli exonuclease III. The residues of an alkylating reagent N,N,N'-tri(beta-chlorethyl)-N'-(p-formylphenyl) propylenediamine 1,3 (TFP) were attached covalently to 4-5% of sfr DNA bases. The alkylating derivative of the sfr DNA was hybridized with supercoiled pBR322 plasmid DNA. The hybridization conditions (37 degrees C, 40% formamide, 0,2 M NaCl, 0,1 M Tris-HCl pH 7,5, 0,001 M EDTA) under which the bases carrying TFP residues are not eliminated from the sfr DNA, and transforming activity of pBR322 DNA does not decrease were established. It was shown that about 20% of plasmid pBR322 molecules form D-loops with alkylating sfr DNA under these conditions. It was shown that sfr DNA, carrying TFP can alkylate the complementary region of plasmid DNA, forming cross-linked D-loops. A method for the site-directed mutagenesis of switching off the preselected genes or non-transcribed DNA functional regions (promotors, introns etc) integrated into plasmids of other vectors is suggested.  相似文献   

13.
R Meffert  K Dose 《FEBS letters》1988,239(2):190-194
An efficient method of cross-linking DNA to protein is described. The method is based on the incorporation of photoactive 8-azidoadenine 2'-deoxyribonucleotides into DNA. We have found that 8-N3dATP is a substrate for E. coli DNA polymerase I and that 8-N3dATP can be incorporated into plasmid pBR322 by nick-translation. Subsequently we were able to cross-link a set of different proteins to 8-azido-2'-deoxyadenosine-containing pBR322 by UV irradiation (366nm). No DNA-protein photocross-linking was observed under the same conditions when the non-photoactive plasmid pBR322 was used.  相似文献   

14.
A gene (gshI) responsible for gamma-glutamylcysteine synthetase (GSH-I) activity was cloned to construct an Escherichia coli B strain having high glutathione synthesizing activity. For this purpose, two E. coli B mutants (strains C912 and RC912) were used. C912 was deficient in GSH-I activity. RC912, a revertant of C912, had a GSH-I activity that was desensitized to feedback inhibition of reduced glutathione. To clone gshI, chromosomal DNAs of RC912 and plasmid vector pBR322 were digested with various restriction endonucleases and then ligated with T4 DNA ligase. The whole ligation mixture was used to transform C912, and the transformants were selected as tetramethylthiuramdisulfide-resistant colonies. Of about 20 resistant colonies, 2 or 3 became red when treated with nitroprusside and showed appreciably high GSH-I activities. The chimeric plasmid DNA, designated pBR322-gshI, was isolated from the strain having the highest GSH-I activity and transformed into RC912. The structure and molecular size of pBR322-gshI in RC912 were determined. The molecular size of this plasmid was 6.2 megadaltons, and the plasmid contained a 3.4-megadalton segment derived from RC912 chromosomal DNA, which included gshI gene. The GSH-I activity of RC912 cells containing pBR322-gshI was fourfold higher than that of RC912 cells without pBR322-gshI.  相似文献   

15.
A gene (gshI) responsible for gamma-glutamylcysteine synthetase (GSH-I) activity was cloned to construct an Escherichia coli B strain having high glutathione synthesizing activity. For this purpose, two E. coli B mutants (strains C912 and RC912) were used. C912 was deficient in GSH-I activity. RC912, a revertant of C912, had a GSH-I activity that was desensitized to feedback inhibition of reduced glutathione. To clone gshI, chromosomal DNAs of RC912 and plasmid vector pBR322 were digested with various restriction endonucleases and then ligated with T4 DNA ligase. The whole ligation mixture was used to transform C912, and the transformants were selected as tetramethylthiuramdisulfide-resistant colonies. Of about 20 resistant colonies, 2 or 3 became red when treated with nitroprusside and showed appreciably high GSH-I activities. The chimeric plasmid DNA, designated pBR322-gshI, was isolated from the strain having the highest GSH-I activity and transformed into RC912. The structure and molecular size of pBR322-gshI in RC912 were determined. The molecular size of this plasmid was 6.2 megadaltons, and the plasmid contained a 3.4-megadalton segment derived from RC912 chromosomal DNA, which included gshI gene. The GSH-I activity of RC912 cells containing pBR322-gshI was fourfold higher than that of RC912 cells without pBR322-gshI.  相似文献   

16.
The replication pattern of the plasmid pBR322 was examined in the dnaA mutants of Escherichia coli. The rate of pBR322 DNA synthesis is markedly decreased after dnaA cells are shifted to the restrictive temperature of 42 degrees C. However, addition of rifampicin (RIF) to cultures of dnaA strains incubated at 42 degrees C after a lag of 90 min results in a burst of pBR322 synthesis. This RIF-induced pBR322 replication remains dependent on DNA polymerase I activity. Efficient plasmid pBR322 replication is observed at 42 degrees C in the double mutant dnaA46cos bearing an intragenic suppressor of dnaA46. Though replication of pBR322 in dnaA46cos growing at 42 degrees C is initially sensitive to RIF plasmid synthesis is restored after 90 min incubation in the presence of the drug. RIF-induced replication of the plasmid pBR327, lacking the rriB site implicated in RIF-resistant synthesis of the L strand of ColE1-like plasmids (Nomura and Ray 1981; Zipursky and Marians 1981), was observed also in dnaA46 at 42 degrees C.  相似文献   

17.
The exposure of plasmid pUC18 and pBR322 DNA to high hydrostatic pressure increased the ability of plasmids to transform competent Escherichia coli cells. For pUC18 plasmid, a pressure of 400 MPa, and for pBR322, a pressure of 200 MPa was found to provide the highest transformation efficiency. The DNA duplexes of the two plasmids were found to be the most stable for melting conditions at these pressures. At pressures higher than these, both the stability of the duplex DNA and the transformation efficiency were affected. The stabilizing effect of high hydrostatic pressure on the hydrogen bond may be responsible for the observed increase in transformation efficiency of the pressure-exposed plasmid DNA. The possibility of pressure-induced changes in the structure and conformation of DNA was studied using various techniques. In agarose gel electrophoresis, pressure-treated plasmids (pUC18 at 400 MPa and pBR322 at 200 MPa) consistently showed visibly distinct higher mobility compared to untreated plasmids. Pressure-treated pUC18 as well as pBR322 DNA showed significant reduction in ethidium bromide binding as is evident from the reduced intensity of fluorescence of the dye bound pressure-treated DNA. Spectroscopic studies using circular dichroism and Fourier transform infrared (FTIR) spectroscopy also showed significant differences in the absorption profiles of pressure-treated plasmids as compared to an untreated control. These studies revealed that the pressure-induced changes in the conformation of these DNAs may be responsible for the observed increase in the transformation ability of the plasmids. On the other hand, the exposure of competent cells of E. coli to a high hydrostatic pressure of 50 MPa not only reduced their colony-forming ability but also drastically reduced their ability to take up plasmid DNA.  相似文献   

18.
The effect of berenil on plasmid DNA replication was studied on pBR322-derived plasmids containing poly(dA)poly(dT) sequences. In comparison to the parental plasmid pBR322, plasmid pKH47 harboring 100 bp of poly(dA)poly(dT) at the PvuII site showed a decrease in plasmid yield in the presence of berenil. This effect was also observed in pVL26, a related plasmid in which the location of the poly(dA)poly(dT) region had been shifted to the EcoRV site in pBR322. [(3)H]Thymidine incorporation experiments indicated that DNA synthesis may be affected in these plasmids in the presence of the drug. Bromodeoxyuridine incorporation experiments coupled to Cs(2)SO(4) equilibrium density gradient centrifugation indicated that the lower plasmid yield was due to an inhibition of DNA replication by berenil. We have also found that berenil induces DNA degradation in plasmids containing the homopolymer. Our studies strongly suggest that the effect of berenil on plasmid replication and DNA stability results from its binding to the poly(dA)poly(dT) region present in these plasmids. Moreover, we have found a correlation between the position of the poly(dA)poly(dT) region and this inhibitory effect. Thus, plasmid pKH47, containing the poly(dA)poly(dT) region most proximal to the origin of pBR322 replication, was most severely affected.  相似文献   

19.
20.
X Soberon  L Covarrubias  F Bolivar 《Gene》1980,9(3-4):287-305
In vitro recombinant DNA experiments involving restriction endonuclease fragments derived from the plasmids pBR322 and pBR325 resulted in the construction of two new cloning vehicles. One of these plasmids, designated pBR327, was obtained after an EcoRII partial digestion of pBR322. The plasmid pBR327 confers resistance to tetracycline and ampicillin, contains 3273 base pairs (bp) and therefore is 1089 bp smaller than pBR322. The other newly constructed vector, which has been designated pBR328, confers resistance to chloramphenicol as well as the two former antibiotics. This plasmid contains unique HindIII, BamHI and SalI sites in the tetracycline resistance gene, unique PvuI and PstI sites in the ampicillin resistance gene and unique EcoRI, PvuII and BalI sites in the chloramphenicol resistance gene. The pBR328 plasmid contains approx. 4900 bp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号