首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental bacteria are constantly threatened by bacterivorous predators such as free-living protozoa and nematodes. In the course of their coevolution with environmental predators, some bacteria developed sophisticated defence mechanisms, including the secretion of toxins, or the capacity to avoid lysosomal killing and to replicate intracellularly within protozoa. To analyse the interactions with bacterial pathogens on a molecular, cellular or organismic level, protozoa and other non-mammalian hosts are increasingly used. These include amoebae, as well as genetically tractable hosts, such as the social amoeba Dictyostelium discoideum, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Using these hosts, the virulence mechanisms of opportunistic pathogenic bacteria such as Legionella, Mycobacterium, Pseudomonas or Vibrio were found to be not only relevant for the interactions of the bacteria with protozoa, nematodes and insect phagocytes, but also with mammalian hosts including humans. Thus, non-mammalian model hosts provide valuable insight into the pathogenesis of environmental bacteria.  相似文献   

2.
Intracellular pathogens such as legionella, mycobacteria and Chlamydia-like organisms are difficult to isolate because they often grow poorly or not at all on selective media that are usually used to cultivate bacteria. For this reason, many of these pathogens were discovered only recently or following important outbreaks. These pathogens are often associated with amoebae, which serve as host-cell and allow the survival and growth of the bacteria. We intend here to provide a demonstration of two techniques that allow isolation and characterization of intracellular pathogens present in clinical or environmental samples: the amoebal coculture and the amoebal enrichment. Amoebal coculture allows recovery of intracellular bacteria by inoculating the investigated sample onto an amoebal lawn that can be infected and lysed by the intracellular bacteria present in the sample. Amoebal enrichment allows recovery of amoebae present in a clinical or environmental sample. This can lead to discovery of new amoebal species but also of new intracellular bacteria growing specifically in these amoebae. Together, these two techniques help to discover new intracellular bacteria able to grow in amoebae. Because of their ability to infect amoebae and resist phagocytosis, these intracellular bacteria might also escape phagocytosis by macrophages and thus, be pathogenic for higher eukaryotes.  相似文献   

3.
Predation of bacteria by phagocytic cells was first developed during evolution by environmental amoebae. Many of the core mechanisms used by amoebae to sense, ingest and kill bacteria have also been conserved in specialized phagocytic cells in mammalian organisms. Here we focus on recent results revealing how Dictyostelium discoideum senses and kills non‐pathogenic bacteria. In this model, genetic analysis of intracellular killing of bacteria has revealed a surprisingly complex array of specialized mechanisms. These results raise new questions on these processes, and challenge current models based largely on studies in mammalian phagocytes. In addition, recent studies suggest one additional level on complexity by revealing how Dictyostelium recognizes specifically various bacterial species and strains, and adapts its metabolism to process them. It remains to be seen to what extent mechanisms uncovered in Dictyostelium are also used in mammalian phagocytic cells.  相似文献   

4.
To protect themselves from predation by amoebae and protozoa in the natural environment, some bacteria evolved means of escaping killing. The same mechanisms allow survival in mammalian phagocytes, producing opportunistic human pathogens. The social amoeba Dictyostelium discoideum is a powerful system for analysis of conserved host–pathogen interactions. This report reviews recent insights gained for several bacterial pathogens using Dictyostelium as host.  相似文献   

5.
The core function of the innate immune response, phagocytosis, did not evolve first in metazoans but rather in primitive unicellular eukaryotes. Thus, though amoebae separated from the tree leading to metazoan shortly after the divergence of plants, they share many specific functions with mammalian phagocytic cells. Dictyostelium discoideum is by far the most studied amoeba, and it is proving useful to analyze phagocytosis and intracellular killing of bacteria. Since the basic mechanisms involved appear extremely conserved, Dictyostelium provides novel insights into the function of many new gene products. Bacterial pathogenicity was certainly largely developed to resist predatory amoebae in the environment, and this accounts for the fact that a large number of bacterial virulence traits can be studied using Dictyostelium as a host. This provides a particularly powerful system to analyze the complex interactions between pathogenic bacteria and host cells, where both the Dictyostelium host and the bacteria can be manipulated genetically with relative ease.  相似文献   

6.
The amoeba Dictyostelium discoideum shares many traits with mammalian macrophages, in particular the ability to phagocytose and kill bacteria. In response, pathogenic bacteria use conserved mechanisms to fight amoebae and mammalian phagocytes. Here we developed an assay using Dictyostelium to monitor phagocyte-bacteria interactions. Genetic analysis revealed that the virulence of Klebsiella pneumoniae measured by this test is very similar to that observed in a mouse pneumonia model. Using this assay, two new host resistance genes (PHG1 and KIL1) were identified and shown to be involved in intracellular killing of K. pneumoniae by phagocytes. Phg1 is a member of the 9TM family of proteins, and Kil1 is a sulphotransferase. The loss of PHG1 resulted in Dictyostelium susceptibility to a small subset of bacterial species including K. pneumoniae. Remarkably, Drosophila mutants deficient for PHG1 also exhibited a specific susceptibility to K. pneumoniae infections. Systematic analysis of several additional Dictyostelium mutants created a two-dimensional virulence array, where the complex interactions between host and bacteria are visualized.  相似文献   

7.
8.
One fourth of Acanthamoebaisolates studied contain obligate bacterial endosymbionts. These intracellular bacteria have recently been assigned to four different, previously unknown phylogenetic lineages within the Proteobacteriaand the Chlamydiales. The symbiotic association of these amoebae and their bacterial endosymbionts might be a valuable model system for the analysis of bacterial adaptations and mechanisms for intracellular survival. In addition, Chlamydia‐related amoebal endosymbionts have been implicated as causative agents for respiratory disease suggesting that these protozoa may be sources of new emerging pathogens.  相似文献   

9.
Abstract Inoculation of fungi into soil has been suggested for biological control of plant diseases. The aim of our work was to test the ability of protozoa to reduce the density of introduced fungal populations. The survival of Fusarium oxysporum in non-sterile soil was studied after introduction at densities of: 1 × 104, 1 × 106 and 5 × 107 cfu/g soil. The dynamics of protozoa were also followed. The fungal populations remained close to the initial inoculation densities and did not induce the growth of indigenous protozoa. A bacterial population ( Enterobacter aerogenes ) was used to promote and stimulate the predatory activity of amoebae. Then, after simultaneous inoculation with bacteria and fungi, the density of protozoa increased but this had no effect on the fungal population, although some amoebae are able to feed on small fungal propagules such as conidia. The physiological state of Fusarium in soil and intraspecific competition seem to be more important in regulating introduced fungal populations than amoebal predation. We conclude that the regulation of bacterial and fungal populations in soil depend on different mechanisms.  相似文献   

10.
Abstract This work deals with the impact of a possible accidental pollutant, pyralene (Prodelec, France; PCBs in trichlorobenzene), intoduced into the soil. Its influence on the predator-prey relation between bacteria and amoebae was studied by comparing the population dynamics of (i) an inoculated bacterial population ( A. lipoferum ) chosen as a biological tracer, (ii) the indigenous bacterial microflora, (iii) the infigenous amoebae. In the absence of pyralene the inoculated bacterial population decreased from 107 to 104 bacteria g−1 soil (dw), grazed by the infigenous amoebae whose numbers increased 3-fold. In contrast, in presence of 2500 ppm of pyralene the introduced bacteria survived at a higher level (3·106 bacteria g−1 soil (dw)) while the number of amoebae diminished slightly. No predation occurred with PCB contamination. The indigenous bacterial microflora was not affected quantitatively by pyralene. In pure liquid culture with 500 ppm of pyralene added, bacterial growth was inhibited and an amoebal strain isolated from an inoculated uncontaminated soil was killed. We conclude that the active form of the amoebae were killed, and encystement was inhibited by pyralene in the soil. Hence the protozoa were unable to regulate the introduced A. lipoferum strain as they did in the absence of the pollutant.  相似文献   

11.
Klebsiella pneumoniae is an extensively studied human pathogen responsible for a wide variety of infections. Dictyostelium discoideum is a model host organism employed to study many facets of the complex interactions between phagocytic cells and bacteria. Historically, a non-pathogenic strain of K. pneumoniae has been used to feed Dictyostelium amoebae, and more recently to study cellular mechanisms involved in bacterial recognition, ingestion and killing. Here we provide the full genome sequence and functional characterization of this non-pathogenic KpGe strain.  相似文献   

12.
Protozoans are gaining recognition as environmental hosts for a variety of waterborne pathogens. We compared the growth of Mycobacterium avium, a human pathogen associated with domestic water supplies, in coculture with the free-living amoeba Acanthamoeba polyphaga with the growth of M. avium when it was separated from amoebae by a 0.1-μm-pore-size polycarbonate membrane (in a parachamber). Although viable mycobacteria were observed within amoebal vacuoles, there was no significant difference between bacterial growth in coculture and bacterial growth in the parachamber. This suggests that M. avium is able to grow saprozoically on products secreted by the amoebae. In contrast, Legionella pneumophila, a well-studied intracellular parasite of amoebae, multiplied only in coculture. A comparison of amoebae infected with L. pneumophila and amoebae infected with M. avium by electron microscopy demonstrated that there were striking differences in the locations of the bacteria within amoebal cysts. While L. pneumophila resided within the cysts, M. avium was found within the outer walls of the double-walled cysts of A. polyphaga. These locations may provide a reservoir for the bacteria when environmental conditions become unfavorable.  相似文献   

13.
Previous studies have demonstrated in vivo that T cells can provide protective immunity, in the absence of antibody, against infection with the extracellular Gram-negative bacterium Immunotype 1 (IT-1) Pseudomonas aeruginosa. We established an in vitro system in which immune T cells, after reexposure to bacterial antigens and to macrophages, secrete a product that kills the bacteria. Although macrophages are required for in vitro killing, they function neither as antigen-presenting nor as phagocytic cells in this system. T cells from animals immunized against a different P. aeruginosa immunotype will not kill IT-1 organisms; but the supernatants produced by IT-1 immune T cells after exposure to macrophages and IT-1 P. aeruginosa organisms are nonspecifically effective in killing unrelated bacteria. Because the supernatants from immune T cells lose their bactericidal properties upon minimal dilution, we conclude that if this mechanism is active in vivo, it must play a role in local immunity.  相似文献   

14.
The present study investigated the effect of staphylococcal enterotoxin type A (SEA) and endotoxin Serratia marcescens (LPS) on the phagocytosis and killing of Staphylococcus aureus by mouse peritoneal macrophages. Two hours after enterotoxin intraperitoneal injection phagocytic and bactericidal activity were depressed. 24 hours later there was increased functional activity of macrophages by SEA and LPS, apart. But when two toxins were administered together (LPS four hours later enterotoxin) marked inhibition of bacterial killing was observed. When peritoneal macrophages were treated in vitro for 24 hours with the same toxins they were also markedly suppressed in bactericidal activity.  相似文献   

15.
Cryptococcus neoformans, an encapsulated, pathogenic yeast, is endowed with a variety of virulence factors, including a polysaccharide capsule. During mammalian infection, the outcome of the interaction between C. neoformans and macrophages is central to determining the fate of the host. Previous studies have shown similarities between the interaction of C. neoformans with macrophages and with amoebae, resulting in the proposal that fungal virulence for mammals originated from selection by amoeboid predators. In this study, we investigated the interaction of C. neoformans with the soil amoeba Acanthamoeba castellanii. Comparison of phagocytic efficiency of the wild type, nonencapsulated mutants, and complemented strains showed that the capsule was antiphagocytic for amoebae. Capsular enlargement was associated with a significant reduction in phagocytosis, suggesting that this phenomenon protects against ingestion by phagocytic predators. C. neoformans var. neoformans cells were observed to exit amoebae several hours after ingestion, in a process similar to the recently described nonlytic exocytosis from macrophages. Cryptococcal exocytosis from amoebae was dependent on the strain and on actin and required fungal viability. Additionally, the presence of a capsule was inversely correlated with the likelihood of extrusion in certain strains. In summary, nonlytic exocytosis from amoebae provide another parallel to observations in fungus-macrophage interactions. These results provide additional support for the notion that some mechanisms of virulence observed during mammalian infection originated, and were selected for, by environmental interactions.The encapsulated yeast Cryptococcus neoformans is an environmental organism that is capable of causing human disease. This fungus is a facultative intracellular pathogen with a unique pathogenic strategy, despite no obvious need for replication in an animal host as part of its life cycle (10). C. neoformans is known to interact with protozoa, some of which have been shown to be effective predators for this fungus (6, 26), and amoebae appear to be important for the control of C. neoformans in the environment (28). Previously, we reported that the interaction of C. neoformans with Acanthamoeba castellanii directly paralleled the interaction with human macrophages (33). Similarities between C. neoformans interactions with amoebae and macrophages included intracellular replication in a phagosome and the release of polysaccharide-containing vesicles into the cytoplasm (33). Furthermore, passage of avirulent C. neoformans and Histoplasma capsulatum through slime mold and amoebae was shown to increase virulence in mice (31, 32). On the basis of these observations, it was proposed that the capacity for mammalian virulence emerged from interactions with phagocytic predators, such as amoebae and slime mold, in the environment (7, 17, 30). Consequently, single-cell protists have emerged as important systems for the study of C. neoformans virulence, and subsequent studies have investigated the interaction of this fungus with slime mold and paramecia (9, 31). Additional evidence for this concept comes from studies of insect fungal pathogens, which suggest that the capacity for insect pathogenicity may follow preadaptation from interactions with amoebae in the environment (4). Understanding the mechanisms by which virulence emerges in environmental microbes is important considering that global warming has been hypothesized to bring about new fungal diseases in the coming century (13).Recent work in our laboratory and in that of Robin May simultaneously uncovered a novel strategy of avoiding macrophage killing whereby yeast cells were expulsed without lysis of the host cell (2, 19). The process is remarkable in that extrusion of the C. neoformans-filled phagosome is accompanied by the survival of both the host cells and the yeast cells. Phagosome extrusion or fungal exocytosis appears to be a C. neoformans-dictated event that is dependent on both the presence of the polysaccharide capsule and on the depolymerization of actin. A corollary of the hypothesis that C. neoformans virulence emerged from interactions with environmental predators is that phenomena observed with mammalian cells are likely to have a counterpart in free-living phagocytic cells. Consequently, the observation of an apparently unique event such as phagosomal extrusion from mammalian macrophages suggested a need to search for similar events in C. neoformans interactions with environmental phagocytic predators.In this study, we investigated parallels between the intracellular pathogenic strategy of C. neoformans in both macrophages and A. castellanii, focusing on characterizing the impact of the capsule on protozoan phagocytosis and on ascertaining whether fungal cells could also exit amoebae, including the role of the capsule in that possible mechanism. Using time-lapse microscopy, we observed the exocytosis of C. neoformans from A. castellanii. While there are significant differences in the nonlytic exocytosis process when comparing amoebae and macrophages, the observation of this phenomenon in amoebae provides additional support for the idea that the virulence of C. neoformans was selected for, and is maintained, by interactions in the environment with other soil organisms.(This research was conducted by Cara Chrisman in partial fulfillment of the requirements for a Ph.D. from the Sue Golding Graduate Division of Medical Science, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY [awarded in 2010].)  相似文献   

16.
The killing of bacterial pathogens by macrophages occurs via the oxidative burst and bacteria have evolved to overcome this challenge and survive, using several virulence and defense strategies, including antioxidant mechanisms. We show here that the 1-Cys peroxiredoxin LsfA from the opportunistic pathogen Pseudomonas aeruginosa is endowed with thiol-dependent peroxidase activity that protects the bacteria from H2O2 and that this protein is implicated in pathogenicity. LsfA belongs to the poorly studied Prx6 subfamily of peroxiredoxins. The function of these peroxiredoxins has not been characterized in bacteria, and their contribution to host-pathogen interactions remains unknown. Infection of macrophages with the lsfA mutant strains resulted in higher levels of the cytokine TNF-α production due to the activation of the NF-kB and MAPK pathways, that are partially inhibited by the wild-type P. aeruginosa strain. A redox fluorescent probe was more oxidized in the lsfA mutant-infected macrophages than it was in the macrophages infected with the wild-type strain, suggesting that the oxidative burst was overstimulated in the absence of LsfA. Although no differences in the phagocytosis rates were observed when macrophages were infected with wild-type and mutant bacteria in a gentamicin exclusion assay, a higher number of wild-type bacterial cells was found in the supernatant. This difference was not observed when macrophages were pre-treated with a NADPH oxidase inhibitor, confirming the role of LsfA in the bacterial resistance to ROS generated via NADPH oxidase. In an acute pneumonia model, mice infected with the mutant strains presented higher cytokine release in the lungs and increased activated neutrophil recruitment, with reduced bacterial burden and improved survival rates compared to mice infected with the wild-type bacteria. LsfA is the first bacterial 1-Cys Prx shown to modulate host immune responses and its characterization will allow a better understanding of the role of redox signaling in host-pathogen interactions.  相似文献   

17.
The production of cysts, an integral part of the life cycle of many free-living protozoa, allows these organisms to survive adverse environmental conditions. Given the prevalence of free-living protozoa in food-related environments, it is hypothesized that these organisms play an important yet currently underinvestigated role in the epidemiology of foodborne pathogenic bacteria. Intracystic bacterial survival is highly relevant, as this would allow bacteria to survive the stringent cleaning and disinfection measures applied in food-related environments. The present study shows that strains of widespread and important foodborne bacteria (Salmonella enterica, Escherichia coli, Yersinia enterocolitica, and Listeria monocytogenes) survive inside cysts of the ubiquitous amoeba Acanthamoeba castellanii, even when exposed to either antibiotic treatment (100 μg/ml gentamicin) or highly acidic conditions (pH 0.2) and resume active growth in broth media following excystment. Strain- and species-specific differences in survival periods were observed, with Salmonella enterica surviving up to 3 weeks inside amoebal cysts. Up to 53% of the cysts were infected with pathogenic bacteria, which were located in the cyst cytosol. Our study suggests that the role of free-living protozoa and especially their cysts in the persistence and epidemiology of foodborne bacterial pathogens in food-related environments may be much more important than hitherto assumed.  相似文献   

18.
Regeneration of nutrients from relatively nutrient-poor organic residues is essential for overall operation of an ecosystem. Nutrients thus released are, however, inadequate for the needs of the decomposer populations, and a much faster nutrient turnover involving bacterial immobilization and release occurs concurrently. Evidence from aquatic ecosystems indicates that bacteria release little phosphorus, for which they have high demand, whereas bacterial grazers play an important role in regeneration of bacterial phosphorus. Our studies extend these relationships to terrestrial ecosystems. We studied phosphorus immobilization and mineralization in soil incubations, simulating rhizospheres with combinations of bacterial, amoebal, and nematode populations. Bacteria quickly assimilated and retained much of the labile inorganic phosphorus as carbon substrates were metabolized. Most of this bacterial phosphorus was mineralized and returned to the inorganic phosphorus pool by the amoebae. Nematode effects on phosphorus mineralization were small, except for indirect effects on amoebal activity. The observed remineralization may reflect direct excretion by the amoebae, physiological effects on the bacterial populations, or both. These results suggest a major role of microfauna in nutrient cycling.  相似文献   

19.
Since the discovery that Legionella pneumophila can survive and grow within free-living amoebae, there has been an increasing number of microbial species shown to have similar relationships. These include many bacterial species, fungi, other protozoa (e.g. Cryptosporidium) and viruses. Among bacteria, mycobacteria are of particular importance because of their role in human and animal infections. This review will consider the progress made in understanding the relationships between mycobacteria and amoebae, and their consequences in terms of ecology and epidemiology.  相似文献   

20.
Protozoan grazing is a major trophic pathway whereby the biomass re-enters the food web. Nonetheless, not all bacteria are digested by protozoa and the number known to evade digestion, resulting in their environmental augmentation, is increasing. We investigated the interactions of Bacillus cereus, Enterococcus faecalis, Enteropathogenic Escherichia coli (EPEC), Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and methicillin-sensitive Staphylococcus aureus (MSSA), with the amoeba, Acanthamoeba polyphaga. There was evidence of predation of all bacterial species except L. monocytogenes and S. aureus, where extracellular numbers were significantly higher when cultured with amoebae compared with growth in the absence of amoebae. Intracellular growth kinetic experiments and fluorescent confocal microscopy suggest that S. aureus survived and may even multiply within A. polyphaga, whereas there was no apparent intra-amoebal replication of L. monocytogenes and higher numbers were likely sustained on metabolic waste products released during coculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号