首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of metals to cell envelopes of Escherichia coli K-12.   总被引:21,自引:6,他引:15       下载免费PDF全文
As representative of gram-negative bacteria, the isolated and purified envelopes of an Escherichia coli K-12 strain were used to determine metal-binding capacity. The envelopes were suspended in 5 mM metal solutions for 10 min and 23 degrees C, separated and washed by centrifugation, and analyzed for metal by either atomic absorption or X-ray fluorescence spectroscopy. Of 32 metals tested, large amounts (> 0.9 mumol/mg [dry weight]) of Hf and Os, intermediate amounts (0.1 to 0.4 mumol/mg [dry weight]) of Pb, Zn, Zr, Fe III, Mn, Mo, Mg, Co, and Ce IV, and small amounts (< 0.1 mumol/mg [dry weight]) of Na, K, Rb, Ca, Sr, Cu, Sc, La, Pr, Sm, U, Fe II, Ru, Ni, Hg, Pt, Pd, Au, and In were detected Li and V were not bound to the envelopes. Electron microscopy of unstained, thin-sectioned material provided an electron-scattering profile for localizing the bound metal within the envelope. Energy-dispersive X-ray analysis of thin sections detected all metals in single envelope vesicles. These data suggest that most metal deposition occurred at the polar head group regions of the constituent membranes or along the peptidoglycan layer. No leaching of envelope components was detected by monitoring radioactive probes within the lipopolysaccharide and peptidoglycan layers during metal uptake experiments, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins from metal-loaded envelopes, or protein and carbohydrate determinations on the wash fluids. These results suggest that membrane integrity was not disturbed under these ionic conditions.  相似文献   

2.
The bacterial cell envelope is critical to support and maintain cellular life. In Gram-negative bacterial cells, the outer membrane and the peptidoglycan layer are two important parts of the cell envelope and they harbour abundant proteins. Here, we report the identification and characterization of a previously unknown p eptidoglycan-a ssociated p rotein, PapA, from the Gram-negative Comamonas testosteroni. PapA bound peptidoglycan with its C-terminal domain and interacted with the outer-membrane porin OmpC. The PapA-OmpC complex riveted the outer membrane and the peptidoglycan layer, and played a role in maintaining cell envelope integrity. When papA was disrupted, the mutant CNB-1ΔpapA apparently had an outer membrane partly separated from the peptidoglycan layer. Phenotypically, the mutant CNB-1ΔpapA lost chemotactic responses and had longer lag-phase of growth, less flagellation and higher sensitivity to harsh environments. Totally, 1093 functionally unknown PapA homologues were identified from the public NR protein database and they were mainly distributed in Burkholderiales of Betaproteobacteria. Our finding provides a clue that the PapA homologous proteins might function as a rivet to maintain cell envelope integrity in those Gram-negative bacteria.  相似文献   

3.
The effect of aqueous extracts of carob (Ceratonia siliqua) pods, gallotannic acid, gallic acid, and catechol on several microorganisms was studied. Carob pod extract and tannic acid showed a strong antimicrobial activity toward some cellulolytic bacteria. On the basis of tannin content, to which antimicrobial effect was related, carob pod extracts inhibited Cellvibrio fulvus and Clostridium cellulosolvens at 15 μg/ml, Sporocytophaga myxococcoides at 45 μg/ml, and Bacillus subtilis at 75 μg/ml. The inhibiting concentrations for tannic acid were found to be 12, 10, 45, and 30 μg/ml, respectively. Gallic acid and catechol were much less effective. Tannic acid and the tannin fraction of carob extract exerted both bacteriostatic and bactericidal effects on C. fulvus. Respiration of C. fulvus in the presence of bactericidal concentrations of tannic acid or tannin fraction of carob extract was inhibited less than 30%. A partial formation of “protoplasts” by C. fulvus was obtained after 2 hr of incubation in a growth medium to which 20% sucrose, 0.15% MgSO4·7H2O, and 10 to 50 μg/ml of tannic acid or 500μg/ml of penicillin, or both, had been added. Tannic acid and the tannin fraction of carob extract protected C. fulvus from metabolic lysis in sucrose solution. Although the growth of other microorganisms tested was only slightly affected, the morphology of some of them was drastically changed in the presence of subinhibitory concentrations of carob pod extracts of tannic acid. It is suggested that the site of action of tannins on sensitive microorganisms is primarily the cell envelope.  相似文献   

4.
Adsorption of heavy metals and radionuclides (HMR) onto iron and manganese oxides has long been recognized as an important reaction for the immobilization of these compounds. However, in environments containing elevated concentrations of these HMR the adsorptive capacity of the iron and manganese oxides may well be exceeded, and the HMR can migrate as soluble compounds in aqueous systems. Here we demonstrate the potential of a bioremediative strategy for HMR stabilization in reducing environments based on the recently described anaerobic nitrate-dependent Fe(II) oxidation by Dechlorosoma species. Bio-oxidation of 10 mM Fe(II) and precipitation of Fe(III) oxides by these organisms resulted in rapid adsorption and removal of 55 μM uranium and 81 μM cobalt from solution. The adsorptive capacity of the biogenic Fe(III) oxides was lower than that of abiotically produced Fe(III) oxides (100 μM for both metals), which may have been a result of steric hindrance by the microbial cells on the iron oxide surfaces. The binding capacity of the biogenic oxides for different heavy metals was indirectly correlated to the atomic radius of the bound element. X-ray absorption spectroscopy indicated that the uranium was bound to the biogenically produced Fe(III) oxides as U(VI) and that the U(VI) formed bidentate and tridentate inner-sphere complexes with the Fe(III) oxide surfaces. Dechlorosoma suillum oxidation was specific for Fe(II), and the organism did not enzymatically oxidize U(IV) or Co(II). Small amounts (less than 2.5 μM) of Cr(III) were reoxidized by D. suillum; however, this appeared to be inversely dependent on the initial concentration of the Cr(III). The results of this study demonstrate the potential of this novel approach for stabilization and immobilization of HMR in the environment.  相似文献   

5.
Epilithic microbial communities, ubiquitously found in biofilms on submerged granite, limestone, and sandstone, as well as on the concrete support pillars of bridges, were examined in the Speed River, Ontario, Canada. Transmission electron microscopy showed that attached bacteria (on all substrata) were highly mineralized, ranging from Fe-rich capsular material to fine-grained (<1 μm) authigenic (primary) mineral precipitates. The authigenic grains exhibited a wide range of morphologies, from amorphous gel-like phases to crystalline structures. Energy-dispersive X-ray spectroscopy indicated that the most abundant mineral associated with epilithic bacteria was a complex (Fe, Al) silicate of variable composition. The gel-like phases were similar in composition to a chamositic clay, whereas the crystalline structures were more siliceous and had compositions between those of glauconite and kaolinite. The consistent formation of (Fe, Al) silicates by all bacterial populations, regardless of substratum lithology, implies that biomineralization was a surface process associated with the anionic nature of the cell wall. The adsorption of dissolved constituents from the aqueous environment contributed significantly to the mineral formation process. In this regard, it appears that epilithic microbial biofilms dominate the reactivity of the rock-water interface and may determine the type of minerals formed, which will ultimately become part of the riverbed sediment. Because rivers typically contain high concentrations of dissolved iron, silicon, and aluminum, these findings provide a unique insight into biogeochemical activities that are potentially widespread in natural waters.  相似文献   

6.
YabA negatively regulates initiation of DNA replication in low-GC Gram-positive bacteria. The protein exerts its control through interactions with the initiator protein DnaA and the sliding clamp DnaN. Here, we combined X-ray crystallography, X-ray scattering (SAXS), modeling and biophysical approaches, with in vivo experimental data to gain insight into YabA function. The crystal structure of the N-terminal domain (NTD) of YabA solved at 2.7 Å resolution reveals an extended α-helix that contributes to an intermolecular four-helix bundle. Homology modeling and biochemical analysis indicates that the C-terminal domain (CTD) of YabA is a small Zn-binding domain. Multi-angle light scattering and SAXS demonstrate that YabA is a tetramer in which the CTDs are independent and connected to the N-terminal four-helix bundle via flexible linkers. While YabA can simultaneously interact with both DnaA and DnaN, we found that an isolated CTD can bind to either DnaA or DnaN, individually. Site-directed mutagenesis and yeast-two hybrid assays identified DnaA and DnaN binding sites on the YabA CTD that partially overlap and point to a mutually exclusive mode of interaction. Our study defines YabA as a novel structural hub and explains how the protein tetramer uses independent CTDs to bind multiple partners to orchestrate replication initiation in the bacterial cell.  相似文献   

7.
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis.  相似文献   

8.
The rod-shaped rickettsia-like bacteria of Pierce's disease measure about 0.25 to 0.50 μm in diameter and 1.0 to 4.0 μm long. The bacteria have a cell wall consisting of a trilaminar outer membrane and two intermediate low-density layers separated by a dense intermediate layer. A trilaminar cytoplasmic membrane is also present, resulting in a total wall complex thickness of 25 to 40 nm. A periodic infolding of the outer membrane and intermediate layers of the wall give the wall surface a ridged apperance. The ridges appear to go around the long axis of the cell, possibly in the form of spirals. Ribosomes and nuclear regions with easily visible deoxyribonucleic acid strands and clumps are distributed throughout the cytoplasm. Binary fission, during which the cell wall and cytoplasmic membrane folded inward to partition the cell, was observed. In the xylem of infected grapes, the bacteria are either distributed evenly throughout the lumen of the xylem vessel or appressed along the inner surface of the vessel walls in an electron-lucent matrix.  相似文献   

9.
Effect of O-Side-Chain-Lipopolysaccharide Chemistry on Metal Binding   总被引:13,自引:4,他引:9       下载免费PDF全文
Pseudomonas aeruginosa PAO1 produces two chemically distinct types of lipopolysaccharides (LPSs), termed A-band LPS and B-band LPS. The A-band O-side chain is electroneutral at physiological pH, while the B-band O-side chain contains numerous negatively charged sites due to the presence of uronic acid residues in the repeat unit structure. Strain PAO1 (A+ B+) and three isogenic LPS mutants (A+ B, A B+, and A B) were studied to determine the contribution of the O-side-chain portion of LPS to metal binding by the surfaces of gram-negative cells. Transmission electron microscopy with energy-dispersive X-ray spectroscopy was used to locate and analyze sites of metal deposition, while atomic absorption spectrophotometry and inductively coupled plasma-mass spectrometry were used to perform bulk quantitation of bound metal. The results indicated that cells of all of the strains caused the precipitation of gold as intracellular, elemental crystals with a d-spacing of 2.43 Å. This type of precipitation has not been reported previously for gram-negative cells and suggests that in the organisms studied gold binding is not a surface-mediated event. All four strains bound similar amounts of copper (0.213 to 0.222 μmol/mg [dry weight] of cells) at the cell surface, suggesting that the major surface metal-binding sites reside in portions of the LPS which are common to all strains (perhaps the phosphoryl groups in the core-lipid A region). However, significant differences were observed in the abilities of strains dps89 (A B+) and AK1401 (A+ B) to bind iron and lanthanum, respectively. Strain dps89 caused the precipitation of iron (1.623 μmol/mg [dry weight] of cells) as an amorphous mineral phase (possibly iron hydroxide) on the cell surface, while strain AK1401 nucleated precipitation of lanthanum (0.229 μmol/mg [dry weight] of cells) as apiculate, surface-associated crystals. Neither iron nor lanthanum precipitates were observed on the cells of other strains, which suggests that the combination of A-band LPS and B-band LPS produced by a cell may result in a cell surface which promotes the formation of metal-rich precipitates. We therefore propose that the negatively charged sites located in the O-side chains are not directly responsible for the binding of metallic ions; however, the B-band LPS molecule as a whole may contribute to overall cell surface properties which favor the precipitation of distinct metal-rich mineral phases.  相似文献   

10.
BackgroundZra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP.MethodsThe purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system.ResultsWe show that ZraS binds one Zn2+ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution.ConclusionOur results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system.General significanceWe bring new input on the so far poorly described Zra system and notably on ZraS.  相似文献   

11.
Treatment of growing Escherichia coli B with lanthanide ions [lanthanum(III), terbium(III), and europium(III)] and subsequent aldehyde-OsO4 fixation caused areas of high contrast to appear within the periplasm (the space between inner and outer membrane of the cell envelope). X-ray microanalysis of ultrathin sections of Epon-embedded or acrylic resin-embedded cells revealed the presence of the lanthanide and of phosphorus in the areas, whose contrast greatly exceeded that of other stained structures. Comparatively small amounts of the lanthanide were also present in the outer membrane and in the cytoplasm. The distribution of the periplasmic areas of high contrast was found to be random and not clustered at areas of current or future septum formation. Irregular cell shapes were observed after lanthanide treatment before onset of fixation. In contrast to glutaraldehyde-OsO4 fixation, glutaraldehyde used as the sole fixer caused a scattered distribution of the lanthanide. Cryofixation (slam-freezing) and freeze substitution revealed a lanthanum stain at both the periplasm and the outer part of the outer membrane. Deenergization of the cell membrane by either phage T4 or carbonyl cyanide m-chlorophenylhydrazone abolished the metal accumulation. Furthermore, addition of excess calcium, administered together with the lanthanide solution, diminished the quantity and size of areas of high contrast. Cells grown in media of high NaCl concentration revealed strongly stained areas of periplasmic precipitates, whereas cells grown under low-salt conditions showed very few high-contrast patches in the periplasm. Terbium treatment (during fixation) enhanced the visibility of the sites of inner-outer membrane contact (the membrane adhesion sites) in plasmolized cells, possibly as the result of an accumulation of the metal at the adhesion domains. The data suggest a rapid interaction of the lanthanides with components of the cell envelope, the periplasm, and the energized inner membrane.  相似文献   

12.
The size of bacteria and the size distribution of heterotrophic activity were examined in estuarine, neritic, and coastal waters. The data indicated the small size of suspended marine bacteria and the predominance of free-living cells in numerical abundance and in the incorporation of dissolved amino acids. The average per-cell volume of suspended marine bacteria in all environments was less than 0.1 μm3. Cell volume ranged from 0.072 to 0.096 μm3 at salinities of 0 to 34.3‰ in the Newport River estuary, N.C., and from 0.078 to 0.096 μm3 in diverse areas of the Gulf of Mexico. Thus, the free-living bacteria were too small to be susceptible to predation by copepods. In the Newport River estuary, ca. 93 to 99% of the total number of cells and 75 to 97% of incorporated tritium (from 3H-labeled mixed amino acids) retained by a 0.2-μm-pore-size filter passed through a 3.0-μm-pore-size filter. Although the amino acid turnover rate per cell was higher for the bacteria in the >3.0-μm size fraction than in the <3.0-μm size fraction, the small number of bacteria associated with the >3.0-μm size particles resulted in the low relative contribution of attached bacteria to total heterotrophic activity in the estuary. For coastal and neritic samples, collected off the coast of Georgia and northeast Florida and in the plume of the Mississippi River, 56 to 98% of incorporated label passed through a 3.0-μm-pore-size filter. The greatest activity in the >3.0-μm fraction in the Georgia Bight was at nearshore stations and in the bottom samples. Our data were consistent with the hypothesis that resuspension of bottom material is an important factor in influencing the proportion of heterotrophic activity attributable to particle-associated bacteria.  相似文献   

13.
The aims of this study were to investigate the role of sulphate-reducing bacteria in facilitating Pt removal from aqueous solutions and to investigate the role of a hydrogenase enzyme in Pt reduction in vitro. To avoid precipitation of Pt as Pt sulphide, a resting (non-growing) mixed culture was used. A pH-dependent rate of Pt removal from aqueous solution was observed, indicating that metal speciation was the main factor for its removal from solution. The maximum initial concentration of Pt(IV) that the cells can effectively remove from solution was 50 mg/l, while the maximum capacity was only 4 mg of Pt per gram of resting biomass. Transmission electron microscopy and energy dispersive X-ray analyses indicated that Pt was being precipitated in the periplasm, a major area of hydrogenase activity in the cells. In vitro investigation of Pt reduction with hydrogen as the electron donor showed that 49% was removed within 1 h when a relatively pure hydrogenase extract was used, 31% was removed with a cell-free soluble extract and 70% removed by live cells.  相似文献   

14.
A molecular envelope of the beta-mannosidase from Trichoderma reesei has been obtained by combined use of solution small-angle X-ray scattering (SAXS) and protein crystallography. Crystallographic data at 4 A resolution have been used to enhance informational content of the SAXS data and to obtain an independent, more detailed protein shape. The phased molecular replacement technique using a low resolution SAXS model, building, and refinement of a free atom model has been employed successfully. The SAXS and crystallographic free atom models exhibit a similar globular form and were used to assess available crystallographic models of glycosyl hydrolases. The structure of the beta-galactosidase, a member of a family 2, clan GHA glycosyl hydrolases, shows an excellent fit to the experimental molecular envelope and distance distribution function of the beta-mannosidase, indicating gross similarities in their three-dimensional structures. The secondary structure of beta-mannosidase quantified by circular dichroism measurements is in a good agreement with that of beta-galactosidase. We show that a comparison of distance distribution functions in combination with 1D and 2D sequence alignment techniques was able to restrict the number of possible structurally homologous proteins. The method could be applied as a general method in structural genomics and related fields once protein solution scattering data are available.  相似文献   

15.
16.
The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane, is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The outer membrane protein A (OmpA) domain is an eight-stranded membrane-spanning β-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work, we describe the identification of four novel OmpA-like β-barrels from Borrelia afzelii, the most common cause of erythema migrans (EM) rash in Europe. Structural characterization of one these proteins (BAPKO_0422) by SAXS and CD indicate a compact globular structure rich in β-strand consistent with a monomeric β-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25×45 Å (1 Å=0.1 nm). Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal phenylalanine residue commonly found in Proteobacterial OM proteins is replaced by isoleucine/leucine or asparagine. BAPKO_0422 is demonstrated to bind human factor H (fH) and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value.  相似文献   

17.
The origin of the curliness of human hair was revealed by scanning microbeam small angle X-ray scattering (SAXS), based on the nanostructure of keratin fibre arrangement. Scanning microbeam SAXS patterns of single hair fibres have been measured across the fibres and the differences in the patterns between the inner and the outer sides of the curvature were successfully detected. The analysis of the equatorial and azimuthal scattering intensity profiles showed that the arrangement of the intermediate filaments was different between the inner and the outer sides of the curvature. From the analogy with Merino and Romny wool, it is suggested that different types of cortices exist in human hair. It is concluded that, regardless of the ethnic origins (African, Caucasian, and Asian), the macroscopic curl shape of the hair fibre originate from the inhomogeneity of the internal nanostructure, arising from inhomogeneous distribution of two types of cortices.  相似文献   

18.
Gram-negative bacteria possess stress responses to maintain the integrity of the cell envelope. Stress sensors monitor outer membrane permeability, envelope protein folding, and energization of the inner membrane. The systems used by gram-negative bacteria to sense and combat stress resulting from disruption of the peptidoglycan layer are not well characterized. The peptidoglycan layer is a single molecule that completely surrounds the cell and ensures its structural integrity. During cell growth, new peptidoglycan subunits are incorporated into the peptidoglycan layer by a series of enzymes called the penicillin-binding proteins (PBPs). To explore how gram-negative bacteria respond to peptidoglycan stress, global gene expression analysis was used to identify Escherichia coli stress responses activated following inhibition of specific PBPs by the β-lactam antibiotics amdinocillin (mecillinam) and cefsulodin. Inhibition of PBPs with different roles in peptidoglycan synthesis has different consequences for cell morphology and viability, suggesting that not all perturbations to the peptidoglycan layer generate equivalent stresses. We demonstrate that inhibition of different PBPs resulted in both shared and unique stress responses. The regulation of capsular synthesis (Rcs) phosphorelay was activated by inhibition of all PBPs tested. Furthermore, we show that activation of the Rcs phosphorelay increased survival in the presence of these antibiotics, independently of capsule synthesis. Both activation of the phosphorelay and survival required signal transduction via the outer membrane lipoprotein RcsF and the response regulator RcsB. We propose that the Rcs pathway responds to peptidoglycan damage and contributes to the intrinsic resistance of E. coli to β-lactam antibiotics.  相似文献   

19.
The protein eukaryotic initiation factor 5A (eIF5A) is highly conserved among archaea and eukaryotes, but not in bacteria. Bacteria have the elongation factor P (EF-P), which is structurally and functionally related to eIF5A. eIF5A is essential for cell viability and the only protein known to contain the amino acid residue hypusine, formed by post-translational modification of a specific lysine residue. Although eIF5A was initially identified as a translation initiation factor, recent studies strongly support a function for eIF5A in the elongation step of translation. However, the mode of action of eIF5A is still unknown. Here, we analyzed the oligomeric state of yeast eIF5A. First, by using size-exclusion chromatography, we showed that this protein exists as a dimer in vitro, independent of the hypusine residue or electrostatic interactions. Protein–protein interaction assays demonstrated that eIF5A can form oligomers in vitro and in vivo, in an RNA-dependent manner, but independent of the hypusine residue or the ribosome. Finally, small-angle X-ray scattering (SAXS) experiments confirmed that eIF5A behaves as a stable dimer in solution. Moreover, the molecular envelope determined from the SAXS data shows that the eIF5A dimer is L-shaped and superimposable on the tRNAPhe tertiary structure, analogously to the EF-P monomer.  相似文献   

20.
Three methods were used to determine the enhancement by sodium dodecyl sulfate (SDS) of prodigiosin formation in Serratia marcescens O8. The results of the agar disk diffusion method indicated that pigment formation was dependent upon the concentration of SDS. Diameters of the pigment zones were proportional to the logarithm of SDS concentrations of 300 to 1,500 μg/ml. When bacteria were grown in broth containing SDS from 0 to 800 μg/ml and the pigment extracts were analyzed spectrophotometrically, a similar enhancement of pigment formation was observed. Finally, these results were confirmed by high-performance liquid chromatographic analysis of the extracts. Prodigiosin appeared to be the sole component with increased synthesis. The possible mechanism of the SDS enhancement effect could be explained by an increase in negative binding sites by the association of SDS with a cell envelope component(s). These binding sites may be required for prodigiosin synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号