首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fourth cytoplasmic domain, the so-called C-terminal juxtamembrane segment or helix VIII, has been identified in numerous G-protein-coupled receptors and exhibits unique functional characteristics. Efforts have been devoted to studying the juxtamembrane segment in order to understand the biological importance of the segment in G-protein activation of the cannabinoid CB1 and CB2 receptors. Recent biochemical data revealed that the CB1 C-terminal juxtamembrane peptide fragment CB1-(401-417) can directly activate the G-protein and also showed that the specificity of the signal transduction activation by the C-terminal juxtamembrane region is unique to the CB1 receptor but not to the CB2 receptor (Mukhopadhyay, S., and Howlett, A. C. (2001) Eur. J. Biochem. 268, 499-505). However, there is experimental work, not yet reported, on the conformational analyses and structural comparison between the respective helix VIII segments of the two receptors. In the present study, we have examined the conformational specificities of the cytoplasmic helical domains for both cannabinoid receptors. Three-dimensional structural features of two synthetic CB1 and CB2 peptides, CB1I397-G418 and CB2I298-K319, respectively, in membrane mimetic DPC micelles were studied using a combined high resolution NMR and computer modeling approach. Comparisons of the NMR-determined structures of the two peptides as well as their correspondent mutant peptides revealed their conformational properties and salt bridge dissimilarity, which might help us to understand the different structural roles of the fourth cytoplasmic helices in the function and regulation of CB1 and CB2 receptors.  相似文献   

2.
A CB1 cannabinoid receptor peptide fragment from the C-terminal juxtamembrane region autonomously inhibits adenylyl cyclase activity in a neuroblastoma membrane preparation. The cannabinoid receptor antagonist, SR141716A, failed to block the response. The peptide was able to evoke the response in membranes from Chinese hamster ovary (CHO) cells that do not express the CB1 receptor. These studies are consistent with a direct activation of Gi by the peptide. To test the importance of a BXBXXB sequence, Lys403 was acetylated, resulting in a peptide having similar affinity but reduced efficacy. N-Terminal truncation of Arg401 resulted in a 6-fold loss of affinity, which was not further reduced by sequential truncation of up to the first seven amino acids, four of which are charged. N-Terminal-truncated peptides exhibited maximal activity, suggesting that Gi activation can be conferred by the remaining amino acids. Truncation of the C-terminal Glu417 or substitution of Glu417 by a Leu or of Arg401 by a Norleucine reduced activity at 100 microM. The C-terminal juxtamembrane peptide was constrained to a loop peptide by placement of Cys residues at both terminals and disulfide coupling. This modification reduced the affinity 3-fold but yielded near-maximal efficacy. Blocking the Cys termini resulted in a loss of efficacy. Circular dichroism spectropolarimetry revealed that all C-terminal juxtamembrane peptide analogues exist in a random coil conformation in an aqueous environment. A hydrophobic environment (trifluoroethanol) failed to induce alpha-helix formation in the C-terminal juxtamembrane peptide but did so in less active peptides. The anionic detergent sodium dodecyl sulfate induced alpha-helix formation in all analogues except the loop peptide, where it induces a left-handed PII conformation. It is concluded that alpha-helix formation is not required for Gi activation.  相似文献   

3.
The functional interaction of the recombinant alpha 2 adrenergic receptor subtypes, alpha 2-C10 (the human platelet alpha 2 receptor, equivalent to the alpha 2 A subtype) and alpha 2-C4 (an alpha 2 receptor subtype cloned from a human kidney cDNA library), with G proteins was characterized in an in vitro reconstitution system. These receptor subtypes were overexpressed in COS-7 cells and were purified to a specific activity of 1.1-3.3 nmol/mg of protein. The G proteins consisted of Gs (adenylyl cyclase stimulatory) and members of the inhibitory family, including Gi1, Gi2, and Gi3, and G0. The cloned alpha subunits of these G proteins were overexpressed in Escherichia coli and were purified to homogeneity. Prior to use, G holoproteins were prepared by mixing the alpha subunits with beta gamma subunits that had been purified from bovine brain. Following reconstitution into phospholipid vesicles, both alpha 2 receptor subtypes could couple to the inhibitory G proteins but not to Gs, as assessed by agonist stimulation of GTPase activity. The pharmacological specificity of this interaction was preserved with respect to the two receptor subtypes. Between the different inhibitory G proteins, the alpha 2-C10 adrenergic receptor subtype showed the following preference: Gi3 greater than Gi1 greater than or equal to Gi2 greater than G0. The stimulation of GTPase activity (turnover number) ranged from 6.4-fold (Gi3) to 1.5-fold (G0). The preference of G-protein interaction for the alpha 2-C4 receptor subtype was the same as that observed for the alpha 2-C10, but the extent of activation was slightly lower. The results show that in vitro each of the alpha 2 adrenergic receptor subtypes can activate multiple G proteins but that clear preferences exist with respect to the individual inhibitory G-protein subtypes. Additionally, it appears that alpha 2-C10 is coupled more efficiently to G-protein activation than is alpha 2-C4.  相似文献   

4.
Hormonal inhibition of adenylate cyclase is mediated by a guanyl nucleotide binding protein, Gi, which is composed of alpha, beta, and gamma subunits (Gi alpha, G beta gamma). Pertussis toxin blocks hormonal inhibition by catalyzing the ADP-ribosylation of Gi alpha. With purified Gi subunits, but without nucleotides, it was observed that toxin-catalyzed ADP-ribosylation of Gi alpha was negligible in the absence of G beta gamma; ATP, previously shown to increase ADP-ribosylation in membranes, enhanced the ADP-ribosylation of Gi alpha in the absence, more than in the presence, of G beta gamma. Prior studies (Kanaho, Y., Tsai, S.-C., Adamik, R., Hewlett, E.L., Moss, J., and Vaughan, M. (1984) J. Biol. Chem. 259, 7378-7381) had demonstrated that rhodopsin, the retinal photon receptor protein, can replace inhibitory hormone receptors, and stimulate the hydrolysis of GTP by Gi alpha in the presence of G beta gamma. Photolyzed rhodopsin, but not the inactive, dark protein, inhibited ADP-ribosylation of Gi alpha in the presence of G beta gamma. ADP-ribosylation of Gi alpha, in the presence of G beta gamma and photolyzed (but not dark) rhodopsin was increased by guanosine 5'-O-(2-thiodiphosphate) or GDP, but not by (beta, gamma-methylene)guanosine triphosphate or guanosine 5'-O-(3-thiotriphosphate). Presumably, photolyzed rhodopsin and nucleoside triphosphate analogues activate Gi, whereas with dark rhodopsin and nucleoside diphosphates Gi is in the inactive state. The latter appears to be the preferred substrate for pertussis toxin. These observations are consistent with other evidence that rhodopsin and inhibitory hormone receptors are functionally similar.  相似文献   

5.
In an earlier study we demonstrated that epidermal growth factor (EGF) increases the cellular accumulation of cAMP in perfused rat hearts by stimulating the cardiac adenylate cyclase via a stimulatory GTP-binding protein (Nair, B. G., Rashed, H. M., and Patel, T. B. (1989) Biochem. J. 264, 563-571). Employing antiserum, CS1, generated against a synthetic decapeptide RMHLRQYELL representing the carboxyl terminus of Gs alpha, the involvement of Gs in mediating the effects of EGF on cardiac adenylate cyclase was further investigated. The CS1 antiserum specifically recognized two forms, (52 and 40 kDa) of Gs alpha in rat cardiac membranes; the 52 kDa being the predominant species. In functional assays of adenylate cyclase activity, the CS1 antiserum did not alter either aluminum fluoride- or forskolin-stimulated adenylate cyclase activity. Similarly, basal adenylate cyclase activity in the absence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) was also not altered by the CS1 antiserum. However, as compared with controls performed in the presence of non-immune serum, preincubation of cardiac membranes with the CS1 antiserum resulted in a concentration-dependent inhibition of Gpp(NH)p-, isoproterenol-, and EGF-stimulated activities. In experiments which monitored Gi function as the ability of different G(pp)NHp, (-)N6-(R-phenylisopropyl)adenosine and carbachol to inhibit forskolin-stimulated adenylate cyclase, CS1 antiserum by inhibiting Gs, increased the apparent activity of Gi. Overall, our data demonstrate that the CS1 antiserum can specifically inhibit Gs function and therefore the stimulation of adenylate cyclase by agonists whose actions are mediated by Gs. In this respect, the data presented here demonstrate that Gs is the G-protein involved in mediating EGF-elicited stimulation of cardiac adenylate cyclase. Additionally, the finding that CS1 antiserum can overcome the effects of Gpp(NH)p on Gs, but not Gi, suggests that the carboxyl-terminal region of Gs alpha is important in the interactions with GTP or its analogs.  相似文献   

6.
Photoaffinity-labeled N-formyl chemotactic peptide receptors from human neutrophils solubilized in octyl glucoside exhibit two forms upon sucrose density gradient sedimentation, with apparent sedimentation coefficients of approximately 4 and 7 S. The 7 S form can be converted to the 4 S form by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) with an EC50 of approximately 20 nM, suggesting that the 7 S form may represent a physical complex of the receptor with endogenous G protein (Jesaitis, A. J., Tolley, J. O., Bokoch, G. M., and Allen, R. A. (1989) J. Cell Biol. 109, 2783-2790). To probe the nature of the 7 S form, we reconstituted the 7 S form from the 4 S form by adding purified G protein. The 4 S form, obtained by solubilizing GTP gamma S-treated neutrophil plasma membranes, was incubated with purified (greater than 95%) Gi protein from bovine brain (containing both Gi alpha 1 and Gi alpha 2) or with neutrophil G protein (Gn), and formation of the 7 S complex was analyzed on sucrose density gradients. The EC50 of 7 S complex formation induced by the two G proteins was 70 +/- 25 and 170 +/- 40 nM for Gn and Gi, respectively. No complexation was measurable when bovine transducin (Gt) was used up to 30 times the EC50 for Gn. The EC50 for Gi was the same for receptors, obtained from formyl peptide-stimulated or unstimulated cells. The addition of 10 microM GTP gamma S to the reconstituted 7 S complex caused a complete revision of the receptor to the 4 S form, and anti-Gi peptide antisera immunosedimented the 7 S form. ADP-ribosylation of Gi prevented formation of the 7 S form even at 20 times the concentration of unribosylated Gi normally used to attain 50% conversion to the 7 S form. These observations suggest that the 7 S species is a physical complex containing N-formyl chemotactic peptide receptor and G protein.  相似文献   

7.
Purification of the catalyst of adenylate cyclase   总被引:12,自引:0,他引:12  
The catalytic moiety of hormone-sensitive adenylate cyclase has been purified from bovine brain. It is isolated largely without its guanine nucleotide-binding regulatory protein, Gs, by affinity chromatography on 7-O-hemisuccinyldeacetylforskolin-agarose. It appears to be a single polypeptide which migrates on sodium dodecyl sulfate-polyacrylamide gels with an apparent Mr of approximately 120,000. When subjected to electrophoresis on gradient (5-10%) sodium dodecyl sulfate-polyacrylamide gels, it displays a larger apparent Mr of 150,000. The adenylate cyclase activity of the preparation can be stimulated by the addition of Gs, forskolin, or calcium-calmodulin. The preparation has been reconstituted with purified beta-adrenergic receptors and Gs to form a hormone-stimulated adenylate cyclase system (May, D., Ross, E.M., Gilman, A.G., and Smigel, M.D. (1985) J. Biol. Chem. 260, 15829-15833). In contrast to its stimulation by Gs, inhibition by the alpha subunits of Gi and Go, G proteins known to be coupled to inhibitory receptors (Sternweis, P., and Florio, V. (1985) J. Biol. Chem. 260, 3477-3483), is not seen. Preparations of adenylate cyclase show varying degrees of inhibition by added G protein beta . gamma subunit. This inhibition can be explained as reflecting a variable, small (under 5%) contamination of the preparation by Gs alpha which would be deactivated by complexing with the added beta . gamma subunit.  相似文献   

8.
Platelet activation by the prostaglandin endoperoxide (PGH2)/thromboxane (Tx) A2 analog, U46619, involves stimulation of phospholipase (PL) C and an increase in intracellular calcium via distinct receptor subtypes. Agents which stimulate adenylate cyclase inhibit platelet function. We demonstrate that PGH2/TxA2 receptor desensitization is associated with enhanced stimulation of platelet cyclic AMP by the prostacyclin analog, iloprost and by forskolin. Sensitization of adenylate cyclase is mediated via the PGH2/TxA2 receptor subtype which activates PLC, as it is blocked by the specific antagonist, GR32191 (Takahara, K., Murray, R., FitzGerald, G. A., and Fitzgerald, D. J. (1990) J. Biol. Chem. 265, 6838-6844). This effect is not observed in platelets desensitized with thrombin or platelet activating factor and is not mediated by protein kinase C. Prior exposure of platelets to platelet activating factor results in much greater desensitization of PGH2/TxA2-induced aggregation (mean 64%) compared with calcium stimulation (mean 18%), consistent with selective heterologous desensitization of the PLC-linked PGH2/TxA2 receptor subtype. Platelet activation by PGH2/TxA2 is a tightly regulated process, involving both homologous desensitization of at least two receptor subtypes and sensitization of the platelet adenylase cyclase system.  相似文献   

9.
Prostaglandin E (PGE) receptor is coupled to a pertussis toxin-insensitive GTP-binding protein in bovine adrenal medulla, but PGE receptor partially purified from bovine adrenal medulla was functionally reconstituted with Gi into phospholipid vesicles (Negishi, M., Ito, S., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1988) J. Biol. Chem. 263, 6893-6900). We demonstrate here that PGE2 inhibited forskolin-induced accumulation of cAMP in cultured bovine chromaffin cells. In plasma membranes prepared from bovine adrenal medulla, PGE2 inhibited forskolin-stimulated adenylate cyclase activity in a GTP-dependent manner. This inhibitory action of PGE2 was abolished by treatment of the membrane with pertussis toxin. Reconstitution of the membranes ADP-ribosylated by pertussis toxin with Gi purified from bovine brain restored the potency of PGE2 to inhibit the adenylate cyclase activity. Inhibition of forskolin-induced cAMP accumulation by PGE2 was also abolished by exposure to the toxin in the cells, indicating that PGE receptors are coupled to Gi. In contrast, PGE2 stimulated the formation of inositol phosphates in chromaffin cells, but this effect was not affected by treatment of the cells with pertussis toxin, suggesting that the PGE receptors are coupled to phosphoinositide metabolism via a pertussis toxin-insensitive G-protein. Both the inhibitory action of cAMP accumulation and stimulation of phosphoinositide metabolism were specific for PGE1 and PGE2, and the Scatchard plot analysis of PGE2 binding to the membrane showed a single high-affinity binding site (Kd = 2 nM). In bovine adrenal chromaffin cells PGE2 enhanced catecholamine release in the presence of ouabain by stimulation of phosphoinositide metabolism (Yokohama, H., Tanaka, T., Ito, S., Negishi, M., Hayashi, H., and Hayaishi, O. (1988) J. Biol. Chem. 263, 1119-1122). We further examined the modulation of catecholamine release by PGE2 through its inhibitory coupling to the adenylate cyclase system. Prior exposure of chromaffin cells to forskolin or dibutyryl-cAMP reduced nicotine-stimulated catecholamine release, and PGE2 attenuated forskolin-induced inhibition of catecholamine release stimulated by nicotine, but not dibutyryl-cAMP-induced inhibition. In the absence of evidence that PGE receptor subtypes exist, these results suggest that the PGE receptor is coupled to two signal transduction systems leading to inhibition of cAMP accumulation via Gi and to production of inositol phosphates via a pertussis toxin-insensitive G-protein, both of which may modulate catecholamine release from bovine chromaffin cells.  相似文献   

10.
NG108-15 cells were exposed in culture to 1 microM [D-Ala2,D-Leu5]enkaphalin (DADLE) for 17 h. This treatment increased the maximum iloprost- and 5'-(N-ethylcarboxamido)adenosine-dependent activation of adenylate cyclase, as well as basal enzyme activity. In addition, there was an increase in the capacity of 5'-guanylylimidodiphosphate [Gpp(NH)p] to inhibit adenylate cyclase activity by direct interaction with the alpha-subunit of the Gi regulatory protein. A similar effect was observed if the cells were exposed to 10 microM carbachol. These treatments of NG108-15 cells did not alter the capacity of NaF to activate adenylate cyclase by direct interaction with Gs alpha. Exposure of NG108-15 cells to DADLE alone or DADLE plus carbachol had no effect on the capacity of pertussis toxin to ADP-ribosylate membrane proteins in these cells; neither was there any change in the activity of eukaryotic ADP-ribosyltransferase expressed in these cells. Under these conditions, the endogenous enzyme did not label any protein with a molecular mass similar to Gi alpha, 41 kDa. Treatment of the cells with DADLE or carbachol had no effect on the abundance of Gs alpha, Gi alpha, or G beta. The underlying mechanism for the changes in agonist-dependent stimulatory responses or Gpp(NH)p-dependent inhibition of adenylate cyclase remains obscure, but appears not to be mediated by eukaryotic ADP-ribosyltransferase activity or a change in the abundance of G proteins known to regulate adenylate cyclase.  相似文献   

11.
Thyroid hormones regulate G-protein beta-subunit mRNA expression in vivo   总被引:2,自引:0,他引:2  
Thyroid hormones exert "permissive effects" on the hormone-sensitive adenylate cyclase. Regulation of the expression of Gi (Gi alpha 2) and Gs by thyroid hormones in vivo was investigated at the level of mRNA. Steady-state levels of the mRNA for Gi alpha 2 and Gs alpha, as well as the G beta-subunits, were quantified using DNA excess solution hybridization analysis. Regulation of protein and mRNA expression in adipose tissue was investigated in hypothyroid, euthyroid, and hyperthyroid rats. In euthyroid animals, steady-state levels of mRNA (amol/microgram RNA) were 13.8, 5.9, and 5.7 for Gs alpha, Gi alpha 2, and G beta 1,2, respectively. Activation of adenylate cyclase by Gs is unaffected by thyroid status. Both Gs alpha and Gs alpha mRNA levels in hypothyroid rats were the same as those of controls (euthyroid). The inhibitory control of adenylate cyclase, in contrast, is markedly potentiated in hypothyroid rats. The expression of G1 alpha s and G beta-subunits was increased in hypothyroidism. Whereas Gi alpha 2 mRNA levels remained essentially unchanged, G beta 1,2 mRNA levels were observed to increase 45% in the hypothyroid state. In the hyperthyroid state G beta 1,2 mRNA levels were observed to decline by 35%. Regulation of G-protein subunit expression, at the level of mRNA, appears to be one component of permissive hormone action on transmembrane signalling.  相似文献   

12.
The G protein family of transmembrane signaling molecules includes Gs and Gi, the stimulatory and inhibitory regulators of adenylate cyclase. These and other characterized G proteins are comprised of beta, gamma, and alpha chains, the latter being the most variable among the proteins and thus serving to distinguish them. Previous results (Begin-Heick, N. (1985) J. Biol. Chem. 260, 6187-6193) suggested that the autosomal recessive mouse mutation obese (ob), which results in an abnormal response of adipose tissue to lipolytic hormones, is due to a defect in the gene coding for the alpha chain of Gi. In order to test this hypothesis we used a cloned cDNA probe representing murine Gi alpha mRNA in conjunction with a panel of Chinese hamster-mouse somatic cell hybrids segregating mouse chromosomes to map the Gi alpha gene in the mouse. In addition, we used a cDNA probe representing the murine Gs alpha gene to a specific mouse chromosome. Our results indicate that the Gi alpha locus maps to mouse chromosome 9, while Gs alpha is localized to region 2E1-2H3 of mouse chromosome 2. Localization of the Gi alpha gene to chromosome 9 excludes this gene as a site of the ob mutation, since the ob locus maps to chromosome 6. Furthermore, our findings indicate that certain members of the murine G protein alpha gene family have dispersed to different chromosomes since diverging from a common ancestral gene.  相似文献   

13.
Prolonged incubation of rat adipocytes with (-)N6-phenylisopropyl adenosine (PIA) (an A1 adenosine receptor agonist) leads to down-regulation of each of the three subtypes of Gi (Green, A., Johnson, J. L., and Milligan, G. (1990) J. Biol. Chem. 265, 5206-5210). To determine whether other inhibitors of adenylylcyclase would have similar actions, we incubated adipocytes in primary culture with PIA, prostaglandin E1 (PGE1), or nicotinic acid. After various times cells were homogenized, and crude membrane fractions were analyzed on Western blots using antipeptide antisera to alpha- and beta-subunits of G-proteins (SG1 (which binds to alpha i1 and alpha i2), I3B (which binds to alpha i3), BN2 (binds to beta-subunits) and CS1 (recognizes forms of alpha s)). PIA and PGE1 caused approximately 90% down-regulation of alpha i1 and alpha i3, and about 50% loss of alpha i2 and beta-subunits. In contrast, nicotinic acid at concentrations up to 1 mM had no effect on levels of any of these Gi subtypes. None of the compounds altered levels of either a 43- or 47-kDa form of alpha s. PIA caused about a 50% decrease in binding of [3H]DPCPX (an A1 adenosine receptor antagonist), indicating adenosine receptor down-regulation; however, neither PGE1 nor nicotinic acid treatment altered [3H]DPCPX binding. None of the treatments affected the activity of adenylylcyclase when measured in the presence of 100 microM forskolin and 10 mM Mn2+, indicating that the catalytic subunit of adenylylcyclase is not altered. To determine whether Gi down-regulation results in heterologous desensitization, we incubated adipocytes with maximally effective concentrations of PIA (300 nM), PGE1 (3 microM), or nicotinic acid (1 mM) for 4 days. The cells were then washed and incubated for an additional 30 min with various concentrations of these compounds to determine their ability to inhibit lipolysis. PIA caused a (marked) decrease in the sensitivity of the cells to both PIA and PGE1, thus indicating heterologous desensitization. Similarly, PGE1 decreased the sensitivity of the cells to both PGE1 and PIA, again demonstrating heterologous desensitization. In contrast, prolonged incubation with nicotinic acid decreased the sensitivity of the cells to nicotinic acid but had no effect on the sensitivity of the cells to PIA. Adenylylcyclase in membranes from PGE1-treated cells showed decreased sensitivity to inhibition by PIA. In contrast, adenylylcyclase showed normal sensitivity to PIA in membranes from nicotinic acid-treated cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Somatostatin (SRIF) induces its biological effects by interacting with membrane-bound receptors that are linked to cellular effector systems via G proteins. We have studied SRIF receptor-G protein associations by solubilizing the SRIF receptor from rat brain and AtT-20 cells and immunoprecipitating the receptor-G protein complex with peptide-directed antisera against the different subunits of the G protein heterotrimer. Antiserum 8730, which selectively interacts with all Gi alpha subtypes, maximally and specifically immunoprecipitated SRIF receptor-Gi alpha complexes. To identify the subtypes of Gi alpha that are coupled to SRIF receptors, the subtype-selective antisera 3646, 1521, and 1518, which specifically interact with Gi alpha 1, Gi alpha 2, and Gi alpha 3, respectively, were used to immunoprecipitate SRIF receptor-Gi alpha complexes. Antiserum 3646 immunoprecipitated SRIF receptor-Gi alpha 1 complexes from both brain and AtT-20 cells. Antiserum 1521 immunoprecipitated Gi alpha 2 from both brain and AtT-20 cells but did not immunoprecipitate SRIF receptors from these tissues. Antiserum 1518 immunoprecipitated AtT-20 cell SRIF receptors but uncoupled brain SRIF receptor-G protein complexes. This result was confirmed with another peptide-selective antiserum, SQ, directed against Gi alpha 3. The findings from these studies indicate that Gi alpha 1 and Gi alpha 3 are coupled to SRIF receptors, whereas Gi alpha 2 is not. Even though brain and AtT-20 cell SRIF receptors were both coupled to Gi alpha, the receptors from these tissues differed in their coupling to Go alpha. Antiserum 2353, which is directed against Go alpha, immunoprecipitated SRIF receptors from AtT-20 cells, but did not immunoprecipitate or uncouple SRIF receptor-G protein complexes from rat brain. To determine the beta subunits associated with the SRIF receptor, antisera directed against G beta 36 and G beta 35 were used to immunoprecipitate SRIF receptor-G protein complexes from brain. Peptide-directed antiserum against G beta 36 selectively immunoprecipitated solubilized brain SRIF receptors. However, antiserum directed against the G beta 35 subunit did not immunoprecipitate brain SRIF receptors, suggesting that brain SRIF receptors may preferentially associate with G beta 36. In addition to coimmunoprecipitating with Gi alpha and G beta, brain SRIF receptors coimmunoprecipitated the G protein gamma subunits, G gamma 2 and G gamma 3. These results provide the first evidence that SRIF receptors are coupled to different subunits of G proteins and suggest that selectivity exists in the association of different G protein subunits with the SRIF receptor.  相似文献   

15.
The nature of the interaction of cloned alpha 2a-adrenergic receptors from LLC-PK1-O clone cells with G proteins was investigated using an immunoprecipitation approach. Following solubilization of the alpha 2a receptors, antiserum 8730, which is directed against the C-terminal region of Gi alpha, immunoprecipitated alpha 2a receptor-Gi alpha complexes. The immunoprecipitation was specific since it could be blocked by the peptide to which antiserum 8730 was generated. Antisera 3646 (anti-Gi alpha 1), 1521 (anti-Gi alpha 2), and 1518 (anti-Gi alpha 3) immunoprecipitated solubilized alpha 2a receptor-Gi alpha complexes, indicating that all three Gi alpha subtypes couple with the alpha 2a receptor. Antiserum 9072, which is directed against the C-terminal region of G(o)alpha, immunoprecipitated solubilized alpha 2a receptor-G alpha complexes indicating that these receptors are also coupled to G(o)alpha. Antiserum 8132, which is directed against G beta 36, immunoprecipitated solubilized alpha 2a receptors while the G beta 35 antiserum 8129, did not, indicating that alpha 2a receptors selectively associate with G beta 36. The binding of the partial agonist p-aminoclonidine to the solubilized alpha 2a receptor alters the association of the receptor with G proteins. Following p-aminoclonidine binding to the solubilized alpha 2a receptor, the ability of the C-terminal directed G alpha antisera 8730 and 9072 to coimmunoprecipitate the alpha 2a receptor-G alpha complex was greatly reduced. The effect of p-aminoclonidine was concentration dependent, mimicked by the full agonist UK 14304 and blocked by the alpha 2 receptor antagonist yohimbine. In contrast, antisera directed against internal regions of Gi alpha and G(o)alpha, immunoprecipitated the agonist-bound and agonist-free alpha 2a receptor equally well. These findings indicate that following the binding of agonists to the alpha 2a receptor, Gi alpha and G(o)alpha remain physically associated with the receptor but either the conformation of G alpha linked to the receptor or the conformation of the receptor itself is modified such that the epitope for the C-terminal directed anti-Gi alpha and anti-G(o)alpha antisera are not accessible. These agonist-induced conformational changes in the alpha 2a receptor-G alpha complex may be important for the activation of the G protein and the stimulation of the alpha 2a receptor signal transduction pathway.  相似文献   

16.
GTP-binding proteins which participate in signal transduction share a common heterotrimeric structure of the alpha beta gamma-type. In the activated state, the alpha subunit dissociates from the beta gamma complex but remains anchored in the membrane. The alpha subunits of several GTP-binding proteins, such as Go and Gi, are myristoylated at the amino terminus (Buss, J. E., S. M. Mumby, P. J. Casey, A. G. Gilman, and B. M. Sefton. 1987. Proc. Natl. Acad. Sci. USA. 84:7493-7497). This hydrophobic modification is crucial for their membrane attachment. The absence of fatty acid on the alpha subunit of Gs (Gs alpha), the protein involved in adenylate cyclase activation, suggests a different mode of anchorage. To characterize the anchoring domain of Gs alpha, we used a reconstitution model in which posttranslational addition of in vitro-translated Gs alpha to cyc- membranes (obtained from a mutant of S49 cell line which does not express Gs alpha) restores the coupling between the beta-adrenergic receptor and adenylate cyclase. The consequence of deletions generated by proteolytic removal of amino acid sequences or introduced by genetic removal of coding sequences was determined by analyzing membrane association of the proteolyzed or mutated alpha chains. Proteolytic removal of a 9-kD amino-terminal domain or genetic deletion of 28 amino-terminal amino acids did not modify the anchorage of Gs alpha whereas proteolytic removal of a 1-kD carboxyterminal domain abolished membrane interaction. Thus, in contrast to the myristoylated alpha subunits which are tethered through their amino terminus, the carboxy-terminal residues of Gs alpha are required for association of this protein with the membrane.  相似文献   

17.
Treatment of human platelets with concentrations of benzyl alcohol up to 50 mM augmented adenylate cyclase activity when it was assayed in the basal state and when stimulated by prostaglandin E1 (PGE1), isoprenaline or NaF. Benzyl alcohol antagonized the stimulatory effect exerted on the catalytic unit of adenylate cyclase by the diterpene forskolin. Benzyl alcohol did not modify the magnitude of the inhibitory response when the catalytic unit of adenylate cyclase was inhibited by using either low concentrations of guanosine 5'-[beta gamma-imido]triphosphate, which acts selectively on the inhibitory guanine nucleotide-regulatory protein Gi, or during alpha 2-adrenoceptor occupancy, by using adrenaline (+ propranolol). Some 34% of the potent inhibitory action of adrenaline on PGE1-stimulated adenylate cyclase was obliterated in a dose-dependent fashion (concn. giving 50% inhibition = 12.5 mM) by benzyl alcohol, with the residual inhibitory action being apparently resistant to the action of benzyl alcohol at concentrations up to 50 mM. Treatment of membranes with benzyl alcohol did not lead to the release of either the alpha-subunit of Gi or G-protein subunits. The alpha 2-adrenoceptor-mediated inhibition of adenylate cyclase was abolished when assays were performed in the presence of Mn2+ rather than Mg2+ and, under such conditions, dose-effect curves for the action of benzyl alcohol on PGE1-stimulated adenylate cyclase activity were similar whether or not adrenaline (+propranolol) was present. We suggest that (i) alpha 2-adrenoceptor- and Gi-mediated inhibition of PGE1-stimulated adenylate cyclase may have two components, one of which is sensitive to inhibition by benzyl alcohol, and (ii) the Gi-mediated inhibition of forskolin-stimulated adenylate cyclase exhibits predominantly the benzyl alcohol-insensitive component.  相似文献   

18.
Transducin (T), the GTP-binding protein of the retina activates the cGMP phosphodiesterase system, and presents analogies with the proteins GS and Gi which respectively mediate adenylate cyclase activation and inhibition by hormone receptors. These proteins are all comprised of an alpha subunit carrying the GTP-binding site and a beta gamma subunit made of two peptides. The beta peptide (35 kd) appears similar in the three proteins. We demonstrate here that purified T beta gamma inhibits adenylate cyclase from human platelet membranes. This inhibition was observed when adenylate cyclase was stimulated by GTP, prostaglandin E1 (PGE1), NaF and forskolin, but not when stimulated by GTP(gamma)S. In the presence of GTP and forskolin, the T beta gamma-induced maximal inhibition was not additive with the alpha 2-receptor-induced adenylate cyclase inhibition mediated by Gi. Both inhibitions were suppressed at high Mg2+ concentrations, which as also known to dissociate T beta gamma from T alpha-GDP. This suggests that these adenylate cyclase inhibitions are due to the formation of inactive complexes of GS alpha-GDP with T beta gamma or Gi beta gamma. T beta gamma-induced inhibition did not require detergent and could be suppressed by simple washing. T beta gamma effects are dependent on its concentration rather than on its total amount. This suggests that T beta gamma can operate in solution with no integration into the membrane. Similar inhibitory effects of T beta gamma are observed on adenylate cyclase from anterior pituitary and lymphoma S49 cell lines.  相似文献   

19.
Agonist-elicited receptor sequestration is strikingly different for the alpha(2A)- versus alpha(2B)-adrenergic receptor (alpha(2)-AR) subtypes; the alpha(2B)-AR undergoes rapid and extensive disappearance from the HEK 293 cell surface, whereas the alpha(2A)-AR does not (Daunt, D. A., Hurt, C., Hein, L., Kallio, J., Feng, F., and Kobilka, B. K. (1997) Mol. Pharmacol. 51, 711-720; Eason, M. G., and Liggett, S. B. (1992) J. Biol. Chem. 267, 25473-25479). Since recent reports suggest that endocytosis is required for some G protein-coupled receptors to stimulate the mitogen-activated protein (MAP) kinase cascade (Daaka, Y., Luttrell, L. M., Ahn, S., Della Rocca, G. J., Ferguson, S. S., Caron, M. G., and Lefkowitz, R. J. (1998) J. Biol. Chem. 273, 685-688; Luttrell, L. M., Daaka, Y., Della Rocca, G. J., and Lefkowitz, R. J. (1997) J. Biol. Chem. 272, 31648-31656; Ignatova, E. G., Belcheva, M. M., Bohn, L. M., Neuman, M. C., and Coscia, C. J. (1999) J. Neurosci. 19, 56-63), we evaluated the differential ability of these two subtypes to activate MAP kinase. We observed no correlation between subtype-dependent agonist-elicited receptor redistribution and receptor activation of the MAP kinase cascade. Furthermore, incubation of cells with K(+)-depleted medium eliminated alpha(2B)-AR internalization but did not eliminate MAP kinase activation, suggesting that receptor internalization is not a general prerequisite for activation of the MAP kinase cascade via G(i)-coupled receptors. We also noted that neither dominant negative dynamin (K44A) nor concanavalin A treatment dramatically altered MAP kinase activation or receptor redistribution, indicating that these experimental tools do not universally block G protein-coupled receptor internalization.  相似文献   

20.
The subcellular distribution of the alpha 2-adrenergic receptor, pertussis-toxin substrates (Gi, the inhibitory G-protein) and adenylate cyclase was determined in human platelets. The alpha 2-adrenergic receptor and pertussis-toxin substrate activity codistribute with surface membranes identified by a novel fluorescent-lectin method. The platelet granule fractions did not contain detectable Gi. Only 2-4% of the total pertussis-toxin substrate activity appears in soluble fractions, and this amount was not increased upon addition of purified beta gamma units or after pretreatment of platelets with adrenaline. There is no evidence for compartmentation of the alpha 2-adrenergic receptor or Gi to account for the low-affinity component of agonist binding to the alpha 2-adrenergic receptor in human platelet membranes. Translocation of Gi from plasma membrane to platelet cytosol or granules does not appear to play any significant role in the mechanism of alpha 2-receptor-mediated platelet activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号