首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many insects possess symbiotic bacteria that affect the biology of the host. The level of the symbiont population in the host is a pivotal factor that modulates the biological outcome of the symbiotic association. Hence, the symbiont population should be maintained at a proper level by the host''s control mechanisms. Several mechanisms for controlling intracellular symbionts of insects have been reported, while mechanisms for controlling extracellular gut symbionts of insects are poorly understood. The bean bug Riptortus pedestris harbors a betaproteobacterial extracellular symbiont of the genus Burkholderia in the midgut symbiotic organ designated the M4 region. We found that the M4B region, which is directly connected to the M4 region, also harbors Burkholderia symbiont cells, but the symbionts therein are mostly dead. A series of experiments demonstrated that the M4B region exhibits antimicrobial activity, and the antimicrobial activity is specifically potent against the Burkholderia symbiont but not the cultured Burkholderia and other bacteria. The antimicrobial activity of the M4B region was detected in symbiotic host insects, reaching its highest point at the fifth instar, but not in aposymbiotic host insects, which suggests the possibility of symbiont-mediated induction of the antimicrobial activity. This antimicrobial activity was not associated with upregulation of antimicrobial peptides of the host. Based on these results, we propose that the M4B region is a specialized gut region of R. pedestris that plays a critical role in controlling the population of the Burkholderia gut symbiont. The molecular basis of the antimicrobial activity is of great interest and deserves future study.  相似文献   

2.
Comparative historical biogeography of multiple symbionts occurring on a common host taxa can shed light on the processes of symbiont diversification. Myrmecophytic Macaranga plants are associated with the obligate mutualistic symbionts: Crematogaster (subgenus Decacrema) ants and Coccus scale insects. We conduct phylogeographic analyses based on mitochondrial cytochrome oxidase I (COI) from 253 scale insects collected from 15 locations in Borneo, Malaya and Sumatra, to investigate the historical biogeography of the scales, and then to draw comparisons with that of the symbiotic, but independently dispersing, Decacrema ants which are not specific to different Coccus lineages. Despite the different mode of ancient diversification, reconstruction of ancestral area and age estimation on the Coccus phylogeny showed that the scales repeatedly migrated between Borneo and Malaya from Pliocene to Pleistocene, which is consistent with the Decacrema ants. Just as with the ants, the highest number of lineages in the scale insects was found in northern northwest Borneo, suggesting that these regions were rainforest refugia during cool dry phases of the Pleistocene. Overall, general congruence between the Plio–Pleistocene diversification histories of the symbiotic scales and ants suggests that they experienced a common history of extinction/migration despite their independent mode of dispersal and host-colonization.  相似文献   

3.
Aphids possess several facultative bacterial symbionts that have important effects on their hosts'' biology. These have been most closely studied in the pea aphid (Acyrthosiphon pisum), a species that feeds on multiple host plants. Whether secondary symbionts influence host plant utilization is unclear. We report the fitness consequences of introducing different strains of the symbiont Hamiltonella defensa into three aphid clones collected on Lathyrus pratensis that naturally lack symbionts, and of removing symbionts from 20 natural aphid–bacterial associations. Infection decreased fitness on Lathyrus but not on Vicia faba, a plant on which most pea aphids readily feed. This may explain the unusually low prevalence of symbionts in aphids collected on Lathyrus. There was no effect of presence of symbiont on performance of the aphids on the host plants of the clones from which the H. defensa strains were isolated. Removing the symbiont from natural aphid–bacterial associations led to an average approximate 20 per cent reduction in fecundity, both on the natural host plant and on V. faba, suggesting general rather than plant-species-specific effects of the symbiont. Throughout, we find significant genetic variation among aphid clones. The results provide no evidence that secondary symbionts have a major direct role in facilitating aphid utilization of particular host plant species.  相似文献   

4.
Stinkbugs of the genus Antestiopsis, so-called antestia bugs or variegated coffee bugs, are notorious pests of coffee plants in Africa. We investigated the symbiotic bacteria associated with Antestiopsis thunbergii, a major coffee plant pest in Rwanda. PCR, cloning, sequencing, and phylogenetic analysis of bacterial genes identified four distinct bacterial lineages associated with A. thunbergii: a gammaproteobacterial gut symbiont and symbionts representing the genera Sodalis, Spiroplasma, and Rickettsia. In situ hybridization showed that the gut symbiont densely occupied the lumen of midgut crypts, whereas the Sodalis symbiont, the Spiroplasma symbiont, and the Rickettsia symbiont sparsely and sporadically infected various cells and tissues. Diagnostic PCR survey of 154 A. thunbergii individuals collected at 8 localities in Rwanda revealed high infection frequencies (100% for the gut symbiont, 51.3% for the Sodalis symbiont, 52.6% for the Spiroplasma symbiont, and 24.0% for the Rickettsia symbiont). These results suggest that the gut symbiont is the primary symbiotic associate of obligate nature for A. thunbergii, whereas the Sodalis symbiont, the Spiroplasma symbiont, and the Rickettsia symbiont are the secondary symbiotic associates of facultative nature. We observed high coinfection frequencies, i.e., 7.8% of individuals with quadruple infection with all the symbionts, 32.5% with triple infections with the gut symbiont and two of the secondary symbionts, and 39.6% with double infections with the gut symbiont and any of the three secondary symbionts, which were statistically not different from the expected coinfection frequencies and probably reflected random associations. The knowledge of symbiotic microbiota in A. thunbergii will provide useful background information for controlling this devastating coffee plant pest.  相似文献   

5.
6.
Microbiological characterization of gut symbiotic bacteria in a limited number of stinkbugs of the families Acanthosomatidae, Plataspidae, Pentatomidae, Scutelleridae, Parastrachiidae, Alydidae and Pyrrhocoridae has shown symbiotic association with midgut bacteria to be common in phytophagous taxa of these heteropteran insects. Here we investigated the midgut bacterial symbiont of Eucorysses grandis, a stinkbug of the family Scutelleridae. A specific gammaproteobacterium was consistently identified in insects from five different geographic origins. The bacterium was detected in 64 of 64 insects sampled from three host populations. Phylogenetic analyses revealed that the bacterium constitutes a distinct lineage in the Gammaproteobacteria, neither closely related to the gut symbiont of another scutellerid stinkbug, Cantao ocellatus, nor to gut symbionts of other stinkbugs. Diagnostic PCR, in situ hybridization and electron microscopy demonstrated that the bacterium is located extracelluarly, in the midgut fourth section, which possesses crypts. These results indicate that the primary gut symbionts have multiple evolutionary origins in the Scutelleridae. A Sodalis-allied facultative symbiont was also identified in some insects from natural populations. Biological aspects of the primary gut symbiont and the secondary Sodalis-allied symbiont are discussed.  相似文献   

7.
The evolutionary and ecological success of many insects is attributed to mutualistic partnerships with bacteria that confer hosts with novel traits including food digestion, nutrient supplementation, detoxification of harmful compounds and defence against natural enemies. Dysdercus fasciatus firebugs (Hemiptera: Pyrrhocoridae), commonly known as cotton stainers, possess a simple but distinctive gut bacterial community including B vitamin‐supplementing Coriobacteriaceae symbionts. In addition, their guts are often infested with the intestinal trypanosomatid parasite Leptomonas pyrrhocoris (Kinetoplastida: Trypanosomatidae). In this study, using experimental bioassays and fluorescence in situ hybridization (FISH), we report on the protective role of the D. fasciatus gut bacteria against L. pyrrhocoris. We artificially infected 2nd instars of dysbiotic and symbiotic insects with a parasite culture and measured parasite titres, developmental time and survival rates. Our results show that L. pyrrhocoris infection increases developmental time and slightly modifies the quantitative composition of the gut microbiota. More importantly, we found significantly higher parasite titres and a tendency towards lower survival rates in parasite‐infected dysbiotic insects compared to symbiotic controls, indicating that the gut bacteria successfully interfere with the establishment or proliferation of L. pyrrhocoris. The colonization of symbiotic bacteria on the peritrophic matrix along the gut wall, as revealed by FISH, likely acts as a barrier blocking parasite attachment or entry into the hemolymph. Our findings show that in addition to being nutritionally important, D. fasciatus’ gut bacteria complement the host's immune system in preventing parasite invasions and that a stable gut microbial community is integral for the host's health.  相似文献   

8.
In obligate symbioses, the host’s survival relies on the successful acquisition and maintenance of symbionts. Symbionts can either be transferred from parent to offspring via direct inheritance (vertical transmission) or acquired anew each generation from the environment (horizontal transmission). With vertical symbiont transmission, progeny benefit by not having to search for their obligate symbionts, and, with symbiont inheritance, a mechanism exists for perpetuating advantageous symbionts. But, if the progeny encounter an environment that differs from that of their parent, they may be disadvantaged if the inherited symbionts prove suboptimal. Conversely, while in horizontal symbiont acquisition host survival hinges on an unpredictable symbiont source, an individual host may acquire genetically diverse symbionts well suited to any given environment. In horizontal acquisition, however, a potentially advantageous symbiont will not be transmitted to subsequent generations. Adaptation in obligate symbioses may require mechanisms for both novel symbiont acquisition and symbiont inheritance. Using denaturing-gradient gel electrophoresis and real-time PCR, we identified the dinoflagellate symbionts (genus Symbiodinium) hosted by the Red Sea coral Stylophora pistillata throughout its ontogenesis and over depth. We present evidence that S. pistillata juvenile colonies may utilize both vertical and horizontal symbiont acquisition strategies. By releasing progeny with maternally derived symbionts, that are also capable of subsequent horizontal symbiont acquisition, coral colonies may acquire physiologically advantageous novel symbionts that are then perpetuated via vertical transmission to subsequent generations. With symbiont inheritance, natural selection can act upon the symbiotic variability, providing a mechanism for coral adaptation.  相似文献   

9.
The symbiotic gut microbial community is generally known to have a strong impact on the fitness of its host. Nevertheless, it is less clear how the impact of symbiotic interactions on the hosts'' fitness varies according to environmental circumstances such as changes in the diet. This study aims to get a better understanding of host–microbiota interactions under different levels of food availability. We conducted experiments with the invertebrate, experimental model organism Daphnia magna and compared growth, survival and reproduction of conventionalized symbiotic Daphnia with germ-free individuals given varying quantities of food. Our experiments revealed that the relative importance of the microbiota for the hosts'' fitness varied according to dietary conditions. The presence of the microbiota had strong positive effects on Daphnia when food was sufficient or abundant, but had weaker effects under food limitation. Our results indicate that the microbiota can be a potentially important factor in determining host responses to changes in dietary conditions. Characterization of the host-associated microbiota further showed that Aeromonas sp. was the most prevalent taxon in the digestive tract of Daphnia.  相似文献   

10.
11.
Many insects harbour facultative endosymbiotic bacteria, often more than one type at a time. These symbionts can have major effects on their hosts' biology, which may be modulated by the presence of other symbiont species and by the host's genetic background. We investigated these effects by transferring two sets of facultative endosymbionts (one Hamiltonella and Rickettsia, the other Hamiltonella and Spiroplasma) from naturally double‐infected pea aphid hosts into five novel host genotypes of two aphid species. The symbionts were transferred either together or separately. We then measured aphid fecundity and susceptibility to an entomopathogenic fungus. The pathogen‐protective phenotype conferred by the symbionts Rickettsia and Spiroplasma varied among host genotypes, but was not influenced by co‐infection with Hamiltonella. Fecundity varied across single and double infections and between symbiont types, aphid genotypes and species. Some host genotypes benefit from harbouring more than one symbiont type.  相似文献   

12.
Here, we investigated 124 stinkbug species representing 20 families and 5 superfamilies for their Burkholderia gut symbionts, of which 39 species representing 6 families of the superfamilies Lygaeoidea and Coreoidea were Burkholderia-positive. Diagnostic PCR surveys revealed high frequencies of Burkholderia infection in natural populations of the stinkbugs, and substantial absence of vertical transmission of Burkholderia infection to their eggs. In situ hybridization confirmed localization of the Burkholderia in their midgut crypts. In the lygaeoid and coreoid stinkbugs, development of midgut crypts in their alimentary tract was coincident with the Burkholderia infection, suggesting that the specialized morphological configuration is pivotal for establishment and maintenance of the symbiotic association. The Burkholderia symbionts were easily isolated as pure culture on standard microbiological media, indicating the ability of the gut symbionts to survive outside the host insects. Molecular phylogenetic analysis showed that the gut symbionts of the lygaeoid and coreoid stinkbugs belong to a β-proteobacterial clade together with Burkholderia isolates from soil environments and Burkholderia species that induce plant galls. On the phylogeny, the stinkbug-associated, environmental and gall-forming Burkholderia strains did not form coherent groups, indicating host–symbiont promiscuity among these stinkbugs. Symbiont culturing revealed that slightly different Burkholderia genotypes often coexist in the same insects, which is also suggestive of host–symbiont promiscuity. All these results strongly suggest an ancient but promiscuous host–symbiont relationship between the lygaeoid/coreoid stinkbugs and the Burkholderia gut symbionts. Possible mechanisms as to how the environmentally transmitted promiscuous symbiotic association has been stably maintained in the evolutionary course are discussed.  相似文献   

13.
14.
Complex microbiomes reside in marine sponges and consist of diverse microbial taxa, including functional guilds that may contribute to host metabolism and coastal marine nutrient cycles. Our understanding of these symbiotic systems is based primarily on static accounts of sponge microbiota, while their temporal dynamics across seasonal cycles remain largely unknown. Here, we investigated temporal variation in bacterial symbionts of three sympatric sponges (Ircinia spp.) over 1.5 years in the northwestern (NW) Mediterranean Sea, using replicated terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses of bacterial 16S rRNA gene sequences. Bacterial symbionts in Ircinia spp. exhibited host species-specific structure and remarkable stability throughout the monitoring period, despite large fluctuations in temperature and irradiance. In contrast, seawater bacteria exhibited clear seasonal shifts in community structure, indicating that different ecological constraints act on free-living and on symbiotic marine bacteria. Symbiont profiles were dominated by persistent, sponge-specific bacterial taxa, notably affiliated with phylogenetic lineages capable of photosynthesis, nitrite oxidation, and sulfate reduction. Variability in the sponge microbiota was restricted to rare symbionts and occurred most prominently in warmer seasons, coincident with elevated thermal regimes. Seasonal stability of the sponge microbiota supports the hypothesis of host-specific, stable associations between bacteria and sponges. Further, the core symbiont profiles revealed in this study provide an empirical baseline for diagnosing abnormal shifts in symbiont communities. Considering that these sponges have suffered recent, episodic mass mortalities related to thermal stresses, this study contributes to the development of model sponge-microbe symbioses for assessing the link between symbiont fluctuations and host health.  相似文献   

15.
Endosymbiotic gut bacteria play an essential role in the nutrition of many insects. Most of the nutritional interactions investigated so far involve gammaproteobacterial symbionts, whereas other groups have received comparatively little attention. Here, we report on the localization and the transmission route of the specific actinobacterial symbiont Coriobacterium glomerans from the gut of the red firebug, Pyrrhocoris apterus (Hemiptera: Pyrrhocoridae ). The symbionts were detected by diagnostic PCRs and FISH in the midgut section M3, in the rectum and in feces of the bugs as well as in the hemolymph of some females. Furthermore, adult female bugs apply the symbionts to the surface of the eggs during oviposition, from where they are later taken up by the hatchlings. Surface sterilization of egg clutches generated aposymbiotic insects and thereby confirmed the vertical transmission route via the egg surface. However, symbionts were readily acquired horizontally when the nymphs were reared in the presence of symbiont-containing eggshells, feces, or adult bugs. Using diagnostic PCRs and partial sequencing of the 16S rRNA gene, closely related bacterial symbionts were detected in the cotton stainer bug Dysdercus fasciatus (Hemiptera: Pyrrhocoridae ), suggesting that the symbiosis with Actinobacteria may be widespread among pyrrhocorid bugs.  相似文献   

16.
Symbiotic bacteria are highly diverse, play an important role in ecology and evolution, and are also of applied relevance because many pest insects rely on them for their success. However, the dynamics and regulation of symbiotic bacteria within hosts is complex and still poorly understood outside of a few model systems. One of the most intriguing symbiotic relationships is the obligate, tripartite nutritional mutualism in sap‐feeding, economically‐destructive mealybugs (Hemiptera: Sternorrhyncha: Pseudococcidae), which involves γ‐proteobacteria hosted within β‐proteobacteria hosted within the mealybugs. The present study examines whether there is population variation in symbiont density (i.e. infection intensity, or titre) in the citrus mealybug Planococcus citri (Risso) and how this impacts host life‐history. Symbiont density is found to differ significantly between populations when reared under controlled environmental conditions, indicating that the density of symbiont infections is influenced by host or symbiont genotype. However, symbiont density changes in populations over multiple generations, indicating that symbiont densities are dynamic. Surprisingly, given that the symbionts are essential nutritional mutualists, the density of the symbionts does not correlate significantly with either host fecundity or development. Higher levels of symbionts have no clear benefit to hosts and therefore appear to be superfluous, at least under constant, optimized environmental conditions. Excessive symbiont density may be an evolutionary artefact from a period of inefficient vertical transmission when the balance of conflict between host and symbiont was still being established.  相似文献   

17.
A gammaproteobacterial facultative symbiont of the genus Rickettsiella was recently identified in the pea aphid, Acyrthosiphon pisum. Infection with this symbiont altered the color of the aphid body from red to green, potentially affecting the host''s ecological characteristics, such as attractiveness to different natural enemies. In European populations of A. pisum, the majority of Rickettsiella-infected aphids also harbor another facultative symbiont, of the genus Hamiltonella. We investigated this Rickettsiella symbiont for its interactions with the coinfecting Hamiltonella symbiont, its phenotypic effects on A. pisum with and without Hamiltonella coinfection, and its infection prevalence in A. pisum populations. Histological analyses revealed that coinfecting Rickettsiella and Hamiltonella exhibited overlapping localizations in secondary bacteriocytes, sheath cells, and hemolymph, while Rickettsiella-specific localization was found in oenocytes. Rickettsiella infections consistently altered hosts'' body color from red to green, where the greenish hue was affected by both host and symbiont genotypes. Rickettsiella-Hamiltonella coinfections also changed red aphids to green; this greenish hue tended to be enhanced by Hamiltonella coinfection. With different host genotypes, Rickettsiella infection exhibited either weakly beneficial or nearly neutral effects on host fitness, whereas Hamiltonella infection and Rickettsiella-Hamiltonella coinfection had negative effects. Despite considerable frequencies of Rickettsiella infection in European and North American A. pisum populations, no Rickettsiella infection was detected among 1,093 insects collected from 14 sites in Japan. On the basis of these results, we discuss possible mechanisms for the interaction of Rickettsiella with other facultative symbionts, their effects on their hosts'' phenotypes, and their persistence in natural host populations. We propose the designation “Candidatus Rickettsiella viridis” for the symbiont.  相似文献   

18.
Symbiosis between insects and bacteria result in a variety of arrangements, genomic modifications, and metabolic interconnections. Here, we present genomic, phylogenetic, and morphological characteristics of a symbiotic system associated with Melophagus ovinus, a member of the blood-feeding family Hippoboscidae. The system comprises four unrelated bacteria representing different stages in symbiosis evolution, from typical obligate mutualists inhabiting bacteriomes to freely associated commensals and parasites. Interestingly, the whole system provides a remarkable analogy to the association between Glossina and its symbiotic bacteria. In both, the symbiotic systems are composed of an obligate symbiont and two facultative intracellular associates, Sodalis and Wolbachia. In addition, extracellular Bartonella resides in the gut of Melophagus. However, the phylogenetic origins of the two obligate mutualist symbionts differ. In Glossina, the mutualistic Wigglesworthia appears to be a relatively isolated symbiotic lineage, whereas in Melophagus, the obligate symbiont originated within the widely distributed Arsenophonus cluster. Although phylogenetically distant, the two obligate symbionts display several remarkably similar traits (e.g., transmission via the host''s “milk glands” or similar pattern of genome reduction). To obtain better insight into the biology and possible role of the M. ovinus obligate symbiont, “Candidatus Arsenophonus melophagi,” we performed several comparisons of its gene content based on assignments of the Cluster of Orthologous Genes (COG). Using this criterion, we show that within a set of 44 primary and secondary symbionts, “Ca. Arsenophonus melophagi” is most similar to Wigglesworthia. On the other hand, these two bacteria also display interesting differences, such as absence of flagellar genes in Arsenophonus and their presence in Wigglesworthia. This finding implies that a flagellum is not essential for bacterial transmission via milk glands.  相似文献   

19.
The vertical transmission of symbiotic microorganisms is omnipresent in insects, while the evolutionary process remains totally unclear. The oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae), is a serious sugarcane pest, in which symbiotic bacteria densely populate the lumen of the numerous tubule-like midgut crypts that the chinch bug develops. Cloning and sequence analyses of the 16S rRNA genes revealed that the crypts were dominated by a specific group of bacteria belonging to the genus Burkholderia of the Betaproteobacteria. The Burkholderia sequences were distributed into three distinct clades: the Burkholderia cepacia complex (BCC), the plant-associated beneficial and environmental (PBE) group, and the stinkbug-associated beneficial and environmental group (SBE). Diagnostic PCR revealed that only one of the three groups of Burkholderia was present in ∼89% of the chinch bug field populations tested, while infections with multiple Burkholderia groups within one insect were observed in only ∼10%. Deep sequencing of the 16S rRNA gene confirmed that the Burkholderia bacteria specifically colonized the crypts and were dominated by one of three Burkholderia groups. The lack of phylogenetic congruence between the symbiont and the host population strongly suggested host-symbiont promiscuity, which is probably caused by environmental acquisition of the symbionts by some hosts. Meanwhile, inspections of eggs and hatchlings by diagnostic PCR and egg surface sterilization demonstrated that almost 30% of the hatchlings vertically acquire symbiotic Burkholderia via symbiont-contaminated egg surfaces. The mixed strategy of symbiont transmission found in the oriental chinch bug might be an intermediate stage in evolution from environmental acquisition to strict vertical transmission in insects.  相似文献   

20.
The Teredinidae (shipworms) are a morphologically diverse group of marine wood-boring bivalves that are responsible each year for millions of dollars of damage to wooden structures in estuarine and marine habitats worldwide. They exist in a symbiosis with cellulolytic nitrogen-fixing bacteria that provide the host with the necessary enzymes for survival on a diet of wood cellulose. These symbiotic bacteria reside in distinct structures lining the interlamellar junctions of the gill. This study investigated the mode by which these nutritionally essential bacterial symbionts are acquired in the teredinid Bankia setacea. Through 16S ribosomal DNA (rDNA) sequencing, the symbiont residing within the B. setacea gill was phylogenetically characterized and shown to be distinct from previously described shipworm symbionts. In situ hybridization using symbiont-specific 16S rRNA-directed probes bound to bacterial ribosome targets located within the host gill coincident with the known location of the gill symbionts. These specific probes were then used as primers in a PCR-based assay which consistently detected bacterial rDNA in host gill (symbiont containing), gonad tissue, and recently spawned eggs, demonstrating the presence of symbiont cells in host ovary and offspring. These results suggest that B. setacea ensures successful inoculation of offspring through a vertical mode of symbiont transmission and thereby enables a broad distribution of larval settlement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号