首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reptiles have a wide diversity of sex-determining mechanisms and types of sex chromosomes. Turtles exhibit temperature-dependent sex determination and genotypic sex determination, with male heterogametic (XX/XY) and female heterogametic (ZZ/ZW) sex chromosomes. Identification of sex chromosomes in many turtle species and their comparative genomic analysis are of great significance to understand the evolutionary processes of sex determination and sex chromosome differentiation in Testudines. The Mexican giant musk turtle (Staurotypus triporcatus, Kinosternidae, Testudines) and the giant musk turtle (Staurotypus salvinii) have heteromorphic XY sex chromosomes with a low degree of morphological differentiation; however, their origin and linkage group are still unknown. Cross-species chromosome painting with chromosome-specific DNA from Chinese soft-shelled turtle (Pelodiscus sinensis) revealed that the X and Y chromosomes of S. triporcatus have homology with P. sinensis chromosome 6, which corresponds to the chicken Z chromosome. We cloned cDNA fragments of S. triporcatus homologs of 16 chicken Z-linked genes and mapped them to S. triporcatus and S. salvinii chromosomes using fluorescence in situ hybridization. Sixteen genes were localized to the X and Y long arms in the same order in both species. The orders were also almost the same as those of the ostrich (Struthio camelus) Z chromosome, which retains the primitive state of the avian ancestral Z chromosome. These results strongly suggest that the X and Y chromosomes of Staurotypus turtles are at a very early stage of sex chromosome differentiation, and that these chromosomes and the avian ZW chromosomes share the same origin. Nonetheless, the turtles and birds acquired different systems of heterogametic sex determination during their evolution.  相似文献   

2.
Neo-sex chromosomes often originate from sex chromosome–autosome fusions and constitute an important basis for the study of gene degeneration and expression in a sex chromosomal context. Neo-sex chromosomes are known from many animal and plant lineages, but have not been reported in birds, a group in which genome organization seems particularly stable. Following indications of sex linkage and unexpected sex-biased gene expression in warblers (Sylvioidea; Passeriformes), we have conducted an extensive marker analysis targeting 31 orthologues of loci on zebra finch chromosome 4a in five species, representative of independent branches of Passerida. We identified a region of sex linkage covering approximately the first half (10 Mb) of chromosome 4a, and associated to both Z and W chromosomes, in three Sylvioidea passerine species. Linkage analysis in an extended pedigree of one species additionally confirmed the association between this part of chromosome 4a and the Z chromosome. Markers located between 10 and 21 Mb of chromosome 4a showed no signs of sex linkage, suggesting that only half of the chromosome was involved in this transition. No sex linkage was observed in non-Sylvioidea passerines, indicating that the neo-sex chromosome arose at the base of the Sylvioidea branch of the avian phylogeny, at 47.4–37.6 millions years ago (MYA), substantially later than the ancestral sex chromosomes (150 MYA). We hypothesize that the gene content of chromosome 4a might be relevant in its transition to a sex chromosome, based on the presence of genes (for example, the androgen receptor) that could offer a selective advantage when associated to Z-linked sex determination loci.  相似文献   

3.
Using amplification of marker sequences with DNA from a set of distinct microdissected Vicia faba L. chromosomes covering the entire genome, we could unambiguously show that the linkage group I.B, which includes the pseudogene of legumin B4 (ψ1) and was previously ascribed to the metacentric chromosome I, actually belongs to chromosome IV. By considering the breakpoints of the translocated BKH chromosomes III and IV, even the subchromosomal position of loci LG085 and CNGC4 could be inferred. Anchoring all linkage groups to distinct faba bean chromosomes will facilitate quantitative trait locus fine mapping and gene identification using synteny, and will boost the development of efficient markers for selection in breeding programs.  相似文献   

4.
Restriction-site associated DNA (RAD) sequencing is a powerful new method for targeted sequencing across the genomes of many individuals. This approach has broad potential for genetic analysis of non-model organisms including genotype-phenotype association mapping, phylogeography, population genetics and scaffolding genome assemblies through linkage mapping. We constructed a RAD library using genomic DNA from a Plutella xylostella (diamondback moth) backcross that segregated for resistance to the insecticide spinosad. Sequencing of 24 individuals was performed on a single Illumina GAIIx lane (51 base paired-end reads). Taking advantage of the lack of crossing over in homologous chromosomes in female Lepidoptera, 3,177 maternally inherited RAD alleles were assigned to the 31 chromosomes, enabling identification of the spinosad resistance and W/Z sex chromosomes. Paired-end reads for each RAD allele were assembled into contigs and compared to the genome of Bombyx mori (n = 28) using BLAST, revealing 28 homologous matches plus 3 expected fusion/breakage events which account for the difference in chromosome number. A genome-wide linkage map (1292 cM) was inferred with 2,878 segregating RAD alleles inherited from the backcross father, producing chromosome and location specific sequenced RAD markers. Here we have used RAD sequencing to construct a genetic linkage map de novo for an organism that has no previous genome data. Comparative analysis of P. xyloxtella linkage groups with B. mori chromosomes shows for the first time, genetic synteny appears common beyond the Macrolepidoptera. RAD sequencing is a powerful system capable of rapidly generating chromosome specific data for non-model organisms.  相似文献   

5.
The reliability of genome analysis and proficiency of genetic manipulation requires knowledge of the correspondence between the genetic and cytogenetic maps. In the present study, we integrated cytogenetic and microsatellite-based linkage maps for Zhikong scallop, Chlamys farreri. Thirty-eight marker-anchored BAC clones standing for the 19 linkage groups were used to be FISH probes. Of 38 BAC clones, 30 were successfully located on single chromosome by FISH and used to integrate the genetic and cytogenetic map. Among the 19 linkage groups, 12 linkage groups were physically anchored by 2 markers, 6 linkage groups were anchored by 1 marker, and one linkage group was not anchored any makers by FISH. In addition, using two-color FISH, six linkage groups were distinguished by different chromosomal location; linkage groups LG6 and LG16 were placed on chromosome 10, LG8 and LG18 on chromosome 14. As a result, 18 of 19 linkage groups were localized to 17 pairs of chromosomes of C. farreri. We first integrated genetic and cytogenetic map for C. farreri. These 30 chromosome specific BAC clones in the cytogenetic map could be used to identify chromosomes of C. farreri. The integrated map will greatly facilitate molecular genetic studies that will be helpful for breeding applications in C. farreri and the upcoming genome projects of this species.  相似文献   

6.
Genome structure has been found to be highly conserved between distantly related birds and recent data for a limited part of the genome suggest that this is true also for the gene order (synteny) within chromosomes. Here, we confirm that synteny is maintained for large chromosomal regions in chicken and a passerine bird, the great reed warbler Acrocephalus arundinaceus, with few rearrangements, but in contrast show that the recombination-based linkage map distances differ substantially between these species. We assigned a chromosomal location based on sequence similarity to the chicken genome sequence to a set of microsatellite loci mapped in a pedigree of great reed warblers. We detected homologous loci on 14 different chromosomes corresponding to chicken chromosomes Gga1-5, 7-9, 13, 19, 20, 24, 25, and Z. It is known that 2 passerine macrochromosomes correspond to the chicken chromosome Gga1. Homology of 2 different great reed warbler linkage groups (LG13 and LG5) to Gga1 allowed us to locate the split to a position between 20.8 and 84.8 Mb on Gga1. Data from the 5 chromosomal regions (on Gga1, 2, 3, 5, and Z) with 3 or more homologous loci showed that synteny was conserved with the exception of 2 large previously unreported inversions on Gga1/LG5 and Gga2/LG3, respectively. Recombination data from the 9 chromosomal regions in which we identified 2 or more homologous loci (accounting for the inversions) showed that the linkage map distances in great reed warblers were only 6.3% and 13.3% of those in chickens for males and females, respectively. This is likely to reflect the true interspecific difference in recombination rate because our markers were not located in potentially low-recombining regions: several linkage groups covered a substantial part of their corresponding chicken chromosomes and were not restricted to centromeres. We conclude that recombination rates may differ strongly between bird species with highly conserved genome structure and synteny and that the chicken linkage map may not be suitable, in terms of genetic distances, as a model for all bird species.  相似文献   

7.
This paper describes the development of a high density consensus genetic linkage map of a turbot (Scophthalmus maximus L.) family composed of 149 mapping individuals using Single Nucleotide Polymorphisms (SNP) developed using the restriction-site associated DNA (RAD) sequencing technique with the restriction enzyme, PstI. A total of 6,647 SNPs were assigned to 22 linkage groups, which is equal to the number of chromosome pairs in turbot. For the first time, the average marker interval reached 0.3958 cM, which is equal to approximately 0.1203 Mb of the turbot genome. The observed 99.34% genome coverage indicates that the linkage map was genome-wide. A total of 220 Quantitative Traits Locus (QTLs) associated with two body length traits, two body weight traits in different growth periods and sex determination were detected with an LOD > 5.0 in 12 linkage groups (LGs), which explained the corresponding phenotypic variance (R2), ranging from 14.4–100%. Among them, 175 overlapped with linked SNPs, and the remaining 45 were located in regions between contiguous SNPs. According to the QTLs related to growth trait distribution and the changing of LGs during different growth periods, the growth traits are likely controlled by multi-SNPs distributed on several LGs; the effect of these SNPs changed during different growth periods. Most sex-related QTLs were detected at LG 21 with a linkage span of 70.882 cM. Additionally, a small number of QTLs with high feasibility and a narrow R2 distribution were also observed on LG7 and LG14, suggesting that multi LGs or chromosomes might be involved in sex determination. High homology was recorded between LG21 in Cynoglossus semilaevis and turbot. This high-saturated turbot RAD-Seq linkage map is undoubtedly a promising platform for marker assisted selection (MAS) and flatfish genomics research.  相似文献   

8.
Genetic mapping using molecular markers such as restriction fragment length polymorphisms (RFLPs) has become a powerful tool for plant geneticists and breeders. Like many economically important polyploid plant species, detailed genetic studies of hexaploid tall fescue (Festuca arundinacea Schreb.) are complicated, and no genetic map has been established. We report here the first tall fescue genetic map. This map was generated from an F2 population of HD28-56 by Kentucky-31 and contains 108 RFLP markers. Although the two parental plants were heterozygous, the perennial and tillering growth habit, high degree of RFLP, and disomic inheritance of tall fescue enabled us to identify the segregating homologous alleles. The map covers 1274 cM on 19 linkage groups with an average of 5 loci per linkage group (LG) and 17.9 cM between loci. Mapping the homoeologous loci detected by the same probe allowed us to identify five homoeologous groups within which the gene orders were found to be generally conserved among homoeologous chromosomes. An exception was homoeologous group 5, in which only 2 of the 3 homoeologous chromosomes were identified. Using 12 genome-specific probes, we were able to assign several linkage groups to one of the three genomes (PG1G2) in tall fescue. All the loci detected by the 11 probes specific to the G1 and/or G2 genomes, with one exception, identified loci located on 4 chromosomes of two homoeologous groups (LG2a, LG2c, LG3a, and LG3c). A P-genome-specific probe was used to map a locus on LG5c. Comparative genome mapping with maize probes indicated that homoeologous group 3 and 2 chromosomes in tall fescue corresponded to maize chromosome 1. Difficulties and advantages of applying RFLP technology in polyploids with high levels of heterozygosity are discussed.Journal Series No. 12, 190  相似文献   

9.
Most turtle species possess temperature-dependent sex determination (TSD), but genotypic sex determination (GSD) has evolved multiple times independently from the TSD ancestral condition. GSD in animals typically involves sex chromosomes, yet the sex chromosome system of only 9 out of 18 known GSD turtles has been characterized. Here, we combine comparative genome hybridization (CGH) and BAC clone fluorescent in situ hybridization (BAC FISH) to identify a macro-chromosome XX/XY system in the GSD wood turtle Glyptemys insculpta (GIN), the youngest known sex chromosomes in chelonians (8–20 My old). Comparative analyses show that GIN-X/Y is homologous to chromosome 4 of Chrysemys picta (CPI) painted turtles, chromosome 5 of Gallus gallus chicken, and thus to the X/Y sex chromosomes of Siebenrockiella crassicollis black marsh turtles. We tentatively assign the gene content of the mapped BACs from CPI chromosome 4 (CPI-4) to GIN-X/Y. Chromosomal rearrangements were detected in G. insculpta sex chromosome pair that co-localize with the male-specific region of GIN-Y and encompass a gene involved in sexual development (Wt1—a putative master gene in TSD turtles). Such inversions may have mediated the divergence of G. insculpta sex chromosome pair and facilitated GSD evolution in this turtle. Our results illuminate the structure, origin, and evolution of sex chromosomes in G. insculpta and reveal the first case of convergent co-option of an autosomal pair as sex chromosomes within chelonians.  相似文献   

10.
In sharp contrast with birds and mammals, the sex chromosomes of ectothermic vertebrates are often undifferentiated, for reasons that remain debated. A linkage map was recently published for Rana temporaria (Linnaeus, 1758) from Fennoscandia (Eastern European lineage), with a proposed sex‐determining role for linkage group 2 (LG2). We analysed linkage patterns in lowland and highland populations from Switzerland (Western European lineage), with special focus on LG2. Sibship analyses showed large differences from the Fennoscandian map in terms of recombination rates and loci order, pointing to large‐scale inversions or translocations. All linkage groups displayed extreme heterochiasmy (total map length was 12.2 cM in males, versus 869.8 cM in females). Sex determination was polymorphic within populations: a majority of families (with equal sex ratios) showed a strong correlation between offspring phenotypic sex and LG2 paternal haplotypes, whereas other families (some of which with female‐biased sex ratios) did not show any correlation. The factors determining sex in the latter could not be identified. This coexistence of several sex‐determination systems should induce frequent recombination of X and Y haplotypes, even in the absence of male recombination. Accordingly, we found no sex differences in allelic frequencies on LG2 markers among wild‐caught male and female adults, except in one high‐altitude population, where nonrecombinant Y haplotypes suggest sex to be entirely determined by LG2. Multifactorial sex determination certainly contributes to the lack of sex‐chromosome differentiation in amphibians.  相似文献   

11.
《Genomics》2021,113(4):1705-1718
BackgroundUnderstanding sex determination (SD) across taxa is a major challenge for evolutionary biology. The new genomic tools are paving the way to identify genomic features underlying SD in fish, a group frequently showing limited sex chromosome differentiation and high SD evolutionary turnover. Turbot (Scophthalmus maximus) is a commercially important flatfish with an undifferentiated ZW/ZZ SD system and remarkable sexual dimorphism. Here we describe a new long-read turbot genome assembly used to disentangle the genetic architecture of turbot SD by combining genomics and classical genetics approaches.ResultsThe new turbot genome assembly consists of 145 contigs (N50 = 22.9 Mb), 27 of them representing >95% of its estimated genome size. A genome wide association study (GWAS) identified a ~ 6.8 Mb region on chromosome 12 associated with sex in 69.4% of the 36 families analyzed. The highest associated markers flanked sox2, the only gene in the region showing differential expression between sexes before gonad differentiation. A single SNP showed consistent differences between Z and W chromosomes. The analysis of a broad sample of families suggested the presence of additional genetic and/or environmental factors on turbot SD.ConclusionsThe new chromosome-level turbot genome assembly, one of the most contiguous fish assemblies to date, facilitated the identification of sox2 as a consistent candidate gene putatively driving SD in this species. This chromosome SD system barely showed any signs of differentiation, and other factors beyond the main QTL seem to control SD in a certain proportion of families.  相似文献   

12.
Turnover of Sex Chromosomes in the Stickleback Fishes (Gasterosteidae)   总被引:1,自引:0,他引:1  
Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae). Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus) have a heteromorphic XY pair corresponding to linkage group (LG) 19. In this study, we found that the ninespine stickleback (Pungitius pungitius) has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi) males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X1X2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans) and the fourspine stickleback (Apeltes quadracus). However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems.  相似文献   

13.
In birds, there are two main models for the determination of sex: the ‘Z Dosage’ model in which the number, or dose, of Z chromosomes determines sex, and the ‘Dominant W’ model which argues that a specific gene in the W chromosome may influence Z gene expression and determine sex. The best evidence for W determination of sex comes from birds with 2 copies of the Z chromosome paired with a single W (e.g. ZZW) which are nonetheless females. Here, we expand the species where such a mechanism may operate by reporting a case of a triploid Neotropical passerine bird with sexually dimorphic plumage, the São Paulo marsh antwren Formicivora paludicola. Evidence from 17 autosomal unlinked microsatellite loci, and CHD1 sex‐linked locus, indicate that this individual is a 3n ZZW triploid with intermediate plumage pattern. This example expands our knowledge of sex determination mechanisms in birds by demonstrating that both the W and the two Z chromosomes affect the expression of morphological secondary sexual traits in a non‐galliform bird.  相似文献   

14.
The degree to which loci promoting reproductive isolation cluster in the genome—that is, the genetic architecture of reproductive isolation—can influence the tempo and mode of speciation. Tight linkage between these loci can facilitate speciation in the face of gene flow. Pheromones play a role in reproductive isolation in many Lepidoptera species, and the role of endogenously produced compounds as secondary metabolites decreases the likelihood of pleiotropy associated with many barrier loci. Heliconius butterflies use male sex pheromones to both court females (aphrodisiac wing pheromones) and ward off male courtship (male‐transferred antiaphrodisiac genital pheromones), and it is likely that these compounds play a role in reproductive isolation between Heliconius species. Using a set of backcross hybrids between H. melpomene and H. cydno, we investigated the genetic architecture of putative male pheromone compound production. We found a set of 40 significant quantitative trait loci (QTL) representing 33 potential pheromone compounds. QTL clustered significantly on two chromosomes, chromosome 8 for genital compounds and chromosome 20 for wing compounds, and chromosome 20 was enriched for potential pheromone biosynthesis genes. There was minimal overlap between pheromone QTL and known QTL for mate choice and color pattern. Nonetheless, we did detect linkage between a QTL for wing androconial area and optix, a color pattern locus known to play a role in reproductive isolation in these species. This tight clustering of putative pheromone loci might contribute to coincident reproductive isolating barriers, facilitating speciation despite ongoing gene flow.  相似文献   

15.

Background

Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes.

Results

A total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available.

Conclusion

Chromosome-specific SSRs are efficient tools for chromosome identification by anchoring linkage groups to particular chromosomes during genetic mapping and are especially useful in mapping of qualitative-trait genes or quantitative trait loci with just a few markers. The SSRs reported here will facilitate a number of genetic and genomic studies in cotton, including construction of high-density genetic maps, positional gene cloning, fingerprinting, and genetic diversity and comparative evolutionary analyses among Gossypium species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1265-2) contains supplementary material, which is available to authorized users.  相似文献   

16.
We have constructed a linkage map for the peppered moth (Biston betularia), the classical ecological genetics model of industrial melanism, aimed both at localizing the network of loci controlling melanism and making inferences about chromosome dynamics. The linkage map, which is based primarily on amplified fragment length polymorphisms (AFLPs) and genes, consists of 31 linkage groups (LGs; consistent with the karyotype). Comparison with the evolutionarily distant Bombyx mori suggests that the gene content of chromosomes is highly conserved. Gene order is conserved on the autosomes, but noticeably less so on the Z chromosome, as confirmed by physical mapping using bacterial artificial chromosome fluorescence in situ hybridization (BAC-FISH). Synteny mapping identified three pairs of B. betularia LGs (11/29, 23/30 and 24/31) as being orthologous to three B. mori chromosomes (11, 23 and 24, respectively). A similar finding in an outgroup moth (Plutella xylostella) indicates that the B. mori karyotype (n=28) is a phylogenetically derived state resulting from three chromosome fusions. As with other Lepidoptera, the B. betularia W chromosome consists largely of repetitive sequence, but exceptionally we found a W homolog of a Z-linked gene (laminin A), possibly resulting from ectopic recombination between the sex chromosomes. The B. betularia linkage map, featuring the network of known melanization genes, serves as a resource for melanism research in Lepidoptera. Moreover, its close resemblance to the ancestral lepidopteran karyotype (n=31) makes it a useful reference point for reconstructing chromosome dynamic events and ancestral genome architectures. Our study highlights the unusual evolutionary stability of lepidopteran autosomes; in contrast, higher rates of intrachromosomal rearrangements support a special role of the Z chromosome in adaptive evolution and speciation.  相似文献   

17.
Two unlinked loci controlling the sex of blue tilapia (Oreochromis aureus)   总被引:6,自引:0,他引:6  
Lee BY  Hulata G  Kocher TD 《Heredity》2004,92(6):543-549
Sex determination in the blue tilapia (Oreochromis aureus) is thought to be a WZ-ZZ (female heterogametic) system controlled by a major gene. We searched for DNA markers linked to this major gene using the technique of bulked segregant analysis. We identified 11 microsatellite markers on linkage group 3 which were linked to phenotypic sex. The putative W chromosome haplotype correctly predicts the sex of 97% of male and 85% of female individuals. Our results suggest the W locus lies within a few centimorgans of markers GM354, UNH168, GM271 and UNH131. Markers on LG1 also showed a strong association with sex, and indicate the segregation of a male-determining allele in this region. Analysis of epistatic interactions among the loci suggests the action of a dominant male repressor (the W haplotype on LG 3) and a dominant male determiner (the Y haplotype on LG1). These markers have immediate utility for studying the strength of different sex chromosome alleles, and for identifying broodstock carrying copies of the W haplotype.  相似文献   

18.
Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.  相似文献   

19.

Background

Genomic resources for the majority of free-living vertebrates of ecological and evolutionary importance are scarce. Therefore, linkage maps with high-density genome coverage are needed for progress in genomics of wild species. The Siberian jay (Perisoreus infaustus; Corvidae) is a passerine bird which has been subject to lots of research in the areas of ecology and evolutionary biology. Knowledge of its genome structure and organization is required to advance our understanding of the genetic basis of ecologically important traits in this species, as well as to provide insights into avian genome evolution.

Results

We describe the first genetic linkage map of Siberian jay constructed using 117 microsatellites and a mapping pedigree of 349 animals representing five families from a natural population breeding in western Finland from the years 1975 to 2006. Markers were resolved into nine autosomal and a Z-chromosome-specific linkage group, 10 markers remaining unlinked. The best-position map with the most likely positions of all significantly linked loci had a total sex-average size of 862.8 cM, with an average interval distance of 9.69 cM. The female map covered 988.4 cM, whereas the male map covered only 774 cM. The Z-chromosome linkage group comprised six markers, three pseudoautosomal and three sex-specific loci, and spanned 10.6 cM in females and 48.9 cM in males. Eighty-one of the mapped loci could be ordered on a framework map with odds of >1000:1 covering a total size of 809.6 cM in females and 694.2 cM in males. Significant sex specific distortions towards reduced male recombination rates were revealed in the entire best-position map as well as within two autosomal linkage groups. Comparative mapping between Siberian jay and chicken anchored 22 homologous loci on 6 different linkage groups corresponding to chicken chromosomes Gga1, 2, 3, 4, 5, and Z. Quite a few cases of intra-chromosomal rearrangements within the autosomes and three cases of inter-chromosomal rearrangement between the Siberian jay autosomal linkage groups (LG1, LG2 and LG3) and the chicken sex chromosome GgaZ were observed, suggesting a conserved synteny, but changes in marker order, within autosomes during about 100 million years of avian evolution.

Conclusion

The constructed linkage map represents a valuable resource for intraspecific genomics of Siberian jay, as well as for avian comparative genomic studies. Apart from providing novel insights into sex-specific recombination rates and patterns, the described maps – from a previously genomically uncharacterized superfamily (Corvidae) of passerine birds – provide new insights into avian genome evolution. In combination with high-resolution data on quantitative trait variability from the study population, they also provide a foundation for QTL-mapping studies.  相似文献   

20.
A DM-domain gene on the Y chromosome was identified as the sex-determining gene in the medaka, Oryzias latipes, and named DMY (also known as dmrt1bY). However, this gene is absent in most Oryzias fishes, suggesting that closely related species have another sex-determining gene. In fact, it has been demonstrated that the Y chromosome in O. dancena is not homologous to that in O. latipes, whereas both species have an XX/XY sex-determination system. Through a progeny test of sex-reversed fish and a linkage analysis of isolated sex-linked DNA markers, we show that O. hubbsi, which is one of the most closely related species to O. dancena, has a ZZ/ZW system. In addition, genetic and fluorescence in situ hybridization mapping of the sex-linked markers revealed that sex chromosomes in O. hubbsi and O. dancena are not homologous, indicating different origins of these ZW and XY sex chromosomes. Furthermore, we found that O. hubbsi has morphologically heteromorphic sex chromosomes, in which the W chromosome has 4,6-diamidino-2-phenylindole (DAPI)-positive heterochromatin blocks and is larger than the Z chromosome, although such differentiated sex chromosomes have not been observed in other Oryzias species. These findings suggest that a variety of sex-determining mechanisms and sex chromosomes have evolved in Oryzias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号