首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In selective autophagy, cargo selectivity is determined by autophagy receptors. However, it remains scarcely understood how autophagy receptors recognize specific protein cargos. In the fission yeast Schizosaccharomyces pombe, a selective autophagy pathway termed Nbr1‐mediated vacuolar targeting (NVT) employs Nbr1, an autophagy receptor conserved across eukaryotes including humans, to target cytosolic hydrolases into the vacuole. Here, we identify two new NVT cargos, the mannosidase Ams1 and the aminopeptidase Ape4, that bind competitively to the first ZZ domain of Nbr1 (Nbr1‐ZZ1). High‐resolution cryo‐EM analyses reveal how a single ZZ domain recognizes two distinct protein cargos. Nbr1‐ZZ1 not only recognizes the N‐termini of cargos via a conserved acidic pocket, similar to other characterized ZZ domains, but also engages additional parts of cargos in a cargo‐specific manner. Our findings unveil a single‐domain bispecific mechanism of autophagy cargo recognition, elucidate its underlying structural basis, and expand the understanding of ZZ domain‐mediated protein–protein interactions.  相似文献   

2.
In macroautophagy (hereafter autophagy), a morphological hallmark is the formation of double-membrane vesicles called autophagosomes that sequester and deliver cytoplasmic components to the lysosome/vacuole for degradation. This process begins with an initial sequestering compartment, the phagophore, which expands into the mature autophagosome. A tremendous amount of work has been carried out to elucidate the mechanism of how the autophagosome is formed. However, an important missing piece in this puzzle is where the membrane comes from. Independent lines of evidence have shown that preexisting organelles may continuously supply lipids to support autophagosome formation. In our analysis, we identified several components of the late stage secretory pathway that may redirect Golgi-derived membrane to autophagosome formation in response to starvation conditions.Key words: lysosome, membrane biogenesis, protein targeting, secretory pathway, stress, vacuole, yeast  相似文献   

3.
《Autophagy》2013,9(7):950-951
In macroautophagy (hereafter autophagy), a morphological hallmark is the formation of double-membrane vesicles called autophagosomes that sequester and deliver cytoplasmic components to the lysosome/vacuole for degradation. This process begins with an initial sequestering compartment, the phagophore, which expands into the mature autophagosome. A tremendous amount of work has been carried out to elucidate the mechanism of how the autophagosome is formed. However, an important missing piece in this puzzle is where the membrane comes from. Independent lines of evidence have shown that pre-existing organelles may continuously supply lipids to support autophagosome formation. In our analysis, we identified several components of the late stage secretory pathway that may redirect Golgi-derived membrane to autophagosome formation in response to starvation conditions.  相似文献   

4.
R Taylor  PH Chen  CC Chou  J Patel  SV Jin 《Autophagy》2012,8(9):1300-1311
Inositol phosphates are implicated in the regulation of autophagy; however, the exact role of each inositol phosphate species is unclear. In this study, we systematically analyzed the highly conserved inositol polyphosphate synthesis pathway in S. cerevisiae for its role in regulating autophagy. Using yeast mutants that harbored a deletion in each of the genes within the inositol polyphosphate synthesis pathway, we found that deletion of KCS1, and to a lesser degree IPK2, led to a defect in autophagy. KCS1 encodes an inositol hexakisphosphate/heptakisposphate kinase that synthesizes 5-IP 7 and IP 8; and IPK2 encodes an inositol polyphosphate multikinase required for synthesis of IP 4 and IP 5. We characterized the kcs1Δ mutant strain in detail. The kcs1Δ yeast exhibited reduced autophagic flux, which might be caused by both the reduction in autophagosome number and autophagosome size as observed under nitrogen starvation. The autophagy defect in kcs1Δ strain was associated with mislocalization of the phagophore assembly site (PAS) and a defect in Atg18 release from the vacuole membrane under nitrogen deprivation conditions. Interestingly, formation of autophagosome-like vesicles was commonly observed to originate from the plasma membrane in the kcs1Δ strain. Our results indicate that lack of KCS1 interferes with proper localization of the PAS, leads to reduction of autophagosome formation, and causes the formation of autophagosome-like structure in abnormal subcellular locations.  相似文献   

5.
《Autophagy》2013,9(2)
The current working definition of autophagy is the following: all processes in which intracellular material is degraded within the lysosome/vacuole and where the macromolecular constituents are recycled. There are several ways to classify the different types of autophagy. For example, we can separate autophagy into two primary types, based on the initial site of cargo sequestration. In particular, during microautophagy and chaperone-mediated autophagy, uptake occurs directly at the limiting membrane of the lysosome or vacuole. In contrast, macroautophagy—whether selective or nonselective—and endosomal microautophagy involve sequestration within an autophagosome or an omegasome, or late endosomes/multivesicular bodies, respectively; the key point being that in these types of autophagy the initial sequestration event does not occur at the limiting membrane of the degradative organelle. In any case, the cargo is ultimately delivered into the lysosome or vacuole lumen for subsequent degradation. Thus, I think most autophagy researchers view the degradative organelle as the ultimate destination of the pathway. Indeed, this fits with the general concept that organelles allow reactions to be compartmentalized. With regard to the lysosome or vacuole, this also confers a level of safety by keeping the lytic contents away from the remainder of the cell. If we are willing to slightly modify our definition of autophagy, with a focus on “degradation of a cell’s own components through the lysosomal/vacuolar machinery,” we can include a newly documented process, programmed nuclear destruction (PND).  相似文献   

6.
Autophagy is a catabolic pathway for the degradation of cytosolic proteins or organelles and is conserved among all eukaryotic cells. The hallmark of autophagy is the formation of double-membrane cytosolic vesicles, termed autophagosomes, which sequester cytoplasm; however, the mechanism of vesicle formation and the membrane source remain unclear. In the yeast Saccharomyces cerevisiae, selective autophagy mediates the delivery of specific cargos to the vacuole, the analog of the mammalian lysosome. The transmembrane protein Atg9 cycles between the mitochondria and the pre-autophagosomal structure, which is the site of autophagosome biogenesis. Atg9 is thought to mediate the delivery of membrane to the forming autophagosome. Here, we characterize a second transmembrane protein Atg27 that is required for specific autophagy in yeast. Atg27 is required for Atg9 cycling and shuttles between the pre-autophagosomal structure, mitochondria, and the Golgi complex. These data support a hypothesis that multiple membrane sources supply the lipids needed for autophagosome formation.  相似文献   

7.
Cystic fibrosis is the most common inherited lethal disease in Caucasians. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), of which the cftr ΔF508 mutation is the most common. ΔF508 macrophages are intrinsically defective in autophagy because of the sequestration of essential autophagy molecules within unprocessed CFTR aggregates. Defective autophagy allows Burkholderia cenocepacia (B. cepacia) to survive and replicate in ΔF508 macrophages. Infection by B. cepacia poses a great risk to cystic fibrosis patients because it causes accelerated lung inflammation and, in some cases, a lethal necrotizing pneumonia. Autophagy is a cell survival mechanism whereby an autophagosome engulfs non-functional organelles and delivers them to the lysosome for degradation. The ubiquitin binding adaptor protein SQSTM1/p62 is required for the delivery of several ubiquitinated cargos to the autophagosome. In WT macrophages, p62 depletion and overexpression lead to increased and decreased bacterial intracellular survival, respectively. In contrast, depletion of p62 in ΔF508 macrophages results in decreased bacterial survival, whereas overexpression of p62 leads to increased B. cepacia intracellular growth. Interestingly, the depletion of p62 from ΔF508 macrophages results in the release of the autophagy molecule beclin1 (BECN1) from the mutant CFTR aggregates and allows its redistribution and recruitment to the B. cepacia vacuole, mediating the acquisition of the autophagy marker LC3 and bacterial clearance via autophagy. These data demonstrate that p62 differentially dictates the fate of B. cepacia infection in WT and ΔF508 macrophages.  相似文献   

8.
Yuchen Lei 《Autophagy》2020,16(8):1363-1365
ABSTRACT

A key feature of macroautophagy (hereafter autophagy) is the formation of the phagophore, a double-membrane compartment sequestering cargos and finally maturing into a vesicle termed an autophagosome; however, where these membranes originate from is not clear. In a previous study, researchers from the Rubinsztein lab proposed a model in which the autophagosome can evolve from the RAB11A-positive recycling endosome. In their recent paper, they determine that DNM2 (dynamin 2) functions in scission of the recycling endosome, and the release of the autophagosome precursor. These findings explain how the centronuclear myopathy (CNM) mutation in DNM2 results in the accumulation of immature autophagic structures.  相似文献   

9.
Sun T  Wang X  Lu Q  Ren H  Zhang H 《Autophagy》2011,7(11):1308-1315
The process of macroautophagy (herein referred to as autophagy) involves the formation of a closed double-membrane structure, called the autophagosome, and its subsequent fusion with lysosomes to form an autolysosome. Lysosomes are regenerated from autolysosomes after degradation of the sequestrated materials. In this study, we showed that mutations in cup-5, encoding the C. elegans Mucolipin 1 homolog, cause defects in the autophagy pathway. In cup-5 mutants, a variety of autophagy substrates accumulate in enlarged vacuoles that display characteristics of late endosomes and lysosomes, indicating defective proteolytic degradation in autolysosomes. We further revealed that lysosomes in coelomocytes (scavenger cells located in the body cavity) are smaller in size and more numerous in mutants with loss of autophagy activity. Furthermore, the enlarged vacuole accumulation abnormality and embryonic lethality of cup-5 mutants are partially suppressed by reduced autophagy activity. Our results indicate that the basal constitutive level of autophagy activity regulates the size and number of lysosomes and provides insights into the molecular mechanisms underlying mucolipidosis type IV disease.  相似文献   

10.
The molecular mechanism of autophagy   总被引:19,自引:0,他引:19  
Autophagy is a conserved trafficking pathway that is highly regulated by environmental conditions. During autophagy, portions of cytoplasm are sequestered into a double-membrane autophagosome and delivered to a degradative organelle, the vacuole in yeast and the lysosome in mammalian cells, for breakdown and recycling. Autophagy is induced under starvation conditions and in mammalian cells is also invoked in response to specific hormones. In yeast, under nutrient-rich conditions, a constitutive biosynthetic pathway, termed the cytoplasm to vacuole targeting (Cvt) pathway, utilizes most of the same molecular machinery and topologically similar vesicles for the delivery of the resident hydrolase aminopeptidase I to the vacuole. Both autophagy and the Cvt pathway have been extensively studied and comprehensively reviewed in the past few years. In this review, we focus on the yeast system, which has provided most of the insight into the molecular mechanism of autophagy and the Cvt pathway, and highlight the most recent additions to our current knowledge of both pathways.  相似文献   

11.
Xu Liu 《Autophagy》2016,12(5):894-895
The macroautophagy (hereafter autophagy) process involves de novo formation of double-membrane autophagosomes; after sequestering cytoplasm these transient organelles fuse with the vacuole/lysosome. Genetic studies in yeasts have characterized more than 40 autophagy-related (Atg) proteins required for autophagy, and the majority of these proteins play roles in autophagosome formation. The fusion of autophagosomes with the vacuole is mediated by the Rab GTPase Ypt7, its guanine nucleotide exchange factor Mon1-Ccz1, and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. However, these factors are not autophagosome-vacuole fusion specific. We recently showed that 2 autophagy scaffold proteins, the Atg17-Atg31-Atg29 complex and Atg11, regulate autophagosome-vacuole fusion by recruiting the vacuolar SNARE Vam7 to the phagophore assembly site (PAS), where an autophagosome forms in yeast.  相似文献   

12.
Autophagy is a process whereby cytoplasmic proteins and organelles are sequestered for bulk degradation in the vacuole/lysosome. At present, 16 ATG genes have been found that are essential for autophagosome formation in the yeast Saccharomyces cerevisiae. Most of these genes are also involved in the cytoplasm to vacuole transport pathway, which shares machinery with autophagy. Most Atg proteins are colocalized at the pre-autophagosomal structure (PAS), from which the autophagosome is thought to originate, but the precise mechanism of autophagy remains poorly understood. During a genetic screen aimed to obtain novel gene(s) required for autophagy, we identified a novel ORF, ATG29/YPL166w. atg29Delta cells were sensitive to starvation and induction of autophagy was severely retarded. However, the Cvt pathway operated normally. Therefore, ATG29 is an ATG gene specifically required for autophagy. Additionally, an Atg29-GFP fusion protein was observed to localize to the PAS. From these results, we propose that Atg29 functions in autophagosome formation at the PAS in collaboration with other Atg proteins.  相似文献   

13.
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.  相似文献   

14.
15.
《Autophagy》2013,9(11):1308-1315
The process of macroautophagy (herein referred to as autophagy) involves the formation of a closed double-membrane structure, called the autophagosome, and its subsequent fusion with lysosomes to form an autolysosome. Lysosomes are regenerated from autolysosomes after degradation of the sequestrated materials. In this study, we showed that mutations in cup-5, encoding the C. elegans Mucolipin 1 homolog, cause defects in the autophagy pathway. In cup-5 mutants, a variety of autophagy substrates accumulate in enlarged vacuoles that display characteristics of late endosomes and lysosomes, indicating defective proteolytic degradation in autolysosomes. We further revealed that lysosomes in coelomocytes (scavenger cells located in the body cavity) are smaller in size and more numerous in mutants with loss of autophagy activity. Furthermore, the enlarged vacuole accumulation abnormality and embryonic lethality of cup-5 mutants are partially suppressed by reduced autophagy activity. Our results indicate that the basal constitutive level of autophagy activity regulates the size and number of lysosomes and provides insights into the molecular mechanisms underlying mucolipidosis type IV disease.  相似文献   

16.
Autophagy is the process whereby cytoplasmic cargo (e.g., protein and organelles) are sequestered within a double membrane-enclosed transport vesicle and degraded after vesicle fusion with the vacuole/lysosome. Current evidence suggests that the Vps34 phosphatidylinositol 3-kinase is essential for macroautophagy, a starvation-induced autophagy pathway (Kihara et al., 2001). Here, we characterize a requirement for Vps34 in constitutive autophagy by the cytoplasm-to-vacuole targeting (Cvt) pathway. First, we show that transient disruption of phosphatidylinositol (PtdIns) 3-phosphate (PtdIns[3]P) synthesis through inactivation of temperature-sensitive Vps34 or its upstream activator, Vps15, blocks the Cvt and macroautophagy pathways. Yet, PtdIns(3)P-binding FYVE domain-containing proteins, which mediate carboxypeptidase Y (CPY) transport to the vacuole by the CPY pathway, do not account for the requirement of Vps34 in autophagy. Using a genetic selection designed to isolate PtdIns(3)P-binding effectors of Vps34, we identify Etf1, an uncharacterized type II transmembrane protein. Although Etf1 does not contain a known 3-phosphoinositide-binding domain (i.e., FYVE or Phox), we find that Etf1 interacts with PtdIns(3)P and that this interaction requires a basic amino acid motif (KKPAKK) within the cytosolic region of the protein. Moreover, deletion of ETF1 or mutation of the KKPAKK motif results in strong sorting defects in the Cvt pathway but not in macroautophagy or in CPY sorting. We propose that Vps34 regulates the CPY, Cvt, and macroautophagy pathways through distinct sets of PtdIns(3)P-binding effectors and that Vps34 promotes protein trafficking in the Cvt pathway through activation/localization of the effector protein Etf1.  相似文献   

17.
In autophagy, a cup-shaped membrane called the isolation membrane is formed, expanded, and sealed to complete a double membrane-bound vesicle called the autophagosome that encapsulates cellular constituents to be transported to and degraded in the lysosome/vacuole. The formation of the autophagosome requires autophagy-related (Atg) proteins. Atg8 is a ubiquitin-like protein that localizes to the isolation membrane; a subpopulation of this protein remains inside the autophagosome and is transported to the lysosome/vacuole. In the budding yeast Saccharomyces cerevisiae, Atg1 is a serine/threonine kinase that functions in the initial step of autophagosome formation and is also efficiently transported to the vacuole via autophagy. Here, we explore the mechanism and significance of this autophagic transport of Atg1. In selective types of autophagy, receptor proteins recognize degradation targets and also interact with Atg8, via the Atg8 family interacting motif (AIM), to link the targets to the isolation membrane. We find that Atg1 contains an AIM and directly interacts with Atg8. Mutations in the AIM disrupt this interaction and abolish vacuolar transport of Atg1. These results suggest that Atg1 associates with the isolation membrane by binding to Atg8, resulting in its incorporation into the autophagosome. We also show that mutations in the Atg1 AIM cause a significant defect in autophagy, without affecting the functions of Atg1 implicated in triggering autophagosome formation. We propose that in addition to its essential function in the initial stage, Atg1 also associates with the isolation membrane to promote its maturation into the autophagosome.  相似文献   

18.
Autophagy is a primarily degradative pathway that takes place in all eukaryotic cells. It is used for recycling cytoplasm to generate macromolecular building blocks and energy under stress conditions, to remove superfluous and damaged organelles to adapt to changing nutrient conditions and to maintain cellular homeostasis. In addition, autophagy plays a critical role in cytoprotection by preventing the accumulation of toxic proteins and through its action in various aspects of immunity including the elimination of invasive microbes and its participation in antigen presentation. The most prevalent form of autophagy is macroautophagy, and during this process, the cell forms a double-membrane sequestering compartment termed the phagophore, which matures into an autophagosome. Following delivery to the vacuole or lysosome, the cargo is degraded and the resulting macromolecules are released back into the cytosol for reuse. The past two decades have resulted in a tremendous increase with regard to the molecular studies of autophagy being carried out in yeast and other eukaryotes. Part of the surge in interest in this topic is due to the connection of autophagy with a wide range of human pathophysiologies including cancer, myopathies, diabetes and neurodegenerative disease. However, there are still many aspects of autophagy that remain unclear, including the process of phagophore formation, the regulatory mechanisms that control its induction and the function of most of the autophagy-related proteins. In this review, we focus on macroautophagy, briefly describing the discovery of this process in mammalian cells, discussing the current views concerning the donor membrane that forms the phagophore, and characterizing the autophagy machinery including the available structural information.  相似文献   

19.
In macroautophagy/autophagy, cargoes are collected by specific receptors, such as SQSTM1/p62 (sequestosome 1), and delivered to phagophores for lysosomal degradation. To date, little is known about how cells modulate SQSTM1 activity and autophagosome biogenesis in response to accumulating cargoes. In this study, we show that SQSTM1 is an N-recognin whose ZZ domain binds N-terminal arginine (Nt-Arg) and other N-degrons (Nt-Lys, Nt-His, Nt-Trp, Nt-Phe, and Nt-Tyr) of the N-end rule pathway. The substrates of SQSTM1 include the endoplasmic reticulum (ER)-residing chaperone HSPA5/GRP78/BiP. Upon N-end rule interaction with the Nt-Arg of arginylated HSPA5 (R-HSPA5), SQSTM1 undergoes self-polymerization via disulfide bonds of Cys residues including Cys113, facilitating cargo collection. In parallel, Nt-Arg-bound SQSTM1 acts as an inducer of autophagosome biogenesis and autophagic flux. Through this dual regulatory mechanism, SQSTM1 plays a key role in the crosstalk between the ubiquitin (Ub)-proteasome system (UPS) and autophagy. Based on these results, we employed 3D-modeling of SQSTM1 and a virtual chemical library to develop small molecule ligands to the ZZ domain of SQSTM1. These autophagy inducers accelerated the autophagic removal of mutant HTT (huntingtin) aggregates. We suggest that SQSTM1 can be exploited as a novel drug target to modulate autophagic processes in pathophysiological conditions.  相似文献   

20.
Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号