首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水文变异条件下鄱阳湖流域的生态流量   总被引:9,自引:0,他引:9  
刘剑宇  张强  顾西辉 《生态学报》2015,35(16):5477-5485
受气候变化和人类活动综合影响,鄱阳湖流域水文状况发生变异。河流生态系统适应了变异前的水文状况,变异后势必会影响当地生态系统。基于此,采用8种变异检测方法对水文变异进行综合诊断,阐明水文变异原因。在此基础上,采用15种概率分布函数分别拟合5站各月变异前日流量序列,最终确定5站点各月最优分布函数及所对应的概率密度最大处的流量,即得河道内生态流量。研究表明:(1)抚河于1962年发生弱变异,赣江、修河于1968年发生中变异,信江、饶河于1991年发生弱变异;(2)变异后,赣江、信江、饶河、修河生态需水满足率平均上升11%,抚河生态需水满足率下降32%;(3)水文变异增加提高生态需水满足率,水利工程建设降低年均生态需水满足率、提高干季生态需水满足率。高森林覆盖率提高干季生态需水满足率,对年均生态需水满足率影响不明显。研究结果为鄱阳湖流域水资源管理及区域水资源规划与配置提供重要科学依据。  相似文献   

2.
黄维  王为东 《生态学报》2016,36(20):6345-6352
长江三峡工程建成运行后,其下游第一个大型通江湖泊——洞庭湖的水文、水质以及湿地环境等均发生了很大变化。三峡工程已经开始影响到洞庭湖的泥沙淤积、水位波动、水质以及植被演替等。以三峡水库调度运行方案、河湖交互作用和洞庭湖湿地植被分布格局为基础,从长江三峡工程对洞庭湖水文、水质以及湿地植被演替等方面综述了三峡工程对洞庭湖湿地的综合影响。三峡工程减缓了长江输入洞庭湖泥沙的淤积速率,对短期内增加洞庭湖区调蓄空间、延长洞庭湖寿命有利。总体上减少了洞庭湖上游的来水量,改变了洞庭湖原来的水位/量变化规律。给洞庭湖水环境质量造成了直接或间接的影响,对其水质改变尚存一定争议,但至少在局部地区加剧了污染。水位变化和泥沙淤积趋缓协同改变了洞庭湖湿地原有植被演替方式,改以慢速方式演替,即群落演替的主要模式为:水生植物—虉草或苔草—芦苇—木本植物。展望了今后的研究趋势与方向,为三峡工程与洞庭湖关系的进一步研究提供参考。  相似文献   

3.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2014,38(1):19-26
研究以正式发表的淡水软体动物文献和部分未发表野外调查数据为基础资料,分析了长江流域淡水软体动物物种多样性及分布格局。长江流域已报道的软体动物有296种,隶属17科62属,其中有197种是中国特有种。田螺科、肋蜷科、盖螺科、椎实螺科和蚌科是长江流域软体动物的主要组成部分,这5科种类数之和达249种,占总数的84.1%。从总体上低海拔地区的软体动物物种数高于高海拔地区,而高海拔地区特有种所占的比例却高于低海拔地区。支流和湖泊的种类数接近,分别为202种和210种,远高于长江干流(31种)。各水系软体动物的种类数、特有种数及特有种比例明显不同,洞庭湖水系和鄱阳湖水系的多样性最高。聚类分析表明,长江流域软体动物的分布基本反映了流域内的地势特点,形成了高原、中低海拔山地和低海拔平原的分布格局。不同类群的物种其分布格局也不相同,田螺科和椎实螺科的分布范围较广,肋蜷科和盖螺科种类分布范围狭窄,多数种类仅存在于单个水系,蚌科种类分布最为集中,以鄱阳湖和洞庭湖的种类最为丰富,种类数分别为58种和45种。研究表明,金沙江下游(云贵高原湖泊)、鄱阳湖和洞庭湖软体动物物种多样性丰富,建议将其列为我国淡水软体动物急需关注和保护的热点地区。    相似文献   

4.
The Yangtze River is the largest river in China. It is a priority conservation area for biodiversity of the world, with its main river, branches and wetlands. As an essential part of freshwater ecosystem, aquatic vegetation has been well studied by Chinese researchers since 1950s, but large-scaled analysis on the biodiversity pattern is lacked. Based on published studies, we analyzed spatial and temporal pattern of aquatic plant diversity in the Yangtze River Basin, and calculated the suitable habitat area and underlying influence of environmental factors using MaxEnt software. A total of 298 species are recognized, belonging to 121 genera in 52 families, which is 57.6% of the total aquatic vascular plants in China. The Yangtze River Basin is the key area for aquatic plant diversity of China, especially the subregions of middle reaches. The elevation and land use are the key environmental variables to the spatial pattern of aquatic plants. The separation among water systems have weak influence on the spatial pattern of diversity in aquatic vascular plants, but potamo-lacustrine habitats facilitated the species homogenization of the flora in a sub-basin scale. The network consists of Poyang Lake, Dongting Lake, Tai Lake, and the middle and lower mainstream is the suitable area for the aquatic plants based on the MaxEnt model. In the past half century, the decline or loss of aquatic vegetation occurred in plenty of lakes in the Yangtze River Basin. We suggested that the protection of aquatic vegetation should be incorporated into the integrated conservation of the middle and lower Yangtze River. © 2019, Institute of Hydrobiology, Chinese Academy of Sciences. All rights reserved.  相似文献   

5.
Poyang Lake (Poyang Hu) is located at the junction of the middle and lower reaches of the Yangtze (Changjiang) River, covering an area of 3283 km2. As one of the few lakes that are still freely connected with the river, it plays an important role in the maintenance of the unique biota of the Yangtze floodplain ecosystem. To promote the conservation of Poyang Lake, an investigation of the macrobenthos in the lake itself and adjoining Yangtze mainstream was conducted in 1997–1999. Altogether 58 benthic taxa, including 22 annelids, 8 mollusks, 26 arthropods, and 2 miscellaneous animals, were identified from quantitative samples. The benthic fauna shows a high diversity and a marine affinity. The standing crops of benthos in the lake were much higher than those in the river, being 659 individuals/m2 and 187.3 g/m2 (wet mass) in the main lake, and 549 individuals/m2 and 116.6 g/m2 in the lake outlet, but only 129 individuals/m2 and 0.4 g/m2 in the river. The dominant group in the lake was Mollusca, comprising 63.4% of the total in density and 99.5% in biomass. An analysis of the functional feeding structure indicated that collector-filterers and scrapers were predominant in the lake, up to 42.2% and 24.7% in density and 70.2% and 29.2% in biomass, respectively, while shredders and collector-gatherers were relatively common in the river. The present study was restricted to the northern outlet and the northeast part of Poyang Lake. A scrutiny is required for the remaining areas.  相似文献   

6.
基于MODIS的洞庭湖湿地面积对水文的响应   总被引:3,自引:0,他引:3  
利用MODIS影像数据集提取了2000-2010年间的洞庭湖水面面积。结合城陵矶水位数据分析了10月-翌年5月洞庭湖水体湿地和洲滩湿地的面积变化。研究结果表明,洞庭湖水体湿地呈现明显减小的趋势。2010年2月、10月、12月较2000年2月、10月、12月相比,分别有29.98%、26.76%和9.02%水体湿地转化为洲滩湿地。城陵矶在24-26 m水位涨落的时序变化较大,使东洞庭湖草滩湿地提前出露。推迟淹没,洲滩湿地裸露时间延长,亦将导致低海拔的草滩湿地向芦苇滩湿地的演变。洞庭湖湿地面积的变化是三口、四水来水减少、降雨减少等多方因素共同作用的结果,而三峡在9-10月间蓄水,将进一步加重湿地洲滩化的趋势  相似文献   

7.
长江中下游四大淡水湖生态系统完整性评价   总被引:2,自引:2,他引:2  
长江中下游地区是我国淡水湖泊集中分布区域,研究该区域湖泊生态系统完整性对于湖泊生态系统保护和恢复具有重要意义。物理、化学和生物完整性指标已经广泛应用于河湖生态系统健康评价,但是缺少物理、化学和生物完整性的综合评价方法。以历史调查状况为主要参照系统,构建了基于物理、化学和生物完整性的多参数湖泊完整性综合评价指标体系,结合近年来长江中下游四大淡水湖(洞庭湖、鄱阳湖、巢湖、太湖)生态系统调查数据,对四大淡水湖生态系统完整性进行了评价。结果表明,洞庭湖、鄱阳湖、巢湖和太湖的综合得分分别为66、71、57和57。根据评价等级划分标准,洞庭湖和鄱阳湖生态系统完整性状况都达到"好"的等级,而巢湖和太湖则处于"一般"等级;结果显示,该指标能够表征人类活动对于湖泊生态系统完整性不同方面的干扰,且能够反映四大淡水湖生态系统完整性历史变化状况。因此,该方法可以作为长江中下游淡水湖泊生态系统完整性综合评价的工具并能够为湖泊生态系统的保护和恢复提供科学支撑。  相似文献   

8.
The Poyang Lake is the largest lake and the main nursery area in the middle basin of the Changjiang (Yangtze) River. We compared molecular genetic markers of silver carp among populations of the Changjiang River, the Ganjiang River and the Poyang Lake using the ND5/6 region of mtDNA. Analysis of restriction fragment length polymorphisms (RFLPs) of this region revealed distinct variation between the Ganjiang River and the Changjiang River populations. The Poyang Lake is linked with the Ganjiang River and the Changjiang River. Shared RFLP fragments between the Ganjiang River population and the Poyang Lake population are as high as 61.4%. The value is 47.74% between the populations of the Changjiang River and that of the Poyang Lake. Frequencies of bands peculiar to the Ganjiang River population are the same as in the Poyang Lake population. We conclude that the Poyang Lake silver carp population consists mainly of the Ganjiang River population. The water level of the Poyang Lake outlet, which is higher than that of the Changjiang River in the silver carp spawning season, supports this conclusion.  相似文献   

9.
Over the past few decades, fish resources have declined severely owing to the river–lake disconnection within the Yangtze River floodplain. Studies on fish migrations between rivers and floodplain waters are imperative for fish resources restoration and lake management. However, few studies have as yet documented the migration rhythms of river–lake migratory fishes. Monthly investigations of the fish assemblage structure were conducted in three regions of the Dongting Lake, which is connected to the Yangtze River. Main results were: (i) Fish catches varied greatly, depending on the water level and area of the lake; (ii) Ten river–lake migratoty species were caught during the study, 80% of these during July–October when the water level was high. Species richness and relative abundance both decreased with increasing distance from the river, and the timing of peak abundance occurred later in the year; (iii) Abundance of grass carp (Ctenopharyngodon idella) and silver carp (Hypophthalmichthys molitrix) peaked in July and August and were mainly composed of 0 + fishes. The results revealed that the key time for migration into the lake is July–August. Combining the results from previous studies, a comprehensive view is given of migration patterns of four domestic Chinese carps; (iv) Brass gudgeon (Coreius heterodon), appeared to migrate into the Dongting Lake as two separate shoals, differentiated by body size. They also appeared to remain close to the lake mouth area. Based on the above results, two recommendations can be made for river–lake migratory fish conservation in the Yangtze floodplain: prolonging the current fishing ban period of April–June to April–September; and opening sluice gates for as long as possible during April–September in order to maximize the opportunities for fish migration.  相似文献   

10.
11.
长江中下游流域是我国淡水贝类多样性最为集中的地区,然而由于人类活动的影响,淡水贝类已成为高度濒危的类群。为有效保护淡水贝类的多样性,我们于2003年6月-2005年5月对长江中下游流域13个水体软体动物的多样性及分布进行了调查。共采集到软体动物69种(中国特有种42种),隶属于腹足类9科14属29种和瓣鳃类5科17属40种。其中,蚌科和田螺科是种类数最多的两个科,分别占总种类数的50.7%和14.5%。不同类型湖泊软体动物种类数的差别较大。通江湖泊所占种类数相对丰富,尤其是适应流水的种类,如河螺属、短沟蜷属及蚌科的种类。大型通江湖泊鄱阳湖和洞庭湖软体动物的种类数和特有种数分别66种和40种,分别占总种类数和总特有种数的95.7%和95.2%。阻隔水体所占种类数相对较少,种类数为4-19种。与历史资料相比,长江中下游湖泊软体动物的种类数和特有种数均减少50%左右,且多数种类的分布范围也明显缩小。造成贝类资源衰退的可能原因主要是江湖阻隔所引起的整个江湖复合系统栖息地和水文情势的改变,其他的人为活动如过度捕捞、围垦及废污水的过度排放等也可能是其中的重要原因。  相似文献   

12.
研究于2020—2021年使用Simrad EY60鱼探仪对鄱阳湖进行了秋季、春季和冬季共3次的水声学调查,并同步开展渔获物调查作为补充,分析鄱阳湖鱼类资源时空分布变化特征。结果表明:在季节分布上,鱼类目标强度和密度值都存在显著差异(P<0.05),在目标强度上表现为冬季[(–51.0±14.13) dB]>春季[(–52.10±4.59) dB]>秋季[(–52.71±9.95) dB],在鱼类密度上表现为冬季(54.61 ind./1000 m3)>秋季(46.10 ind./1000 m3)>春季(18.54 ind./1000 m3);在水平分布上,鱼类资源空间分布不均且不同湖区间有显著差异(P<0.05),秋季鱼类主要分布在中部湖区松门山,冬季鱼类主要分布在北部湖区通江水道;在垂直分布上,秋季和冬季均表现为底层>中层>表层,春季表现为表层>中层>底层。综合来看,鄱阳湖鱼类时空分布与鱼类的生活习性如产卵、育肥和越冬等因素密切相关。研究结果为从宏观空间尺度分析区域鱼类时空变动特征提供参考,也为鄱阳湖禁捕效果评估及生物完整...  相似文献   

13.
We summarize macro-patterns of macrozoobenthos in the Yangtze River basin in this paper. A total of 1033 taxa (species/genus) belonging to 3 phyla, 7 classes, 162 families and 513 genera have been recorded from the Yangtze River Basin, including 121 annelids, 318 molluscs and 594 arthropods. In terms of taxa distributions, the species/genus number of annelids and of molluscs in the middle reaches were the highest, while that of arthropods in the upper reaches was the highest; the species/genus number of annelids and of molluscs in the lakes were the highest, while that of arthropods in the tributaries was the highest; the species/genus number of macrozoobenthos in the middle mainstem sub-basin ranked first, and that of the upper mainstem sub-basin, of the Jinshajinag sub-basin, of the Lake Dongting sub-basin and of the Lake Poyang sub-basin second. The total density of macrozoobenthos in the Yangtze River basin was 672 ind./m2, and insects were predominant; the total biomass was 34.22 g/m2, and molluscs were predominant. In terms of standing crops distribution, the total density of macrozoobenthos in the middle reaches was the highest, the total biomass in the lower reaches the highest, while the total standing crop in the upper reaches was the lowest; the total density and biomass of macrozoobenthos in the lakes ranked first, those in the tributaries second, and those in the mainstem last; the total density of macrozoobenthos in the Lake Taihu sub-basin was the highest, and the total biomass in the Lake Poyang sub-basin was the highest. Our study indicates that the upper and middle mainstem sub-basins, the Jinshajiang sub-basin, the Lake Dongting sub-basin and the Lake Poyang sub-basin are important distribution regions for macrozoobenthos. By integrating more information of aquatic organisms, we should make comprehensive and systematic conservation planing of the Yangtze River system and implement them as soon as possible. © 2019, Institute of Hydrobiology, Chinese Academy of Sciences. All rights reserved.  相似文献   

14.
Aim Hydrological disconnection of floodplains from rivers is among the top factors threatening river‐floodplain ecosystems. To keep enough floodplain area is of great importance to biodiversity conservation. In the Yangtze River floodplain, most lakes were disconnected from the mainstream by dams in 1950–1970s. By analysing fish diversity data, we aim at determining the effects of river‐lake disconnection on fish diversity, at estimating the minimum protected area of river‐connected lakes and at proposing a holistic strategy for fish conservation in the mid‐lower reaches of the river. Location The Yangtze River floodplain, China. Methods We collected recorded data of fish diversity of 30 Yangtze floodplain lakes. Species–area relationships were analysed and compared between river‐connected and river‐disconnected lakes. Cumulative species–area models were constructed to estimate the minimum protected area of river‐connected lakes. Results River‐lake disconnection reduced fish diversity of Yangtze lakes by 38.1%, so that the river‐connected lakes play an important role in maintaining the floodplain biodiversity. The minimum protected area of river‐connected lakes was estimated to be 14,400 km2. Therefore, we should not only protect the existent connected lakes of 5500 km2, but also reconnect disconnected lakes of at least 8900 km2 in the Yangtze basin. Main conclusions Species–area relationships are of importance in reserve design. We suggest that cumulative species–area model might be more suitable for ecosystems with high connectivity among regions such as floodplains. As the Yangtze River floodplain is an integrative ecosystem, we suggest establishing a holistic nature reserve in the mid‐lower basin for effective conservation of biodiversity.  相似文献   

15.
Water movement in the soil-plant-atmosphere continuum (SPAC) has a significant effect on the biogeochemical process in wetlands. This study investigated the water movement in the SPAC in Poyang Lake wetland, which is a protected area with an important ecological function within the Yangtze River basin, under different water-level conditions by analyzing the responses of river, groundwater, soil and plants to precipitation using stable hydrogen and oxygen isotopes. The results show that the stable hydrogen and oxygen isotopic compositions (δ18O and δD) of soil water decrease with increasing depth due to the near surface evaporation. During the dry season the water-level in Poyang Lake is low, when it rains the influencing depth of precipitation and evaporation on soil water isotopic signatures was 20 cm below the ground surface. The rain water infiltrates into the soil, recharges groundwater and flows to the river. When the water-level in Poyang Lake is low, the Xiu River is recharged by the groundwater, which recharges the soil water by capillary rise. During the flood season, the water-level is high and the water in Poyang Lake reaches or covers the meadows, recharges the groundwater and soil water. In the meantime, the water in Poyang Lake can be recharged by rain water when it rains. During the dry season when it doesn’t rain, plants mainly use groundwater, but soil water is preferred and plants don’t use rainwater directly when it rains. When the lake water-level is extremely low, the plants in Poyang Lake wetland may suffer from water stress, which is harmful for plant growth.  相似文献   

16.
Hydrological characteristics have been recognized as major driving forces for wetland vegetation. The water cycle and hydrological processes of wetland are increasingly influenced by the ongoing climate change and more intensive human activities, which may in turn affect the distribution and structure of vegetation communities. Poyang Lake, located on the south bank of the lower reach of Yangtze River, receives inflows from five tributaries and discharges to the Yangtze River. The unique hydrological conditions of the Poyang Lake wetland create abundant wetland vegetation communities. As a major national hydraulic project, the Three Gorges Dam across the Yangtze River has changed the water regime of Poyang Lake and hence may affect the vegetation distribution. This work aims to investigate the influences of hydrological properties on vegetation structure at broad spatial and temporal scales. Histograms and sensitivity index are used to link the hydrological processes with the vegetation distribution across the Poyang Lake National Nature Reserve. The results show that different vegetation communities react differently to the hydrological conditions. Specifically, certain communities, e.g. Carex and Eremochloa ophiuroides, are able to survive a wide variety of mean water depth and percent time inundated, while others, like Carex–Polygonum criopolitanum, are found to be relatively sensitive to hydrological conditions. It is suggested that this work provides a new insight for evaluating the impact of hydro-engineering projects on vegetation communities and wetland vegetation restoration.  相似文献   

17.
长江流域兽类物种多样性的分布格局   总被引:1,自引:0,他引:1  
共记录了长江流域内兽类280种,隶属于11目36科135属,特有种和受威胁物种分别有14种和154种。根据兽类分布特点,依据山系和水系将长江流域分为19个区域,除了江源区外,物种丰富度、G-F多样性指数和特有种比例,从上游到下游区域总体趋势是随海拔降低逐渐降低,形成以四川盆地和沅江为分界线的3个数量级;利用Jaccard物种相似性系数对长江流域内19个区域进行聚类分析,发现整个流域分成4部分:江源区;横断山区、川西高原、云南高原、四川盆地和秦巴山区;贵州高原、江南丘陵、鄱阳湖平原和长江三角洲;淮阳山地、两湖平原和长江下游平原,基本反映了流域内自然地理环境及我国大陆地势三级台阶变化的特点。  相似文献   

18.
A checklist of the fish of Poyang Lake Basin based on an extensive survey and literature review is presented. A total of 220 species and subspecies belonging to12 orders, 27 families and 100 genera, have been recorded. Of these, 131 species are endemic to China. Based on cluster analysis with presence-absence data, freshwater ecosystems in Jiangxi Province are divided into two regions, the Xunwushui River region and the region of Poyang Lake. The Xunwushui River flows into the Pearl River, whereas the region of Poyang Lake flows into the Yangtze River. The fish fauna and evolution of the fish fauna in Poyang Lake Basin owes much to geological events and belongs to the Oriental Region, South-east Asiatic sub-region and East China area. Anthropogenic activities including habitat alteration, overfishing, pollution and soil erosion have severely reduced the fish biodiversity in Poyang Lake Basin. River modifications (i.e. dam construction and sand excavation) and heavy metal pollution are the most significant threats to fish diversity and ecosystem functioning in the majority of the river systems in the province. To protect fish diversity and fisheries more effectively in Poyang Lake Basin, law enforcement should be strengthened, and the following measures could be introduced: restocking economically important fish species; establishing fish sanctuaries and freshwater protected areas, ordering a close season and developing sustainable aquaculture.  相似文献   

19.
鄱阳湖是长江四大家鱼索饵、育肥的重要场所,近年来鄱阳湖出现了枯水季水位严重降低、枯水期延长、湿地面积缩小的现象。为解决鄱阳湖水资源、水文、水生态等问题,建议在鄱阳湖入江水道兴建控制闸水利枢纽。然而,拟建的水利枢纽工程将打破鄱阳湖与长江的天然连通性,可能会对四大鱼类洄游过程产生影响。通过构建二维和三维水动力模型,分析鄱阳湖水利枢纽建设后入江水道与枢纽洄游通道的水动力学特征,结合实验和文献获得的草鱼幼鱼和成鱼游泳能力参数,阐明了枢纽建设对草鱼洄游的影响。结果表明:在设计调度模式下,草鱼幼鱼入湖期间,湖口段适宜通过天数达到83.74%以上,说明湖口及入江水道的水动力条件对洄游的影响较小,同时,枢纽工程处在过鱼高峰期仍能保持较高的过闸效率;草鱼成鱼出湖期间,丰、平水年闸前水动力条件对洄游的影响较小,仅在枯水年闸前流速几乎静止,草鱼适宜出湖天数偏低。在该调度模式下,水利枢纽建设运行后鄱阳湖整体水动力条件能够满足草鱼洄游需求。目前设计的鱼道在高、低水位时期均出现局部流速过大的现象,不满足过鱼条件。从四大家鱼江湖洄游的角度为鄱阳湖水利枢纽工程设计和运行提供科学参考。  相似文献   

20.
鄱阳湖流域非繁殖期鸟类多样性   总被引:7,自引:1,他引:7  
2010年11月-2011年3月,采用样线和样点法相结合,对鄱阳湖流域非繁殖期鸟类种类及数量进行了调查.共记录鸟类13目36科106种.其中,国家Ⅰ级重点保护鸟类1种,国家Ⅱ级重点保护鸟类10种.居留型方面,留鸟和冬候鸟最多,分别占鸟类物种总数的56.60%和35.85%.鸟类区系上,古北界种类最多,占41.51%;其次是东洋界鸟类,占32.08%.鸟类物种数1月份和3月份最多,多样性和均匀度指数均以12月份和3月份最高,以11月份和2月份最低.欧氏距离显示,修水段、龙虎山段和靖安段与其他河段的鸟类组成差异较大.宜黄段、耳口段和浮梁段的鸟类组成比较相近.研究结果表明,鸟类的相似度与各河段间隔的距离无关,而可能与当地的生境密切相关.鄱阳湖流域分布着一些濒危鸟类,然而人类活动如采砂、非法捕鱼等严重影响了这些鸟类的生存环境.因此建议降低人类活动强度,维持鄱阳湖流域鸟类多样性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号