首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Endophytic fungi inhabit the living tissues of every terrestrial plant species thus far examined. In at least some cases they significantly improve stress tolerance of their hosts. We asked whether endophytic fungi play other ecological roles, specifically whether the leaf endophytes of Quercus gambelii persist during the course of leaf decomposition, requiring a transition from a biotrophic to a saprotrophic mode of nutrition. Using automated ribosomal intergenic spacer analysis (ARISA), we found that endophyte fungal OTU diversity declined as decomposition commenced, but some endophytes persisted for months during which leaves were decomposing. In contrast, saprotroph fungi OTU diversity increased as decomposition progressed. These results are consistent with the hypothesis that some biotrophic endophytes persist in leaves during decomposition by becoming saprotrophic, and that the niche occupied by them is broader than expected.  相似文献   

2.
In order to research the relationship between endophytic fungus and active ingredients in medicinal Paeonia suffruticosa, a total of 57 fungal isolates were isolated from the roots, stems, leaves and buds of medicinal plant Paeonia ostii; mycelium was collected after these fungal isolates were fermented on PDA medium for a few days; then the mycelium products were extracted; their extracts were analyzed by gas chromatography–mass spectrometry. With this method, a strain endophytic fungi named J1-2 which can produce paeonol was screened. Paeonol produced by J1-2 was analyzed by using a high resolution mass spectrometer (HRMS) and nuclear magnetic resonance (NMR). The potential paeonol-procucing named J1-2 was identified Chaetomium based on morphological characteristics and ITS sequence analysis. The current research initially indicates that endophytic fungi can affect the potency of peony. At the same time it also indicates that the numerous endophytic fungi inside the medicinal Paeonia suffruticosa are precious resource for the pharmaceutical natural products that are originally from the Paeonia suffruticosa.  相似文献   

3.
Huperzia serrata is a producer of huperzine A (HupA), a cholinesterase inhibitor (ChEI). Over 120 endophytic fungi were recovered from this plant and screened for Hup-A and nine were found. These nine represented seven different fungal genera with the most significant producer being Shiraia sp. A total of 127 endophytic fungi isolates obtained from the root, stem, and leaf segments of H. serrata were grouped into 19 genera based on their morphological traits and sequence analysis of the internal transcribed spacers (ITS1-5.8S-ITS2), indicating endophytic fungi in H. serrata are diverse and abundant. Aspergillus, Podospora, Penicillium, Colletotrichum, and Acremonium were the frequent genera, whereas the remaining genera were infrequent groups. Overall, 39 endophytic fungi isolates showed acetylcholinesterase (AChE) inhibition in vitro. Nine endophytic fungi isolates from seven distinct genera were capable of producing HupA verified by thin-layer chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). Among the HupA-producing fungi, the yield of HupA produced by the Shiraia sp. Slf14 was 327.8 μg/l in potato dextrose broth, and the fungal HupA was further validated by mass spectrometry (ESI-MS). The present study demonstrated that H. serrata was a fascinating fungal reservoir for producing HupA and other ChEIs.  相似文献   

4.
Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0–20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.  相似文献   

5.
健康与患病刺梨植株可培养叶际真菌菌群差异比较   总被引:1,自引:0,他引:1  
本研究比较了健康与患叶斑病刺梨植株叶际真菌群落特征差异,以期探索病原菌的潜在来源,为人工构建具拮抗功能群落和刺梨叶斑病的生物防控提供参考。通过可培养方法对不同健康状况的刺梨叶际真菌进行分离培养,结合形态学和分子系统学对菌株进行综合鉴定;利用FUNGuild平台对真菌进行功能注释;结合根际、根部真菌作拆分网络分析探索病原菌的潜在来源。本研究结果表明:1)刺梨叶际真菌具有丰富的多样性。从刺梨叶际8个样品中共分离到真菌266株,其隶属于3门、6纲、13目、30科、46属中的61个种。其中,健康植株叶际内生真菌(LHE)包括8属10种27株,附生真菌(LHS)包括33属37种77株。患病叶际内生真菌(LDE)分离到7属10种38株;附生真菌(LDS)分离到31属35种124株。2)不同样品的真菌优势属和特有类群有差异。不同健康状况下叶际附生真菌的优势属均为拟盘多毛孢属Pestalotiopsis,但二者的相对多度存在差异,LHS为11.49%,LDS为32.26%;内生真菌优势属二者均为链格孢属Alternaria,但相对多度各异,LHE为33.33%,LDE为63.16%。其中,LHE特有类群为盘长孢状刺盘孢 Colletotrichum gloeosporioides和果生刺盘孢Colletotrichum fructicola等8种;LDE特有类群为茄链格孢 Alternaria solaniDidymella sinensis 等8种;LHS特有类群是草酸青霉Penicillium oxalicumPeniophora crassitunicata等21种;LDS特有类群是尖孢镰刀菌Fusarium oxysporum、赭绿青霉Penicillium ochrochloron和易脆毛霉Mucor fragilis等19种。3)不同样品叶际真菌功能不同。经FUNGuild解析表明,LHS、LHE和LDE的叶际真菌功能群主要以腐生型为主,LDS则主要以植物病原菌群为主。本研究结果初步揭示刺梨植株健康与患叶斑病叶际间真菌多样性、群落组成及营养功能群存在差异,植株健康状况与其真菌群落特征密切相关;叶斑病病原菌主要源于刺梨叶际的附生微生物群。  相似文献   

6.
Fungi that selectively remove lignin cause extensive bleaching of leaf litter, which results in the acceleration of litter decomposition. The taxonomic diversity and host recurrence of saprotrophic fungi associated with bleached leaf litter were investigated in a subtropical forest in southern Japan. A total of 211 fungal isolates and sporocarps were obtained from bleached portions of leaf litter of 33 plant species in 18 families and were classified into 83 operational taxonomic units (OTUs) at the 97% similarity level of the ITS rDNA sequence. These fungal OTUs belonged to Rhytismataceae and Xylariaceae in the Ascomycota, and Marasmiaceae, Mycenaceae, Lachnocladiaceae, and Physalacriaceae in the Basidiomycota. OTUs in Rhytismataceae and Marasmiaceae showed a significantly higher degree of recurrence for plant species than simulated networks where partners were associated randomly. In contrast, OTUs in Xylariaceae and Mycenaceae showed no significant recurrence for plant species. Such differing degrees of recurrence for plant species implied different roles of fungal families in leaf litter decomposition.  相似文献   

7.
Fungal colonization of litter has been described mostly in terms of fructification succession in the decomposition process or the process of fungal ligninolysis. No studies have been conducted on litter colonization by arbuscular mycorrhizal fungi (AMF) and their relationship with the presence of saprotrophic fungi. The aim of the present study was to evaluate the relationships that exist in simultaneous leaf litter colonization by AMF and saprotrophic fungi and the relationships between rates of litter and associated root colonization by AMF at different soil depths. We selected Eugenia sp. and Syzygium sp. in a riparian tropical forest, with an abundant production of litter (O horizon), we evaluated litter and root colonization at different depths, its C:N ratios, and the edaphic physico-chemical parameters of the A horizon immediately below the litter layer. Litter colonization by saprotrophic fungi and AMF increased with depth, but the saprotrophic fungal colonization of some litter fragments decreased in the lowermost level of the litter while AMF litter colonization continued to increase. Plant roots were present only in the middle and bottom layers, but their mycorrhizal colonization did not correlate with litter colonization. The external hyphae length of AMF is abundant (ca. 20 m g(-1) sample) and, in common with sample humidity, remained constant with increasing depth. We conclude that in zones of riparian tropical forest with abundant sufficient litter accumulation and abundant AMF external hyphae, the increase in litter colonization by AMF with depth correlates to the colonization by saprotrophic fungi, but their presence in the deepest layers is independent of both litter colonization by saprotrophic fungi and root colonization by AMF.  相似文献   

8.
Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., < 0.005) turned non-significant after the application of a multiple comparison method. However, our overall results imply that the community structures of ectomycorrhizal and endophytic fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants'' control of fungus–fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts'' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high-throughput investigation of fungus–fungus interactions in plant root systems.  相似文献   

9.
We examined interactions between host plants, endophytic fungi, and leaf-mining moths (Phyllonorycter sp.) in an oak (Quercus grisea x Q. gambelii) hybrid zone. The community of endophytic fungi and two common endophyte species examined responded to host plant hybridization. Total fungal frequency (TFF) and frequency of Gnomonia cerastis were lowest on hosts resembling Q. grisea, and increased linearly towards those resembling Q. gambelii. In contrast, Coccochorella quercicola was most frequently isolated from Q. grisea-like hosts and decreased in frequency across hybrids towards Q. gambelii. Frequency of G. cerastis and TFF covaried with Phyllonorycter density across the hybrid zone, but direct effects of endophytes on Phyllonorycter density were not detected. Associations between endophytes and unexplained mortality of Phyllonorycter varied according to endophyte species and state of Phyllonorycter development. In the sap-feeding stage, unexplained mortality was negatively associated with TFF and frequencies of Hormonema sp. and Preussia funiculata; whereas, in the tissue-feeding stage, unexplained Phyllonorycter mortality was positively associated with G. cerastis frequency. Three-way interactions between plant hybridization, endophytic fungi, and the insect herbivore were not significant.  相似文献   

10.
Priority effects are an important ecological force shaping biotic communities and ecosystem processes, in which the establishment of early colonists alters the colonization success of later‐arriving organisms via competitive exclusion and habitat modification. However, we do not understand which biotic and abiotic conditions lead to strong priority effects and lasting historical contingencies. Using saprotrophic fungi in a model leaf decomposition system, we investigated whether compositional and functional consequences of initial colonization were dependent on initial colonizer traits, resource availability or a combination thereof. To test these ideas, we factorially manipulated leaf litter biochemistry and initial fungal colonist identity, quantifying subsequent community composition, using neutral genetic markers, and community functional characteristics, including enzyme potential and leaf decay rates. During the first 3 months, initial colonist respiration rate and physiological capacity to degrade plant detritus were significant determinants of fungal community composition and leaf decay, indicating that rapid growth and lignolytic potential of early colonists contributed to altered trajectories of community assembly. Further, initial colonization on oak leaves generated increasingly divergent trajectories of fungal community composition and enzyme potential, indicating stronger initial colonizer effects on energy‐poor substrates. Together, these observations provide evidence that initial colonization effects, and subsequent consequences on litter decay, are dependent upon substrate biochemistry and physiological traits within a regional species pool. Because microbial decay of plant detritus is important to global C storage, our results demonstrate that understanding the mechanisms by which initial conditions alter priority effects during community assembly may be key to understanding the drivers of ecosystem‐level processes.  相似文献   

11.
Leaf-cutting ants of the genera Acromyrmex and Atta forage vegetation for incorporation into their mutualistic fungal gardens. However, the presence of certain endophytic fungi in this predominantly leaf-based material could affect the fungal garden and thus the choice of material by the ants. The present study was conducted to document the endophytic fungal communities occurring in the vegetation being transported by workers of Atta laevigata into their nests and to compare this community structure with that of the vegetative material subsequently rejected from the nests. We found considerable diversity in the fungi isolated. Acremonium, Cylindrocladium, Drechslera, Epicoccum, Fusarium, Trichoderma, Ulocladium and two unidentified morphospecies were significantly more common in rejected compared with foraged material, and some of these genera include mycoparasites, which could represent a threat to the fungal gardens. Conversely, Colletotrichum, Pestalotiopsis, Phomopsis, Xylaria and an unidentified morphospecies were more common in carried compared with rejected material. The possibility that ants have a ‘quality-control’ mechanism based on the presence of antagonistic fungal endophytes is discussed, as is the potential use of these fungi as biocontrol agents against Attini pests.  相似文献   

12.
Fungal endophytes and saprotrophs generally play an important ecological role within plant tissues and dead plant material. Several reports based solely on morphological observations have postulated that there is an intimate link between endophytes and saprotrophs. This study aims to provide valuable insight as to whether some endophytic fungi manifest themselves as saprotrophs upon host decay. Ribosomal DNA-based sequence comparison and phylogenetic relationships from 99 fungal isolates (endophytes, mycelia sterilia, and saprotrophs) recovered from leaves and twigs of Magnolia liliifera were investigated in this study. Molecular data suggest there are fungal taxa that possibly exist as endophytes and saprotrophs. Isolates of Colletotrichum, Fusarium, Guignardia, and Phomopsis, which are common plant endophytes, have high sequence similarity and are phylogenetically related to their saprotrophic counterparts. This provides evidence to suggest that some endophytic species change their ecological strategies and adopt a saprotrophic lifestyle. The implication of these findings on fungal biodiversity and host specificity is also discussed.  相似文献   

13.
毛黎娟  冯佳威  章初龙 《菌物学报》2021,40(10):2854-2862
根据ITS、LSU、rpb2tef1tub2多基因系统发育分析,将云南禾本科植物格孢腔菌目的7株内生真菌鉴定归属于格孢腔菌目Pleosporales四绺孢球腔菌科Tetraplosphaeriaceae的四绺孢属Tetraploa和假四绺孢属Pseudotetraploa以及该目下的一个未定属genera incertae sedis。羧甲基纤维素钠培养基和愈创木酚培养基筛选发现四绺孢球腔菌科的2个菌株具有较强的纤维素酶和漆酶活性,而这个未定属的菌株仅具有较弱的纤维素酶活性、无漆酶活性,表明格孢腔菌目的2个内生真菌类群的纤维素和木质素降解能力不同。多重对应分析发现四绺孢球腔菌科真菌的属与寄主、分离来源和地理位置有关联,其中四绺孢属和假四绺孢属可在活的健康植物作为内生真菌存活,并在植物凋落物和土壤中分离得到,推测四绺孢属和假四绺孢属两属为内生和腐生双生态位真菌。因此,进一步深入探究四绺孢球腔菌科内生真菌参与的禾本科植物凋落物的分解将深化我们对禾本科植物内生真菌多样性和生态学功能的认识。  相似文献   

14.
Calotropis procera has many important medicinal properties with proven pharmacological potential. Some of these properties may be mediated by its fungal endophytes. This study analyzed, for the first time, the community of endophytic fungi of C. procera outside its region of origin. A total of 156 fungal isolates distributed across 19 taxa were obtained from 468 fragments of C. procera leaves at different stages of maturation. The rate of endophyte colonization increased with the leaf age/development. The dominant species of endophytic fungi of C. procera introduced in Northeast Brazil were different from those found in studies on the same species and other species of the same genus in native regions. The dominant endophyte was Phaeoramularia calotropidis (63.5 %), followed by Guignardia bidwellii (21.1 %). Six isolates of endophytic fungi showed antimicrobial activity against human pathogenic micro-organisms and one plant pathogenic fungus. The antibacterial activity was more intense than the antifungal activity. The endophytic Curvularia pallescens (URM 6048) stood out inhibited Gram-positive bacteria, Staphylococcus aureus, Streptococcus pyogenes, the plant pathogenic fungus Colletotrichum dematium. Ecological and biotechnological aspects of endophytic mycota are discussed.  相似文献   

15.
为了解喀斯特典型物种-小蓬竹根际土壤微生物及不同部位内生真菌多样性,采用沿等高线等距离取样法采集小蓬竹根际土壤及健康植株,通过可培养对根际土微生物及内生菌进行分离,利用分子技术对其进行鉴定,根据鉴定结果构建系统发育树,并计算小蓬竹根际土壤微生物和根茎叶内生真菌多样性。结果如下:(1)共从根际土壤、根、茎、叶分离得到139个真菌菌株,隶属于27属,其中根际土壤分离得到34个真菌菌株隶属于12属,根部分离得到的63个内生真菌菌株隶属于17个属,茎部分离得到的14个内生真菌菌株隶属于8个属,叶部分离得到28个内生真菌菌株隶属于9个属;(2)根际土壤共分离得到41株细菌菌株,隶属于7个属26个种,20株放线菌菌株,隶属于1属15种;从Shannon-Wiener多样性指数、均匀度指数、Simpson指数排序来看,真菌主要表现为根 > 根际土壤 > 茎 > 叶,细菌和放线菌多样性均较低。(3)按层次聚类分析可分别将真菌、细菌、放线菌聚为3支。小蓬竹根际土壤、根、茎和叶具有丰富的微生物多样性,不同部位菌群组成存在差异性(P<0.05),且存在以假单胞菌属、芽孢杆菌属等为优势属的抗盐耐旱菌群,这有助于揭示小蓬竹对喀斯特生境的适应性,以及为微生物-植物群落之间相互关系提供一定基础数据,为后期寻找小蓬竹相关耐性功能菌奠定基础。  相似文献   

16.
Foliar endophytic fungi are present in almost all vascular plants. The composition of endophyte communities varies among plant individuals. Likely, but understudied, sources of this variation are the species composition of the plant community and initial attacks by insect herbivores. We addressed these issues by characterizing fungal endophyte communities on leaves of chestnut (Castanea sativa) grown in pure vs. mixed stands. We used ITS metabarcoding methods to identify endophytic fungi associated with galls caused by the invasive gall wasp, Dryocosmus kuriphilus, and with surrounding chestnut leaf tissues. We found 1378 different OTUs. The richness, diversity and composition of endophyte communities differed between galls and surrounding leaf tissues but were independent of forest stand composition. Fungal endophyte richness was lower in galls than in surrounding leaf tissues. Most differences in the composition of fungal endophyte communities between galls and foliar tissues were due to OTU turnover. These results suggest that insect-induced galls provide a particular habitat condition for endophytic microorganisms, regardless of forest species composition. A better understanding of endophyte biology is important to improve their use as biocontrol agents of galling insects.  相似文献   

17.
The soil fungi in the pure stand of oak (Quercus petraea), beech (Fagus orientalis), and pine (Pinus nigra) were investigated by the dilution plate method at Yildiz Mountain in Thrace region. The mycobiota, as well as the number of isolates per plate, was determined at various soil depths. Principal component analysis of the soil profiles indicated that there was variation in mycobiota composition and the variation was attributed to differences among the ecosystems. When comparing conifer and hardwood soils, using Sorenson’s similarity index, fungal community composition corresponded more closely between the hardwood stands than with the conifer stand. Fungal community composition appears to be influenced by the organic compounds entering soil from plant litter.  相似文献   

18.
Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis) seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS) regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0%) and Basidiomycota (2.0%), including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp.), B34 (Curvularia sp.), B35 (undefined genus 1), B38 (Penicillium sp.) and zzz816 (Shiraia sp.) displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816) could produce hypocrellin A at high yield, which is significantly different from the other strains published.  相似文献   

19.
Fungal endophytes are micro-organisms that colonize healthy plant tissues without causing disease symptoms. They are described as plant growth and disease resistance promoters and have shown antimicrobial activity. The spatial-temporal distribution of endophytic communities in olive cultivars has been poorly explored. This study aims to investigate the richness and diversity of endophytic fungi in different seasons and sites, within the Alentejo region, Portugal. Additionally, and because the impact of some pathogenic fungi (e.g. Colletotrichum spp.) varies according to olive cultivars; three cultivars, Galega vulgar, Cobrançosa and Azeiteira, were sampled. 1868 fungal isolates were identified as belonging to 26 OTUs; 13 OTUs were identified to the genera level and 13 to species level. Cultivar Galega vulgar and season autumn showed significant higher values in terms of endophytic richness and diversity. At site level, Elvas showed the lowest fungal richness and diversity of fungal endophytes. This study reinforces the importance of exploring the combined spatio-temporal distribution of the endophytic biodiversity in different olive cultivars. Knowledge about endophytic communities may help to better understand their functions in plants hosts, such as their ecological dynamics with pathogenic fungi, which can be explored for their use as biocontrol agents.  相似文献   

20.
To clarify the effects of forest fragmentation and a change in tree species composition following urbanization on endophytic fungal communities, we isolated fungal endophytes from the foliage of nine tree species in suburban (Kashiwa City, Chiba) and rural (Mt. Wagakuni, Ibaraki; Mt. Takao, Tokyo) forests and compared the fungal communities between sites and host tree species. Host specificity was evaluated using the index of host specificity (Si), and the number of isolated species, total isolation frequency, and the diversity index were calculated. From just one to several host-specific species were recognized in all host tree species at all sites. The total isolation frequency of all fungal species on Quercus myrsinaefolia, Quercus serrata, and Chamaecyparis obtusa and the total isolation frequency of host-specific species on Q. myrsinaefolia, Q. serrata, and Eurya japonica were significantly lower in Kashiwa than in the rural forests. The similarity indices (nonmetric multidimensional scaling (NMS) and CMH) of endophytic communities among different tree species were higher in Kashiwa, as many tree species shared the same fungal species in the suburban forest. Endophytic fungi with a broad host range were grouped into four clusters suggesting their preference for conifer/broadleaves and evergreen/deciduous trees. Forest fragmentation and isolation by urbanization have been shown to cause the decline of host-specific fungal species and a decrease in β diversity of endophytic communities, i.e., endophytic communities associated with tree leaves in suburban forests were found to be depauperate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号