首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Neuroblastoma is a pediatric malignant tumor arising from the sympathetic nervous system. The patients with high-risk neuroblastomas frequently exhibit amplification and high expression of the MYCN gene, resulting in worse clinical outcomes. Vitamin K3 (VK3) is a synthetic VK-like compound that has been known to have antitumor activity against various types of cancers. In the present study, we have asked whether VK3 and its derivative, VK3-OH, could have the antitumor activity against neuroblastoma-derived cells. Based on our results, VK3-OH strongly inhibited cell proliferation and induced apoptotic cell death compared to VK3. Treatment of MYCN-driven neuroblastoma cells with VK3-OH potentiated tumor suppressor p53 accompanied by downregulation of anti-apoptotic Bcl-2 and Mcl-1. Interestingly, VK3-OH also suppressed the MYCN at mRNA and protein levels. Furthermore, we found downregulation of LIN28B following VK3-OH treatment in MYCN-amplified and overexpressed neuroblastoma cells. Collectively, our current findings strongly suggest that VK3-OH provides a potential therapeutic strategy for patients with MYCN-driven neuroblastomas.  相似文献   

2.
3.
The rearrangement of pre-existing genes has long been thought of as the major mode of new gene generation. Recently, de novo gene birth from non-genic DNA was found to be an alternative mechanism to generate novel protein-coding genes. However, its functional role in human disease remains largely unknown. Here we show that NCYM, a cis-antisense gene of the MYCN oncogene, initially thought to be a large non-coding RNA, encodes a de novo evolved protein regulating the pathogenesis of human cancers, particularly neuroblastoma. The NCYM gene is evolutionally conserved only in the taxonomic group containing humans and chimpanzees. In primary human neuroblastomas, NCYM is 100% co-amplified and co-expressed with MYCN, and NCYM mRNA expression is associated with poor clinical outcome. MYCN directly transactivates both NCYM and MYCN mRNA, whereas NCYM stabilizes MYCN protein by inhibiting the activity of GSK3β, a kinase that promotes MYCN degradation. In contrast to MYCN transgenic mice, neuroblastomas in MYCN/NCYM double transgenic mice were frequently accompanied by distant metastases, behavior reminiscent of human neuroblastomas with MYCN amplification. The NCYM protein also interacts with GSK3β, thereby stabilizing the MYCN protein in the tumors of the MYCN/NCYM double transgenic mice. Thus, these results suggest that GSK3β inhibition by NCYM stabilizes the MYCN protein both in vitro and in vivo. Furthermore, the survival of MYCN transgenic mice bearing neuroblastoma was improved by treatment with NVP-BEZ235, a dual PI3K/mTOR inhibitor shown to destabilize MYCN via GSK3β activation. In contrast, tumors caused in MYCN/NCYM double transgenic mice showed chemo-resistance to the drug. Collectively, our results show that NCYM is the first de novo evolved protein known to act as an oncopromoting factor in human cancer, and suggest that de novo evolved proteins may functionally characterize human disease.  相似文献   

4.

Background

Somatically acquired genomic alterations with MYCN amplification (MNA) are key features of neuroblastoma (NB), the most common extra-cranial malignant tumour of childhood. Little is known about the frequency, clinical characteristics and outcome of NBs harbouring genomic amplification(s) distinct from MYCN.

Methods

Genomic profiles of 1100 NBs from French centres studied by array-CGH were re-examined specifically to identify regional amplifications. Patients were included if amplifications distinct from the MYCN locus were seen. A subset of NBs treated at Institut Curie and harbouring MNA as determined by array-CGH without other amplification was also studied. Clinical and histology data were retrospectively collected.

Results

In total, 56 patients were included and categorised into 3 groups. Group 1 (n = 8) presented regional amplification(s) without MNA. Locus 12q13-14 was a recurrent amplified region (4/8 cases). This group was heterogeneous in terms of INSS stages, primary localisations and histology, with atypical clinical features. Group 2 (n = 26) had MNA as well as other regional amplifications. These patients shared clinical features of those of a group of NBs MYCN amplified (Group 3, n = 22). Overall survival for group 1 was better than that of groups 2 and 3 (5 year OS: 87.5%±11% vs 34.9%±7%, log-rank p<0.05).

Conclusion

NBs harbouring regional amplification(s) without MNA are rare and seem to show atypical features in clinical presentation and genomic profile. Further high resolution genetic explorations are justified in this heterogeneous group, especially when considering these alterations as predictive markers for targeted therapy.  相似文献   

5.
6.

Background/Aim

Genetic analysis in neuroblastoma has identified the profound influence of MYCN amplification and 11q deletion in patients’ prognosis. These two features of high-risk neuroblastoma usually occur as mutually exclusive genetic markers, although in rare cases both are present in the same tumor. The purpose of this study was to characterize the genetic profile of these uncommon neuroblastomas harboring both these high-risk features.

Methods

We selected 18 neuroblastomas with MNA plus 11q loss detected by FISH. Chromosomal aberrations were analyzed using Multiplex Ligation-dependent Probe Amplification and Single Nucleotide Polymorphism array techniques.

Results and Conclusion

This group of tumors has approximately the same high frequency of aberrations as found earlier for 11q deleted tumors. In some cases, DNA instability generates genetic heterogeneity, and must be taken into account in routine genetic diagnosis.  相似文献   

7.
We evaluated the expression of the inhibitor-of-apoptosis protein (IAP) livin (BIRC7) in 59 cases of neuroblastoma (NBL) by quantitative RT-PCR. We also examined the role of livin in protecting tumor cells from chemotherapy drugs. Livin expression varied significantly among tumors. High levels of expression were observed in 17 of 39 patients with advanced stages (stages 3 and 4) and 6 of 20 patients with localized stages (stages 1 and 2). Livin-transfected, MYCN-amplified NBL cells showed increased resistance to doxorubicin and etoposide. Conversely, livin knockdown with siRNA enhanced spontaneous and drug-induced apoptosis in NBL cells. Multivariate analysis of prognostic factors showed that high livin expression worsened prognosis for patients with MYCN-amplified tumors. Our data suggest that (i) livin is frequently expressed in NBL and protects tumor cells with amplified MYCN oncogene from genotoxic agents; (ii) the antiapoptotic effect of livin in NBL is blocked by siRNA; (iii) in the sample studied, high livin expression enhanced the adverse prognostic impact of MYCN amplification. These findings suggest that livin may contribute to drug resistance in NBL.  相似文献   

8.

Background

Neuroblastoma is a very heterogeneous pediatric tumor of the sympathetic nervous system showing clinically significant patterns of genetic alterations. Favorable tumors usually have near-triploid karyotypes with few structural rearrangements. Aggressive stage 4 tumors often have near-diploid or near-tetraploid karyotypes and structural rearrangements. Whole genome approaches for analysis of genome-wide copy number have been used to analyze chromosomal abnormalities in tumor samples. We have used array-based copy number analysis using oligonucleotide single nucleotide polymorphisms (SNP) arrays to analyze the chromosomal structure of a large number of neuroblastoma tumors of different clinical and biological subsets.

Results

Ninety-two neuroblastoma tumors were analyzed with 50 K and/or 250 K SNP arrays from Affymetrix, using CNAG3.0 software. Thirty percent of the tumors harbored 1p deletion, 22% deletion of 11q, 26% had MYCN amplification and 45% 17q gain. Most of the tumors with 1p deletion were found among those with MYCN amplification. Loss of 11q was most commonly seen in tumors without MYCN amplification. In the case of MYCN amplification, two types were identified. One type displayed simple continuous amplicons; the other type harbored more complex rearrangements. MYCN was the only common gene in all cases with amplification. Complex amplification on chromosome 12 was detected in two tumors and three different overlapping regions of amplification were identified. Two regions with homozygous deletions, four cases with CDKN2A deletions in 9p and one case with deletion on 3p (the gene RBMS3) were also detected in the tumors.

Conclusion

SNP arrays provide useful tools for high-resolution characterization of significant chromosomal rearrangements in neuroblastoma tumors. The mapping arrays from Affymetrix provide both copy number and allele-specific information at a resolution of 10–12 kb. Chromosome 9p, especially the gene CDKN2A, is subject to homozygous (four cases) and heterozygous deletions (five cases) in neuroblastoma tumors.
  相似文献   

9.
BackgroundNon-Hodgkin''s lymphoma (NHL) development in Sjögren’s syndrome (SS) remains a potentially lethal complication and efforts should focus on the identification of predictors that could aid in appropriate therapeutic decisions.MethodsIn order to identify potential prognostic factors for outcome in SS-associated NHL, we retrospectively analyzed a cohort of 77 patients, diagnosed with NHL according to WHO classification criteria and meeting the American-European Consensus Classification (AECC) criteria for SS and examined the effect of SS-activity (defined as the EULAR SS disease activity index-ESSDAI) in the prognosis of SS-related NHLs, as defined in terms of overall and event-free survivals (OS and EFS). An event was defined as lymphoma relapse, treatment failure, disease progression, histological transformation or death. The effect of NHL clinical and laboratory characteristics was also investigated.ResultsMALT lymphomas constituted the majority (66.2%) of lymphomas. During the follow-up (median = 57.93 months), the 5-year OS was 90.91% (95% CI: 82.14–95.80%) and the EFS was 77.92% (95% CI: 67.37–85.82%). Patients with high ESSDAI score at lymphoma diagnosis had a greater risk for death (OR = 5.241, 95% CI: 1.034–26.568) or for event (OR = 4.317, 95% CI: 1.146–9.699, p = 0.008). These patients had also significantly worse EFS (HR = 4.541, 95% CI: 1.772–11.637) and OS (HR = 5.946, 95% CI: 1.259–28.077). In addition, post-chemotherapy ESSDAI improvement was significantly lower in patients who had experienced an event (p = 0.005). An unfavorable International prognostic index (IPI) score (high-intermediate/high) was associated with high risk of death and event (OR = 13.867, 95% CI: 2.656–72.387 and OR = 12.589, 95% CI: 3.911–40.526, respectively), worse EFS (log-rank p<0.001, HR = 8.718, 95% CI: 3.477–21.858), as well as with worse OS (log-rank p<0.001, HR = 11.414, 95% CI: 2.414–53.974). After adjustment for identified risk factors, IPI score retained a significant prognostic role following by a strong effect of ESSDAI in survival outcomes.ConclusionsAt the point of NHL diagnosis, IPI and ESSDAI might be proved useful predictive tools in SS-associated lymphoma prognosis, directing to a more patient-tailored approach.  相似文献   

10.

Background

Recent studies have reported the prognostic value of tissue-associated magrophages (TAMs) in classical Hodgkin lymphoma (cHL). In addition, TAMs are implicated in the tumor angiogenesis. In this study, we examined the prognostic relevance of TAMs in relation to vascular endothelial growth factor (VEGF) expression and angiogenesis in uniformly treated cases of cHL.

Methods

Diagnostic tissue from 116 patients with ABVD-treated cHL was evaluated retrospectively by immunohistochemical analysis for CD68, CD163 and VEGF expression and for CD31 expression as a measure of microvessel density (MVD).

Results

High CD163 expression (≥35% of cellularity) correlated with VEGF expression (Pearson’s Chi-square test, P = 0.008) and MVD (Spearman correlation coefficient 0.310, P<0.001). High CD163 expression was associated with inferior event-free survival (EFS, P = 0.005) and overall survival (OS, P<0.001) in univariate analysis. In multivariate analysis, high CD163 expression was strongly associated with inferior EFS (P = 0.043) and OS (P = 0.008). Patients with high MVD had a lower OS than those with low MVD, but the difference was not significant (P = 0.071, respectively). While high expression of CD68 was also associated with inferior EFS (P = 0.007), it showed no correlation with VEGF or MVD.

Conclusions

Our data confirms that CD163 expression provides independent prognostic information in cHL. The correlation of CD163 with VEGF expression and MVD suggests the role of CD163-positive cells in tumor angiogenesis of cHL.  相似文献   

11.
12.

Background

Neuroblastoma is a malignant childhood tumour arising from precursor cells of the sympathetic nervous system. Genomic amplification of the MYCN oncogene is associated with dismal prognosis. For this group of high-risk tumours, the induction of tumour cell differentiation is part of current treatment protocols. MicroRNAs (miRNAs) are small non-coding RNA molecules that effectively reduce the translation of target mRNAs. MiRNAs play an important role in cell proliferation, apoptosis, differentiation and cancer. In this study, we investigated the role of N-myc on miRNA expression in MYCN-amplified neuroblastoma. We performed a miRNA profiling study on SK-N-BE (2) cells, and determined differentially expressed miRNAs during differentiation initiated by MYCN knockdown, using anti-MYCN short-hairpin RNA (shRNA) technology.

Results

Microarray analyses revealed 23 miRNAs differentially expressed during the MYCN knockdown-mediated neuronal differentiation of MNA neuroblastoma cells. The expression changes were bidirectional, with 11 and 12 miRNAs being up- and down-regulated, respectively. Among the down-regulated miRNAs, we found several members of the mir-17 family of miRNAs. Mir-21, an established oncomir in a variety of cancer types, became strongly up-regulated upon MYCN knockdown and the subsequent differentiation.Neither overexpression of mir-21 in the high-MYCN neuroblastoma cells, nor repression of increased mir-21 levels during MYCN knockdown-mediated differentiation had any significant effects on cell differentiation or proliferation.

Conclusions

We describe a subset of miRNAs that were altered during the N-myc deprived differentiation of MYCN-amplified neuroblastoma cells. In this context, N-myc acts as both an activator and suppressor of miRNA expression. Mir-21 was up-regulated during cell differentiation, but inhibition of mir-21 did not prevent this process. We were unable to establish a role for this miRNA during differentiation and proliferation of the two neuroblastoma cell lines used in this study.  相似文献   

13.
BackgroundOutcome of childhood acute lymphoblastic leukemia (ALL) in low- and middle-income countries is lagging in many aspects including diagnosis, risk stratification, access to treatment and supportive care.Objectiveto report the outcome of childhood ALL at Ain Shams University Children’s Hospitals with the use of risk-based protocols before the implementation of minimal residual disease technology and to evaluate the use of double delayed intensification (DDI) in standard risk patients.MethodsTwo hundred and twenty patients with ALL diagnosed between January 2005 and December 2014 were included in the study. Patients were treated according to a modified CCG 1991 and 1961 for standard and high risk respectively. Patients were stratified into three risk groups: standard risk (SR), high-risk standard arm (HR-SA), and high-risk augmented arm (HR-AA).ResultsAmong the whole cohort, the 10-year event-free survival (EFS) and overall survival (OS) were 78.1% and 84.3% respectively. Patients with Pre-B immunophenotype (IPT) had significantly better outcome than T-cell IPT (EFS 82.0% versus 58.6%, p < 0.001; OS 86.9% versus 69%, p = 0.003 for Pre-B and T-cell respectively). Among the SR group, patients treated with single delayed intensification (SDI) had comparable EFS and OS rates when compared to patients treated with DDI with EFS 82.4% versus 87.5%, p = 0.825 and OS 88.2% versus 93.5%, p = 0.638 for SDI and DDI groups, respectively.ConclusionThe use of risk-based protocol with simple laboratory techniques resulted in acceptable survival outcome in resource limited settings. The use of double delayed intensification showed no survival advantage in patients with standard risk.  相似文献   

14.
15.
Acute myeloid leukemia (AML) is a heterogeneous disease with unfavorable outcomes. MicroRNAs (miRNAs) are important regulators and prognostic factors involved in AML. To determine the clinical role of miR-338 in AML, a total of 164 adults with de novo AML were collected. These patients were classified into a chemotherapy group and an allogeneic hematopoietic stem cell transplantation (allo-HSCT) group according to the clinical treatment, and then each group was divided into two subgroups based on the median miR-338 expression values. We found that upregulated miR-338 positively correlates with higher frequencies of complex karyotype, RUNX1 mutation, and poor risk status. In the chemotherapy group, high expression of miR-338 was independently associated with shorter EFS and OS. However, no significant differences were observed between the two subgroups within the allo-HSCT group. We also divided all patients into two groups according to the median miR-338 expression values of the whole cohort. In the miR-338 high expression group, patients receiving allo-HSCT had longer OS and EFS than those receiving chemotherapy only. In contrast, patients receiving different therapies had similar OS and EFS in the miR-338 low expression group. Our study suggests that high expression of miR-338 is an adverse prognostic biomarker in patients with AML undergoing chemotherapy and may guide treatment decisions for AML. Furthermore, allo-HSCT could significantly overcome the negative effect of high miR-338 expression, but it seemed to be unbeneficial and unnecessary for low miR-338 expressions.  相似文献   

16.
MYCN amplification is tightly associated with the poor prognosis of pediatric neuroblastoma (NB). The regulation of NB cell death by MYCN represents an important aspect, as it directly contributes to tumor progression and therapeutic resistance. However, the relationship between MYCN and cell death remains elusive. Ferroptosis is a newly identified cell death mode featured by lipid peroxide accumulation that can be attenuated by GPX4, yet whether and how MYCN regulates ferroptosis are not fully understood. Here, we report that MYCN-amplified NB cells are sensitive to GPX4-targeting ferroptosis inducers. Mechanically, MYCN expression reprograms the cellular iron metabolism by upregulating the expression of TFRC, which encodes transferrin receptor 1 as a key iron transporter on the cell membrane. Further, the increased iron uptake promotes the accumulation of labile iron pool, leading to enhanced lipid peroxide production. Consistently, TFRC overexpression in NB cells also induces selective sensitivity to GPX4 inhibition and ferroptosis. Moreover, we found that MYCN fails to alter the general lipid metabolism and the amount of cystine imported by System Xc(−) for glutathione synthesis, both of which contribute to ferroptosis in alternative contexts. In conclusion, NB cells harboring MYCN amplification are prone to undergo ferroptosis conferred by TFRC upregulation, suggesting that GPX4-targeting ferroptosis inducers or TFRC agonists can be potential strategies in treating MYCN-amplified NB.Subject terms: Cancer metabolism, Cell death  相似文献   

17.
18.
Using 3D telomere quantitative fluorescence in situ hybridization, we determined the 3D telomere organization of 74 neuroblastoma tissue samples. Hierarchical cluster analysis of the measured telomere parameters identified three subgroups from our patient cohort. These subgroups have unique telomere profiles based on telomere length and nuclear architecture. Subgroups with higher levels of telomere dysfunction were comprised of tumors with greater numbers of telomeres, telomeric aggregates, and short telomeres (P < .0001). Tumors with greater telomere dysfunction were associated with unfavorable tumor characteristics (greater age at diagnosis, unfavorable histology, higher stage of disease, MYCN amplification, and higher MYCN expression) and poor prognostic risk (P < .001). Subgroups with greater telomere dysfunction also had higher intratumor heterogeneity. MYCN overexpression in two neuroblastoma cell lines with constitutively low MYCN expression induced changes in their telomere profile that were consistent with increased telomere dysfunction; this illustrates a functional relationship between MYCN and 3D telomere organization. This study demonstrates the ability to classify neuroblastomas based on the level of telomere dysfunction, which is a novel approach for this cancer.  相似文献   

19.
The DNA sequence of the 5.7 kb plasmid pHH9 containing the replicon region of the 150 kb plasmid pHH1 from Halobacterium salinarium was determined. The minimal region necessary for stable plasmid maintenance lies within a 2.9 kb fragment, as defined by transformation experiments. The DNA sequence contained two open reading frames arranged in opposite orientations, separated by an unusually high AT-rich (60–70% A + T) sequence of 350 bp. All H. salinarium strains (H. halobium, H. cutirubrum) investigated harbour endogenous plasmids containing the pHH1 replicon; however, these pHH1-type plasmids differ by insertions and deletions. Adjacent to the replicon, and separated by a copy of each of the insertion elements ISH27 and ISH26, is the 9 kb p-vac region required for gas vesicle synthesis. Analysis of these and other ISH element copies in pHH1 revealed that most of them lack the target DNA duplication usually found with recently transposed ISH elements. These results underline the plasticity of plasmid pHH1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号