首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coral reef ecosystems are threatened by both climate change and direct anthropogenic stress. Climate change will alter the physico-chemical environment that reefs currently occupy, leaving only limited regions that are conducive to reef habitation. Identifying these regions early may aid conservation efforts and inform decisions to transplant particular coral species or groups. Here a species distribution model (Maxent) is used to describe habitat suitable for coral reef growth. Two climate change scenarios (RCP4.5, RCP8.5) from the National Center for Atmospheric Research’s Community Earth System Model were used with Maxent to determine environmental suitability for corals (order Scleractinia). Environmental input variables best at representing the limits of suitable reef growth regions were isolated using a principal component analysis. Climate-driven changes in suitable habitat depend strongly on the unique region of reefs used to train Maxent. Increased global habitat loss was predicted in both climate projections through the 21st century. A maximum habitat loss of 43% by 2100 was predicted in RCP4.5 and 82% in RCP8.5. When the model is trained solely with environmental data from the Caribbean/Atlantic, 83% of global habitat was lost by 2100 for RCP4.5 and 88% was lost for RCP8.5. Similarly, global runs trained only with Pacific Ocean reefs estimated that 60% of suitable habitat would be lost by 2100 in RCP4.5 and 90% in RCP8.5. When Maxent was trained solely with Indian Ocean reefs, suitable habitat worldwide increased by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. Global habitat loss by 2100 was just 10% for RCP8.5. This projection suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future projections of worldwide conditions. Indian Ocean reefs may thus be ideal candidate regions from which to select the best strands of coral for potential re-seeding efforts.  相似文献   

2.
Driven by climate change, marine biodiversity is undergoing a phase of rapid change that has proven to be even faster than changes observed in terrestrial ecosystems. Understanding how these changes in species composition will affect future marine life is crucial for conservation management, especially due to increasing demands for marine natural resources. Here, we analyse predictions of a multiparameter habitat suitability model covering the global projected ranges of >33,500 marine species from climate model projections under three CO2 emission scenarios (RCP2.6, RCP4.5, RCP8.5) up to the year 2100. Our results show that the core habitat area will decline for many species, resulting in a net loss of 50% of the core habitat area for almost half of all marine species in 2100 under the high-emission scenario RCP8.5. As an additional consequence of the continuing distributional reorganization of marine life, gaps around the equator will appear for 8% (RCP2.6), 24% (RCP4.5), and 88% (RCP8.5) of marine species with cross-equatorial ranges. For many more species, continuous distributional ranges will be disrupted, thus reducing effective population size. In addition, high invasion rates in higher latitudes and polar regions will lead to substantial changes in the ecosystem and food web structure, particularly regarding the introduction of new predators. Overall, our study highlights that the degree of spatial and structural reorganization of marine life with ensued consequences for ecosystem functionality and conservation efforts will critically depend on the realized greenhouse gas emission pathway.  相似文献   

3.
Coral bleaching events threaten coral reef habitats globally and cause severe declines of local biodiversity and productivity. Related to high sea surface temperatures (SST), bleaching events are expected to increase as a consequence of future global warming. However, response to climate change is still uncertain as future low‐latitude climatic conditions have no present‐day analogue. Sea surface temperatures during the Eocene epoch were warmer than forecasted changes for the coming century, and distributions of corals during the Eocene may help to inform models forecasting the future of coral reefs. We coupled contemporary and Eocene coral occurrences with information on their respective climatic conditions to model the thermal niche of coral reefs and its potential response to projected climate change. We found that under the RCP8.5 climate change scenario, the global suitability for coral reefs may increase up to 16% by 2100, mostly due to improved suitability of higher latitudes. In contrast, in its current range, coral reef suitability may decrease up to 46% by 2100. Reduction in thermal suitability will be most severe in biodiversity hotspots, especially in the Indo‐Australian Archipelago. Our results suggest that many contemporary hotspots for coral reefs, including those that have been refugia in the past, spatially mismatch with future suitable areas for coral reefs posing challenges to conservation actions under climate change.  相似文献   

4.
Distributions of potential ranges of plant species are not yet fully known in Ethiopia where high climatic variability and vegetation types are found. This study was undertaken to predict distributions of suitable habitats of Pouteria adolfi-friederici and Prunus africana under current and two future climate scenarios (RCP 4.5 and RCP 8.5 in 2050 and 2070) in Ethiopia. Eleven environmental variables with less correlation coefficients (r < 0.7) were used to make the prediction. Shifting in extents of habitat suitability and effects of elevation, solar radiation and topographic position in relation to the current and future climatic scenarios were statistically analysed using independent t-test and linear model. We found decreasing area of highly suitable habitat from 0.51% to 0.46%, 0.36% and 0.33%, 0.24% for Prunus africana and 1.13% to 1.02%, 0.77% and 0.76%, 0.60% for Pouteria adolfi-friederici, under RCP 4.5 and RCP 8.5 by 2050 and 2070 respectively. Moist and dry afromontane forests are identified as the most suitable habitat for both species. Overall, our results suggest that climate change can promote dynamic suitable habitat niches under different future climate scenarios. Therefore, biodiversity conservation strategies should take into account habitat suitability dynamics issues and identify where to conserve species before implementing conservation practices.  相似文献   

5.
The Alpine marmot (Marmota marmota) is a social mammal living in mountainous grassland areas and has the particularity to hibernate in winter. Recent studies on a population in the French Alps found that climate change is affecting Alpine marmot population dynamics and might impact their overall distribution in the future. Using Species Distribution Models (SDMs), the effect of climate change on Alpine marmot's future distribution was investigated at a local scale, in the western part of the Pyrenean massif (New-Aquitaine region, France). This scale was chosen as an appropriate action scale for the conservation strategy for the species. Three climatic scenarios were used (RCP 2.6, RCP 4.5, and RCP 8.5) over three future 30-year periods (2021–2050, 2040–2070, 2071–2100) to predict the short- to long-term potential distribution of the target species. The results are consistent with naturalistic knowledge of the species´ ecological needs in terms of variable importance and response type. Mean maximum temperature in winter, standard-deviation of daily temperature in winter, along with the median rainfall amount in summer were the three most important climatic variables. Predictions under the two most pessimistic climate scenarios showed potential large habitat loss. In the long term, for RCP 4.5, an estimated habitat loss of 18% was predicted. In the case of RCP 8.5, a higher impact was predicted, with a 54% habitat loss. Our results show that high impact due to climate change can be expected at a long term. In addition, if winter climatic conditions are important for marmot survival through hibernation, drought in summer might be one of the drivers of future population dynamic and distribution. Our findings can be applied for other species living in grassland mountainous environments and for which access to food resources in summer is essential, facilitating the conservation of target areas.  相似文献   

6.
Understanding how environmental and climate change can alter habitat overlap of marine predators has great value for the management and conservation of marine ecosystems. Here, we estimated spatiotemporal changes in habitat suitability and inter‐specific overlap among three marine predators: Baltic gray seals (Halichoerus grypus), harbor seals (Phoca vitulina), and harbor porpoises (Phocoena phocoena) under contemporary and future conditions. Location data (>200 tagged individuals) were collected in the southwestern region of the Baltic Sea; one of the fastest‐warming semi‐enclosed seas in the world. We used the maximum entropy (MaxEnt) algorithm to estimate changes in total area size and overlap of species‐specific habitat suitability between 1997–2020 and 2091–2100. Predictor variables included environmental and climate‐sensitive oceanographic conditions in the area. Sea‐level rise, sea surface temperature, and salinity data were taken from representative concentration pathways [RCPs] scenarios 6.0 and 8.5 to forecast potential climate change effects. Model output suggested that habitat suitability of Baltic gray seals will decline over space and time, driven by changes in sea surface salinity and a loss of currently available haulout sites following sea‐level rise in the future. A similar, although weaker, effect was observed for harbor seals, while suitability of habitat for harbor porpoises was predicted to increase slightly over space and time. Inter‐specific overlap in highly suitable habitats was also predicted to increase slightly under RCP scenario 6.0 when compared to contemporary conditions, but to disappear under RCP scenario 8.5. Our study suggests that marine predators in the southwestern Baltic Sea may respond differently to future climatic conditions, leading to divergent shifts in habitat suitability that are likely to decrease inter‐specific overlap over time and space. We conclude that climate change can lead to a marked redistribution of area use by marine predators in the region, which may influence local food‐web dynamics and ecosystem functioning.  相似文献   

7.
Two ecologically and economically important, and threatened Dipterocarp trees Sal (Shorea robusta) and Garjan (Dipterocarpus turbinatus) form mono‐specific canopies in dry deciduous, moist deciduous, evergreen, and semievergreen forests across South Asia and continental parts of Southeast Asia. They provide valuable timber and play an important role in the economy of many Asian countries. However, both Dipterocarp trees are threatened by continuing forest clearing, habitat alteration, and global climate change. While climatic regimes in the Asian tropics are changing, research on climate change‐driven shifts in the distribution of tropical Asian trees is limited. We applied a bioclimatic modeling approach to these two Dipterocarp trees Sal and Garjan. We used presence‐only records for the tree species, five bioclimatic variables, and selected two climatic scenarios (RCP4.5: an optimistic scenario and RCP8.5: a pessimistic scenario) and three global climate models (GCMs) to encompass the full range of variation in the models. We modeled climate space suitability for both species, projected to 2070, using a climate envelope modeling tool “MaxEnt” (the maximum entropy algorithm). Annual precipitation was the key bioclimatic variable in all GCMs for explaining the current and future distributions of Sal and Garjan (Sal: 49.97 ± 1.33; Garjan: 37.63 ± 1.19). Our models predict that suitable climate space for Sal will decline by 24% and 34% (the mean of the three GCMs) by 2070 under RCP4.5 and RCP8.5, respectively. In contrast, the consequences of imminent climate change appear less severe for Garjan, with a decline of 17% and 27% under RCP4.5 and RCP8.5, respectively. The findings of this study can be used to set conservation guidelines for Sal and Garjan by identifying vulnerable habitats in the region. In addition, the natural habitats of Sal and Garjan can be categorized as low to high risk under changing climates where artificial regeneration should be undertaken for forest restoration.  相似文献   

8.
A rapid increase in sea-level rise is generating vertical accommodation space on modern coral reefs. Yet increases in sea-surface temperatures (SSTs) are reducing the capacity of coral reefs to keep up with sea-level rise. We use ensemble species distribution models of four coral species (Porites rus, Porites lobata, Acropora hyacinthus and Acropora digitifera) to gauge potential geographic differences in gross carbonate production. Net carbonate production was estimated by considering erosional rates of ocean acidification, increasing cyclone intensity, local pollution, fishing pressure and the projected burdens of increases in SSTs (under Representative Concentration Pathways (RCPs) 4.5, 6.0 and 8.5) through to the year 2100. Our models predict that only 4 ± 0.1% (~60 000 km2) of Indo-Pacific coral reefs are projected to keep up with sea-level rise by the year 2100 under RCP 8.5 – most of which will be located near the Equator. However, with drastic reductions in emissions (under RCPs 4.5 and 6.0 Wm−2), we predict that 15 ± 0.3% (~250 000 km2) (under RCP 4.5 Wm−2) and 12 ± 0.7% (~200 000 km2) (under RCP 6.0 Wm−2) of Indo-Pacific coral reefs, have the potential to keep up with sea-level rise by the year 2100. Yet the burdens of fishing pressure and its cascading effects are projected to be responsible for substantial reef erosion, nearly halving the number of reefs able to keep up with sea-level rise. If action is taken immediately and emissions are drastically reduced to RCPs 4.5 or 6.0 Wm−2, and reef management reduces the burdens of local pollution and fishing pressure, then our model predicts that 21–27% (~350 000–470 000 km2) of Indo-Pacific coral reefs – most of which will be located near the Equator – would have the potential to keep up with sea-level rise by the year 2100.  相似文献   

9.
Termites are ubiquitous insects in tropical, subtropical, and warm temperate regions and play an important role in ecosystems. Several termite species are also significant economic pests, mainly in urban areas where they attack human‐made structures, but also in natural forest habitats. Worldwide, approximately 28 termite species are considered invasive and have spread beyond their native ranges, often with significant economic consequences. We used predictive climate modeling to provide the first global risk assessment for 13 of the world's most invasive termites. We modeled the future distribution of 13 of the most serious invasive termite species, using two different Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5, and two projection years (2050 and 2070). Our results show that all but one termite species are expected to significantly increase in their global distribution, irrespective of the climatic scenario and year. The range shifts by species (shift vectors) revealed a complex pattern of distributional changes across latitudes rather than simple poleward expansion. Mapping of potential invasion hotspots in 2050 under the RCP 4.5 scenario revealed that the most suitable areas are located in the tropics. Substantial parts of all continents had suitable environmental conditions for more than four species simultaneously. Mapping of changes in the number of species revealed that areas that lose many species (e.g., parts of South America) are those that were previously very species‐rich, contrary to regions such as Europe that were overall not among the most important invasion hotspots, but that showed a great increase in the number of potential invaders. The substantial economic and ecological damage caused by invasive termites is likely to increase in response to climate change, increased urbanization, and accelerating economic globalization, acting singly or interactively.  相似文献   

10.
In the past three decades, our global climate has been experiencing unprecedented warming. This warming has and will continue to significantly influence the structure and function of forest ecosystems. While studies have been conducted to explore the possible responses of forest landscapes to future climate change, the representative concentration pathways (RCPs) scenarios under the framework of the Coupled Model Intercomparison Project Phase 5 (CMIP5) have not been widely used in quantitative modeling research of forest landscapes. We used LANDIS‐II, a forest dynamic landscape model, coupled with a forest ecosystem process model (PnET‐II), to simulate spatial interactions and ecological succession processes under RCP scenarios, RCP2.6, RCP4.5 and RCP8.5, respectively. We also modeled a control scenario of extrapolating current climate conditions to examine changes in distribution and aboveground biomass (AGB) among five different forest types for the period of 2010–2100 in Taihe County in southern China, where subtropical coniferous plantations dominate. The results of the simulation show that climate change will significantly influence forest distribution and AGB. (i) Evergreen broad‐leaved forests will expand into Chinese fir and Chinese weeping cypress forests. The area percentages of evergreen broad‐leaved forests under RCP2.6, RCP4.5, RCP8.5 and the control scenarios account for 18.25%, 18.71%, 18.85% and 17.46% of total forest area, respectively. (ii) The total AGB under RCP4.5 will reach its highest level by the year 2100. Compared with the control scenarios, the total AGB under RCP2.6, RCP4.5 and RCP8.5 increases by 24.1%, 64.2% and 29.8%, respectively. (iii) The forest total AGB increases rapidly at first and then decreases slowly on the temporal dimension. (iv) Even though the fluctuation patterns of total AGB will remain consistent under various future climatic scenarios, there will be certain responsive differences among various forest types.  相似文献   

11.
New World mangrove trees are foundation species, and their range is predicted to expand northward with climate change. Foundation species are commonly prioritized for conservation, with the goal of preserving the entire community that depends on them. However, no studies have explicitly investigated whether mangrove-dependent species' ranges will track the northward expansion of New World mangrove forests. We use the mangrove rivulus fish, Kryptolebias marmoratus, to investigate shifts in habitat suitability in response to various climate change scenarios (Representative Concentration Pathways 2.6, 4.5, 6.0, and 8.5). Niche models for coastal species focus on traditional climatic variables (e.g., precipitation, temperature) even though coastal habitats also are directly influenced by marine variables (e.g., sea surface salinity). We employ a novel data integration method that combines marine and climatic variables, and that accounts for model selection uncertainty using model averaging to provide robust estimates of habitat suitability. Contrary to expectation, suitability of rivulus habitat is predicted to increase in the south and decrease or remain unchanged in the north across all climate change scenarios. Thus, rivulus might experience range contraction, not expansion. Habitat became more suitable with increased salinity of the saltiest month and precipitation of the driest quarter. In laboratory settings, rivulus have higher survival, reproductive success, and growth rates in low salinities. This discrepancy suggests that some combination of the responses of rivulus and its competitors to environmental change will restrict rivulus to habitats that laboratory experiments consider suboptimal. Our models suggest that focusing conservation decisions on foundation species could overestimate habitat availability and resilience of affiliated communities while simultaneously underestimating species declines and extinction risks.  相似文献   

12.
Climate change has caused shifts in species’ ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below) are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1) identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2) predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77). Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and subalpine ecosystems in the Korean Peninsula.  相似文献   

13.
范泽孟  范斌 《生态学报》2019,39(14):5028-5039
欧亚大陆复杂多样的植被生态系统在全球气候变化的驱动下,其时空分布格局将发生系列的偏移变化,进而对欧亚大陆"一带一路"沿线国家和地区的生态环境产生重要影响。如何从全球气候变化驱动的角度来实现欧亚大陆植被生态系统时空偏移趋势的模拟分析,已成为"一带一路"沿线国家和地区生态环境研究的热点科学问题之一。在对HLZ生态系统模型进行改进和构建植被生态系统平均中心时空偏移分析模型的基础上,基于欧亚大陆的气候观测数据(1981—2010年)和CMIP5 RCP2.6、RCP4.5和RCP8.5三种情景数据(2011—2100年),实现欧亚大陆植被生态系统平均中心时空偏移趋势的模拟分析。结果表明:欧亚大陆植被生态系统平均中心主要分布在欧亚大陆的中部和南部地区;3种气候情景下,欧亚大陆的亚热带干旱森林、暖温带湿润森林、亚热带有刺疏林、亚热带潮湿森林、冷温带潮湿森林、寒温带湿润森林、冷温带湿润森林、亚热带湿润森林、暖温带干旱森林、亚极地/高山湿润苔原和极地/冰原等植被生态系统的平均中心偏移幅度大于其他植被生态系统类型;欧亚大陆植被生态系统在RCP8.5情景下的植被生态系统平均中心偏移幅度大于其他两种情景;在2011—2100年期间,3种气候变化情景下,欧亚大陆植被生态系统平均中心整体上将呈向北偏移的变化趋势。  相似文献   

14.

Mapping the distribution of invasive species under current and future climate conditions is crucial to implement sustainable and effective conservation strategies. Several studies showed how invasive species may benefit from climate change fostering their invasion rate and, consequently, affecting the native species community. In the Canary Islands and on Tenerife in particular, previous research mostly focused on climate change impacts on the native communities, whereas less attention has been paid on alien species distribution under climate change scenarios. In this study, we modelled the habitat distribution of Pennisetum setaceum, one of the most invasive alien species on Tenerife. In addition, we described the species’ potential distribution shift in the light of two climate change scenarios (RCP2.6, RCP8.5), highlighting the areas that should be prioritized during management and eradication programs. P. setaceum’s suitable areas are located in the coastal area, with higher habitat suitability near cities and below 800 m asl. In both future climate change scenarios, the geographic distribution of P. setaceum suitable areas is characterized by an elevational shift, which is more pronounced in the RCP8.5 scenario. Despite being drought resistant, water supply is crucial for the species’ seed germination, thus supporting future species’ shift to higher elevation and in the north–north–west part of the island, where it could benefit from the combined effect of orographic precipitations and humidity carried by trade winds.

  相似文献   

15.
Identifying the factors predicting the high‐elevation suitable habitats of Central Asian argali wild sheep and how these suitable habitats are affected by the changing climate regimes could help address conservation and management efforts and identify future critical habitat for the species in eastern Tajikistan. This study used environmental niche models (ENMs) to map and compare potential present and future distributions of suitable environmental conditions for Marco Polo argali. Argali occurrence points were collected during field surveys conducted from 2009 to 2016. Our models showed that terrain ruggedness and annual mean temperature had strong correlations on argali distribution. We then used two greenhouse gas concentration trajectories (RCP 4.5 and RCP 8.5) for two future time periods (2050 and 2070) to model the impacts of climate change on Marco Polo argali habitat. Results indicated a decline of suitable habitat with majority of losses observed at lower elevations (3,300–4,300 m). Models that considered all variables (climatic and nonclimatic) predicted losses of present suitable areas of 60.6% (6,928 km2) and 63.2% (7,219 km2) by 2050 and 2070, respectively. Results also showed averaged habitat gains of 46.2% (6,106 km2) at much higher elevations (4,500–6,900 m) and that elevational shifts of habitat use could occur in the future. Our results could provide information for conservation planning for this near threatened species in the region.  相似文献   

16.
张微  姜哲  巩虎忠  栾晓峰 《生态学报》2016,36(7):1815-1823
气候变化是造成生物多样性下降和物种灭绝的主要因素之一。研究气候变化对物种生境,尤其是濒危物种生境影响对未来保护物种多样性和保持生态系统功能完整性具有重要意义。以驼鹿乌苏里亚种(Alces alces cameloides)为研究对象,选取了对驼鹿分布可能存在影响的22个环境因子,利用最大熵(Maxent)模型模拟了驼鹿基准气候条件下在我国东北的潜在生境分布,并预测了RCP4.5和RCP8.5两种气候变化情景下2041—2060年(2050s)、2061—2080年(2070s)驼鹿潜在分布,采用接收工作曲线下面积(AUC)对模型预测能力进行评估。研究结果表明:最大熵模型预测驼鹿潜在生境分布的精度较高(平均AUC值为0.845),22个环境因子中,年均温、最暖季均温、年降水、平均日较差是影响驼鹿生境分布的主要因子。基准气候条件下,驼鹿的潜在生境面积占研究区域总面积的36.4%,潜在生境分布区主要在大、小兴安岭。随着时间的推移,研究区内驼鹿当前潜在生境面积明显减少,而新增潜在生境面积较少,总面积呈现急剧减少的趋势,其中RCP8.5情景减少程度大于RCP4.5情景。至2050s阶段,当前潜在生境面积平均将减少62.3%,新增潜在分布面积平均仅为3.6%,总潜在生境面积最高将减少65.6%,平均将减少58.8%;至2070s阶段,当前潜在生境面积平均将减少75.8%,新增潜在分布面积平均仅为1.9%,总潜在生境面积最高将减少93.1%,平均减少73.9%。空间分布上,驼鹿的潜在生境的几何中心将先向西北移动,然后再向高纬度地区西南方向迁移,至2050s阶段,潜在分布生境的几何中心在RCP4.5和RCP8.5情景下的迁移距离分别为183.5 km和210.8 km;至2070s阶段,相应情景下的迁移距离将缩短至28.7 km和33.8 km。潜在生境分布整体呈现向高海拔、高纬度迁移的趋势。  相似文献   

17.
云南烤烟种植的气候适宜性分布将受到气候变化的深刻影响.根据云南烤烟种植气候适宜性的3个决定因子(7月平均气温、7—8月日照时数、4—9月降水量),利用1981—2060年的气候模拟数据及1986—2005年的气象台站实测数据,分析了1986—2005年及RCP 4.5和RCP8.5气候情景下2021—2040年、2041—2060年云南烤烟种植气候适宜性分布的变化.结果表明: 未来气候情景下,云南烤烟种植气候适宜分布呈现北抬东扩的趋势,未来云南烤烟可种植区域将呈逐渐增加的趋势,且2041—2060年增幅大于2021—2040年、RCP8.5情景的增幅大于RCP4.5情景,其中,烤烟的最适宜区域、次适宜区域增幅均较大,适宜区域则变化不大.未来云南中北部烟区的昆明、曲靖、大理、楚雄、丽江最适宜区面积与可种植面积增幅较大,文山、红河、普洱、西双版纳等南部烟区最适宜区面积与可种植面积减幅较大.  相似文献   

18.
Anthropogenic climate change is resulting in spatial redistributions of many species. We assessed the potential effects of climate change on an abundant and widely distributed group of diving birds, Eudyptes penguins, which are the main avian consumers in the Southern Ocean in terms of biomass consumption. Despite their abundance, several of these species have undergone population declines over the past century, potentially due to changing oceanography and prey availability over the important winter months. We used light-based geolocation tracking data for 485 individuals deployed between 2006 and 2020 across 10 of the major breeding locations for five taxa of Eudyptes penguins. We used boosted regression tree modelling to quantify post-moult habitat preference for southern rockhopper (E. chrysocome), eastern rockhopper (E. filholi), northern rockhopper (E. moseleyi) and macaroni/royal (E. chrysolophus and E. schlegeli) penguins. We then modelled their redistribution under two climate change scenarios, representative concentration pathways RCP4.5 and RCP8.5 (for the end of the century, 2071–2100). As climate forcings differ regionally, we quantified redistribution in the Atlantic, Central Indian, East Indian, West Pacific and East Pacific regions. We found sea surface temperature and sea surface height to be the most important predictors of current habitat for these penguins; physical features that are changing rapidly in the Southern Ocean. Our results indicated that the less severe RCP4.5 would lead to less habitat loss than the more severe RCP8.5. The five taxa of penguin may experience a general poleward redistribution of their preferred habitat, but with contrasting effects in the (i) change in total area of preferred habitat under climate change (ii) according to geographic region and (iii) the species (macaroni/royal vs. rockhopper populations). Our results provide further understanding on the regional impacts and vulnerability of species to climate change.  相似文献   

19.
The joint and relative effects of future land‐use and climate change on fire occurrence in the Amazon, as well its seasonal variation, are still poorly understood, despite its recognized importance. Using the maximum entropy method (MaxEnt), we combined regional land‐use projections and climatic data from the CMIP5 multimodel ensemble to investigate the monthly probability of fire occurrence in the mid (2041–2070) and late (2071–2100) 21st century in the Brazilian Amazon. We found striking spatial variation in the fire relative probability (FRP) change along the months, with October showing the highest overall change. Considering climate only, the area with FRP ≥ 0.3 (a threshold chosen based on the literature) in October increases 6.9% by 2071–2100 compared to the baseline period under the representative concentration pathway (RCP) 4.5 and 27.7% under the RCP 8.5. The best‐case land‐use scenario (“Sustainability”) alone causes a 10.6% increase in the area with FRP ≥ 0.3, while the worse‐case land‐use scenario (“Fragmentation”) causes a 73.2% increase. The optimistic climate‐land‐use projection (Sustainability and RCP 4.5) causes a 21.3% increase in the area with FRP ≥ 0.3 in October by 2071–2100 compared to the baseline period. In contrast, the most pessimistic climate‐land‐use projection (Fragmentation and RCP 8.5) causes a widespread increase in FRP (113.5% increase in the area with FRP ≥ 0.3), and prolongs the fire season, displacing its peak. Combining the Sustainability land‐use and RCP 8.5 scenarios causes a 39.1% increase in the area with FRP ≥ 0.3. We conclude that avoiding the regress on land‐use governance in the Brazilian Amazon (i.e., decrease in the extension and level of conservation of the protected areas, reduced environmental laws enforcement, extensive road paving, and increased deforestation) would substantially mitigate the effects of climate change on fire probability, even under the most pessimistic RCP 8.5 scenario.  相似文献   

20.

Aim

The capacity for poleward range expansions beyond the tropics in corals hinges on ecophysiological constraints and resulting responses to climatic variability. We aimed to determine how future warming will affect coral habitat suitability at the poleward range edges of these foundational species in the Northwest Pacific.

Location

Northwest Pacific.

Methods

We generated models integrating thermal physiological constraints of corals adapted to extreme seasonality in Hong Kong, specifically the minimum annual temperature and the proportion of time annually spent at seasonal extremes. With these models, we projected habitat suitability for five coral species under current and future climatic conditions across the Northwest Pacific.

Results

Climate model projections reveal an easing of thermal constraints on the leading-edge of coral ecophysiological limits with an expansion of thermally suitable habitat poleward by 2°–7° in latitude depending on the coral species and model considered. We also highlight a potential divergence of present and future thermal regimes that may lead to a mismatch in suitability for corals currently inhabiting high latitude reefs.

Main Conclusions

Understanding the thermal constraints on coral distributions and defining the potential range of corals under climate change is critical for adaptive management that focuses on coral conservation and ensuring ecosystem function of existing subtropical and temperate ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号