首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been widely reported that exosomes derived from mesenchymal stem cells (MSCs) have a protective effect on myocardial infarction (MI). However, the specific molecules which play a damaging role in MSCs shuttled miRNAs are much less explored. MiRNA-153-3p (miR-153-3p) is a vital miRNA which has been proved to modulate cell proliferation, apoptosis, angiogenesis, peritoneal fibrosis and aortic calcification. Here, we aim to study the effect and mechanism of miR-153-3p in MSC-derived exosomes on hypoxia-induced myocardial and microvascular damage. The exosomes of MSCs were isolated and identified, and the MSCs-exosomes with low expression of miR-153-3p (exo-miR-153-3p) were constructed to interfere with the endothelial cells and cardiomyocytes in the oxygen-glucose deprivation (OGD) model. The viability, apoptosis, angiogenesis of endothelial cells and cardiomyocytes were determined. Additionally, ANGPT1/VEGF/VEGFR2/PI3K/Akt/eNOS pathway was detected by ELISA and/or western blot. The results illustrated that exo-miR-153-3p significantly reduced the apoptosis of endothelial cells and cardiomyocytes and promoted their viability. Meanwhile, exo-miR-153-3p can promote the angiogenesis of endothelial cells. Mechanistically, miR-153-3p regulates the VEGF/VEGFR2/PI3K/Akt/eNOS pathways by targeting ANGPT1. Intervention with VEGFR2 inhibitor (SU1498, 1 μM) remarkably reversed the protective effect of exo-miR-153-3p in vascular endothelial cells and cardiomyocytes treated by OGD. Collectively, MSCs-derived exosomes with low-expressed miR-153-3p notably promotes the activation of ANGPT1 and the VEGF/VEGFR2 /PI3K/Akt/eNOS pathways, thereby preventing the damages endothelial cells and cardiomyocytes against hypoxia.  相似文献   

2.
Transforming growth factor-β (TGF-β) triggers apoptosis in endothelial cells, while the mechanisms underlying this action are not entirely understood. Using genetic and pharmacological tools, we demonstrated that TGF-β induced a moderate apoptotic response in human cultured endothelial cells, which was dependent upon upregulation of the Nox4 NADPH oxidase and production of reactive oxygen species (ROS). In contrast, we showed that ectopic expression of Nox4 via viral vectors (vNox4) produced an antiapoptotic effect. TGF-β caused ROS-dependent p38 activation, whereas inhibition of p38 blunted TGF-β-induced apoptosis. However, vNox4, but not TGF-β, activated Akt, and inhibition of Akt attenuated the antiapoptotic effect of vNox4. Akt activation induced by vNox4 was accompanied by inactivation of the protein tyrosine phosphatase-1B (PTP1B) function and enhanced vascular endothelial growth factor receptor (VEGFR)-2 phosphorylation. Moreover, we showed that TGF-β enhanced Notch signaling and increased expression of the arterial marker EphrinB2 in a redox-dependent manner. In summary, our results suggest that Nox4 and ROS have pivotal roles in mediating TGF-β-induced endothelial apoptosis and phenotype specification. Redox mechanisms may influence endothelial cell functions by modulating p38, PTP1B/VEGFR/Akt and Notch signaling pathways.  相似文献   

3.
This study was to investigate the effect of oxidized low‐density lipoprotein (ox‐LDL) on the behaviour of bone marrow stem cells and their endothelial differentiation as well as the underlying mechanisms. Adult rat bone marrow multipotent progenitor cells (MAPCs) were incubated with ox‐LDL for up to 2 weeks. Ox‐LDL treatment resulted in a time‐ and dose‐dependent reduction of MAPC population in culture through a combination of decreased cell proliferation and increased apoptosis. The expression of stem cell marker Oct‐4 was significantly suppressed in MAPCs by ox‐LDL in a dose‐ and time‐dependant manner. Endothelial differentiation of MAPCs was substantially inhibited by ox‐LDL with markedly decreased expression of endothelial markers vWF, Flk‐1 and CD31, as well as impaired in vitro vascular structure formation. Ox‐LDL‐induced apoptosis and inhibition of Oct‐4 expression, cell proliferation and endothelial differentiation of MAPCs were associated with significant inhibition of Akt phosphorylation. Akt overexpression in MAPCs transfected with a constitutively active Akt completely reversed the effects of ox‐LDL on MAPCs including enhanced apoptosis, decreased cell proliferation, suppressed Oct‐4 expression and endothelial differentiation as well as in vitro vascular structure formation. In conclusion, ox‐LDL promotes apoptosis and inhibits Oct‐4 expression and self‐renewal of MAPCs, and impairs their endothelial differentiation via suppression of Akt signalling.  相似文献   

4.
Physiological and pathological turnover of basement membranes liberates biologically active cryptic molecules. Several collagen-derived fragments possess anti-angiogenic activity. Arresten is the 26-kDa non-collagenous domain of type IV collagen α1 chain. It functions as an efficient inhibitor of angiogenesis and tumor growth in mouse models, but its anti-angiogenic mechanism is not completely known. Here we show that arresten significantly increases apoptosis of endothelial cells in vitro by decreasing the amount of anti-apoptotic molecules of the Bcl-family; Bcl-2 and Bcl-xL. Although the pro-apoptotic effect of arresten is endothelial cell specific in vitro, in mouse tumors arresten induced apoptosis both in endothelial and tumor cells. The tumor cell apoptosis is likely an indirect effect due to the inhibition of blood vessel growth into the tumor. The active site of arresten was localized by deletion mutagenesis within the C-terminal half of the molecule. We have previously shown that arresten binds to α1β1 integrin on human umbilical vein endothelial cells. However, the microvascular endothelial cells (MLECs) are more important in the context of tumor vasculature. We show here that arresten binds also to the microvascular endothelial cells via α1β1 integrin. Furthermore, it has no effect on Matrigel neovascularization or the viability of integrin α1 null MLECs. Tumors implanted on integrin α1 deficient mice show no integrin α1 expression in the host-derived vascular endothelium, and thus arresten does not inhibit the tumor growth. Collectively, this data sheds more light into the anti-angiogenic mechanism of arresten.  相似文献   

5.
Vaspin, an adipocytokine recently identified in a rat model of type 2 diabetes, has been suggested to have an insulin-sensitizing effect. However, the exact mechanism underlying this action has not been fully elucidated. Furthermore, the specific function of vaspin is largely unknown, especially in vascular cells. We examined whether vaspin affects the insulin-signaling pathway in cultured endothelial cells and is capable of preventing free fatty acid (FFA)-induced apoptosis in endothelial cells through its insulin sensitizing effect, specifically, through its stimulatory effect on PI3-kinase/Akt signaling pathways. Vaspin significantly increased Akt phosphorylation and prevented the impairment of Akt phosphorylation by linoleic acid (LA) in insulin-stimulated endothelial cells, which effects were abolished by pretreatment with the PI3-kinase inhibitor, Wortmannin. Moreover, pretreatment with vaspin prevented LA-induced apoptosis in insulin-stimulated endothelial cells; this anti-apoptotic effect of vaspin was also eliminated by pretreatment with Wortmannin. The present study indicates that vaspin protects vascular endothelial cells from FFA-induced apoptosis through upregulation of the PI3-kinase/Akt signaling pathway. Our study is the first to demonstrate that vascular cells can be targets of vaspin. Our results further suggest that vaspin could have beneficial effects on the atherosclerosis.  相似文献   

6.
BackgroundGinsenoside-Rg2 (G-Rg2) is a protopanaxatriol-type ginsenoside isolated from ginseng. It has been found to exhibit various pharmacological effects, including antioxidant, anti-inflammatory, and anticancer effects.PurposeThis study aimed to investigate the anticancer effects of G-Rg2 on estrogen receptor-positive MCF-7 breast cancer (BC) cells, and the underlying mechanisms involving in reactive oxygen species (ROS) production.Study design/MethodsCell viability, cell cycle distribution, apoptosis, and ROS production were measured following exposure to G-Rg2. The protein expression levels of p-ERK1/2, p-Akt, PARP, p-Rb, cyclin D1, CDK6, and p-AMPK were quantified using western blot analysis. The in vivo activity of G-Rg2 was assessed in a xenograft model. Immunohistochemistry staining for p-Rb and p-AMPK was performed in tumor tissues.ResultsG-Rg2 significantly decreased cell viability but increased cell apoptosis. In MCF-7 cells, G-Rg2 increased ROS production by inhibiting ERK1/2 and Akt activation. G-Rg2-induced ROS induced G0/G1 cell cycle arrest and AMPK phosphorylation. In the xenograft model, the 5 mg/kg G-Rg2-treated group showed decreased tumor volume and weight, similar to the 5 mg/kg 4-OHT-treated group, compared to the control group. Immunohistochemistry staining showed that G-Rg2 treatment decreased Rb phosphorylation, while increasing AMPK phosphorylation in tumor tissues.ConclusionG-Rg2 has potential anticancer effects by increasing the ROS-AMPK signaling pathway and inhibiting ERK1/2 and Akt activation-mediated cell proliferation and cell cycle progression in MCF-7 BC cells.  相似文献   

7.

Background

Baboons receiving xenogeneic livers from wild type and transgenic pigs survive less than 10 days. One of the major issues is the early development of profound thrombocytopenia that results in fatal hemorrhage. Histological examination of xenotransplanted livers has shown baboon platelet activation, phagocytosis and sequestration within the sinusoids. In order to study the mechanisms of platelet consumption in liver xenotransplantation, we have developed an in vitro system to examine the interaction between pig endothelial cells with baboon platelets and to thereby identify molecular mechanisms and therapies.

Methods

Fresh pig hepatocytes, liver sinusoidal and aortic endothelial cells were isolated by collagenase digestion of livers and processing of aortae from GTKO and Gal+ MGH-miniature swine. These primary cell cultures were then tested for the differential ability to induce baboon or pig platelet aggregation. Phagocytosis was evaluated by direct observation of CFSE labeled-platelets, which are incubated with endothelial cells under confocal light microscopy. Aurintricarboxylic acid (GpIb antagonist blocking interactions with von Willebrand factor/vWF), eptifibatide (Gp IIb/IIIa antagonist), and anti-Mac-1 Ab (anti-αMβ2 integrin Ab) were tested for the ability to inhibit phagocytosis.

Results

None of the pig cells induced aggregation or phagocytosis of porcine platelets. However, pig hepatocytes, liver sinusoidal and aortic endothelial cells (GTKO and Gal+) all induced moderate aggregation of baboon platelets. Importantly, pig liver sinusoidal endothelial cells efficiently phagocytosed baboon platelets, while pig aortic endothelial cells and hepatocytes had minimal effects on platelet numbers. Anti-MAC-1 Ab, aurintricarboxylic acid or eptifibatide, significantly decreased baboon platelet phagocytosis by pig liver endothelial cells (P<0.01).

Conclusions

Although pig hepatocytes and aortic endothelial cells directly caused aggregation of baboon platelets, only pig liver endothelial cells efficiently phagocytosed baboon platelets. Blocking vWF and integrin adhesion pathways prevented both aggregation and phagocytosis.  相似文献   

8.
BackgroundChronic use of morphine is associated with reproductive complications, such as hypogonadism and infertility. While the side effects of morphine have been extensively studied in the testis, much less is known regarding the effects of morphine on Sertoli cells and the effects of zinc on morphine-induced testicular injury as well as their underlying mechanisms. Therefore, the purpose of this study was to investigate the effect of morphine (alone and co-administered with zinc) on cell viability and apoptosis of the testicular (Sertoli) cells as well as the tumor suppressor p53 and phosphorylated-protein kinase B (p-Akt) protein levels in both in vitro and in vivo models.MethodsCultured Sertoli cells were exposed to morphine (23 μM), zinc (8 μM), and zinc prior to morphine and their effects on Sertoli cell viability and apoptosis were investigated. Morphine (3 mg/kg) and zinc (5 mg/kg, 1 h before morphine) were also injected intraperitoneally to rats and then the apoptotic changes in the testis were evaluated.ResultsCell viability and p-Akt protein levels decreased in morphine-treated cells, while apoptosis and p53 protein expression increased in these cells. Pretreatment with zinc recovered morphine-induced apoptotic effects, as well as over-expression of p53 and down-regulation of p-Akt. These findings were supported by a subsequent animal study.ConclusionThe present data indicated the protective effect of zinc against morphine-induced testicular (Sertoli) cell toxicity via p53/Akt pathways in both in vivo and in vitro models and suggested the clinical importance of zinc on infertility among chronic opioid users and addicted men.  相似文献   

9.
Acute myeloid leukemia (AML) is a hematological malignancy characterized by a rapid increase in the number of immature myeloid cells in bone marrow. Despite recent advances in the treatment, AML remains an incurable disease. Matrine, a major component extracted from Sophora flavescens Ait, has been demonstrated to exert anticancer effects on various cancer cell lines. However, the effects of matrine on AML remain largely unknown. Here we investigated its anticancer effects and underlying mechanisms on human AML cells in vitro and in vivo. The results showed that matrine inhibited cell viability and induced cell apoptosis in AML cell lines as well as primary AML cells from patients with AML in a dose- and time-dependent manner. Matrine induced apoptosis by collapsing the mitochondrial membrane potential, inducing cytochrome c release from mitochondria, reducing the ratio of Bcl-2/Bax, increasing activation of caspase-3, and decreasing the levels of p-Akt and p-ERK1/2. The apoptotic effects of matrine on AML cells were partially blocked by a caspase-3 inhibitor Z-DEVD-FMK and a PI3K/Akt activator IGF-1, respectively. Matrine potently inhibited in vivo tumor growth following subcutaneous inoculation of HL-60 cells in SCID mice. These findings indicate that matrine can inhibit cell proliferation and induce apoptosis of AML cells and may be a novel effective candidate as chemotherapeutic agent against AML.  相似文献   

10.
Interleukin-8 (IL-8) promotes cell homing and angiogenesis, but its effects on activating human bone marrow mesenchymal stem cells (BMSCs) and promoting angiogenesis are unclear. We used bioinformatics to predict these processes. In vitro, BMSCs were stimulated in a high-glucose (HG) environment with 50 or 100 μg/ml IL-8 was used as the IL-8 group. A total of 5 μmol/l Triciribine was added to the two IL-8 groups as the Akt inhibitor group. Cultured human umbilical vein endothelial cells (HUVECs) were cultured in BMSCs conditioned medium (CM). The changes in proliferation, apoptosis, migration ability and levels of VEGF and IL-6 in HUVECs were observed in each group. Seventy processes and 26 pathways were involved in vascular development, through which IL-8 affected BMSCs. Compared with the HG control group, HUVEC proliferation absorbance value (A value), Gap closure rate, and Transwell cell migration rate in the IL-8 50 and IL-8 100 CM groups were significantly increased (P<0.01, n=30). However, HUVEC apoptosis was significantly decreased (P<0.01, n=30). Akt and phospho-Akt (P-Akt) protein contents in lysates of BMSCs treated with IL-8, as well as VEGF and IL-6 protein contents in the supernatant of BMSCs treated with IL-8, were all highly expressed (P<0.01, n=15). These analyses confirmed that IL-8 promoted the expression of 41 core proteins in BMSCs through the PI3K Akt pathway, which could promote the proliferation and migration of vascular endothelial cells. Therefore, in an HG environment, IL-8 activated the Akt signaling pathway, promoted paracrine mechanisms of BMSCs, and improved the proliferation and migration of HUVECs.  相似文献   

11.
Plasmacytoma variant translocation1 (PVT1) was reported to be upregulated in non-small-cell lung cancer (NSCLC) tissues, serve as a promising biomarker for diagnosis and prognosis of NSCLC, and promoted NSCLC cell proliferation. However, the detailed molecular mechanism of PVT1 involved in the pathogenesis and development of NSCLC remains largely unknown. In this study, the expression levels of PVT1 and miR-497 in NSCLC cells were determined by qRT-PCR. Cell viability, invasion and apoptosis were detected by MTT assay, cell invasion assay and flow cytometry analysis, respectively. RNA immunoprecipitation (RIP) and luciferase reporter assay were performed to confirm whether PVT1 directly interacts with miR-497. A xenograft mouse model was established to confirm the effect of PVT1 on tumor growth in vivo and the underlying molecular mechanism. Our findings indicated that PVT1 was significantly upregulated and miR-497 was markedly downregulated in NSCLC cell lines. si-PVT1 effectively decreased the expression of PVT1 and increased the expression of miR-497. PVT1 knockdown remarkably inhibited cell viability, invasion and promoted apoptosis in NSCLC cells. RIP and luciferase reporter assay demonstrated that PVT1 could directly interact with miR-497. Moreover, PVT1 overexpression reversed the inhibitory effect of miR-497 on cell viability, invasion and promotion effect on apoptosis of NSCLC cells. Furthermore, in vivo experiment showed that knockdown of PVT1 inhibited tumor growth in vivo and promoted miR-497 expression. In conclusion, knockdown of PVT1 inhibited cell viability, invasion and induced apoptosis in NSCLC by regulating miR-497 expression, elucidating the molecular mechanism of the oncogenic role of PVT1 in NSCLC and providing an lncRNA-directed target for NSCLC.  相似文献   

12.

Background

The semi-synthetic ent-kaurane 15-ketoatractyligenin methyl ester (SC2017) has been previously reported to possess high antiproliferative activity against several solid tumor-derived cell lines. Our study was aimed at investigating SC2017 tumor growth-inhibiting activity and the underlying mechanisms in Jurkat cells (T-cell leukemia) and xenograft tumor models.

Methods

Cell viability was evaluated by MTT assay. Cell cycle progression, reactive oxygen species (ROS) elevation and apoptotic hallmarks were monitored by flow cytometry. Inhibition of thioredoxin reductase (TrxR) by biochemical assays. Levels and/or activation status of signaling proteins were assessed by western blotting. Xenograft tumors were generated with HCT 116 colon carcinoma cells.

Results

SC2017 displayed cell growth-inhibiting activity against Jurkat cells (half maximal inhibitory concentration values (IC50) < 2 μM), but low cell-killing potential in human peripheral blood mononuclear cells (PBMC). The primary response of Jurkat cells to SC2017 was an arrest in G2 phase followed by caspase-dependent apoptosis. Inhibition of PI3K/Akt pathway and TrxR activity by SC2017 was demonstrated by biochemical and pharmacological approaches. At least, SC2017 was found to inhibit xenograft tumor growth.

Conclusions

Our results demonstrate that SC2017 inhibits tumor cell growth in in vitro and in vivo models, but displays moderate toxicity against PBMC. We also demonstrate that SC2017 promotes caspase-dependent apoptosis in Jurkat cells by affecting Akt activation status and TrxR functionality.

General significance

Our observations suggest the semi-synthetic ent-kaurane SC2017 as a promising chemotherapeutic compound. SC2017 has, indeed, shown to possess tumor growth inhibiting activity and be able to counteract PI3K/Akt and Trx system survival signaling.  相似文献   

13.
《Process Biochemistry》2010,45(12):1852-1856
Over-expression of anti-apoptotic cloned-genes is a widely used strategy for inhibiting apoptosis in mammalian cell culture. In our previous study, we reported Bombyx mori 30K gene improved the production of recombinant proteins in Chinese hamster ovary (CHO) cells. In this study, we reengineered the CHO cells with the 30Kc6 gene and 30Kc19 gene for the production of a therapeutic monoclonal antibody (mAb) directed against the glycoprotein receptor of human platelets. After the medium was changed from serum containing one to serum-free one, expression of 30Kc6 in CHO cells increased the cell viability by 40.8% in 4 days and mAb production by 2.3-fold in 5 days. However, no significant changes in cell viability and mAb production were observed for the cells expressing 30Kc19. In the case of the cells expressing 30Kc6, the specific production rate was also improved. The expression of the 30Kc6 gene increased the cell viability and productivity because it maintained the mitochondrial membrane potential (MMP) and reduced the downstream cascade responses for apoptosis. These results indicate that 30Kc6 outperformed 30Kc19 in terms of cell death-protective capability and the production of monoclonal antibodies in CHO cells.  相似文献   

14.
15.
Etoposide, a DNA damage-inducing agent, is widely used to treat neuroblastoma. Etoposide binds to and inhibits topoisomerase II, thereby inducing the DNA damage response. However, the underlying mechanism of etoposide resistance in neuroblastoma remains unclear. The results of the present study revealed that etoposide upregulated growth hormone receptor (GHR) expression levels in etoposide-resistant neuroblastoma cells, suggesting that GHR upregulation may be involved in the underlying mechanism of etoposide resistance. Thus, the combined effect of GHR knockdown and etoposide treatment on cell viability, apoptosis and migration in vitro, as well as tumor growth in mouse xenograft models in vivo, was subsequently analyzed. The results of cell viability and colony formation assays demonstrated that GHR knockdown enhanced the inhibitory effects of etoposide on cell viability and sensitized cells to etoposide. The enhanced cell viability was discovered to be, at least in part, due to the increase in etoposide-induced apoptosis following GHR knockdown. Moreover, the knockdown of GHR enhanced the inhibitory effect of etoposide on cell migration. Mouse xenograft studies confirmed the effects of GHR silencing in etoposide-resistant neuroblastoma progression in vivo. Furthermore, the effects of GHR knockdown in etoposide resistance were hypothesized to occur via the inactivation of the MEK/ERK signaling pathway. In conclusion, the results of the present study provided novel insight into the underlying mechanism of etoposide resistance and a potential target for the treatment of etoposide-resistant neuroblastoma.  相似文献   

16.
17.
《Phytomedicine》2015,22(10):875-884
BackgroundAdriamycin (ADM) is an antineoplastic agent that is effective against a wide range of cancers, but cardiac toxicity limits its clinical application. Ginsenoside Rg3 (Rg3), an anti-cancer active ingredient of Panax ginseng, was reported to have anti-oxidative, anti-apoptotic, and cardioprotective properties.PurposeThe current study aimed to investigate the possible protective effect of Rg3 against ADM-induced cardiotoxicity.Study designThe activity of Rg3 to improve endothelial dysfunction was processed both in vivo and in vitro.MethodsWe investigated the cardioprotective effect of Rg3 on ADM treated rats by echocardiography. The endothelial dysfunction was assessed using an aortic ring assay. Cardiac microvascular endothelial cells were cultured to investigate the effects of Rg3 on ADM-treated cells.ResultsResults showed that Rg3 could ameliorate the decrease in the ejection fraction and fractional shortening that was induced by ADM, and improve the left ventricular outflow. The aortic ring assay showed that Rg3 could partially recover the abnormal vascular function. In vitro studies showed that Rg3 could promote cell viability to attenuate ADM induced oxidative damage and apoptosis. This counteraction was achieved partially via activation of the Nrf2-ARE pathway through the activation of Akt.ConclusionThese findings elucidated the potential of Rg3 as a promising reagent for treating ADM-induced cardiotoxicity in clinic.  相似文献   

18.
Angiogenesis occurs during tissue growth, development and wound healing. It is also required for tumor progression and represents a rational target for therapeutic intervention. NBM-T-BMX-OS01 (BMX), derived from the semisynthesis of osthole, an active ingredient isolated from Chinese herb Cnidium monnieri (L.) Cuss., was recently shown to enhance learning and memory in rats. In this study, we characterized the anti-angiogenic activities of NBM-T-BMX-OS01 (BMX) in an effort to develop novel inhibitors to suppress angiogenesis and tumor growth. BMX inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration and endothelial tube formation in human umbilical endothelial cells (HUVECs). BMX also attenuated VEGF-induced microvessel sprouting from aortic rings ex vivo and reduced HCT116 colorectal cancer cells-induced angiogenesis in vivo. Moreover, BMX inhibited the phosphorylation of VEGFR2, FAK, Akt and ERK in HUVECs exposed to VEGF. BMX was also shown to inhibit HCT116 cell proliferation and to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. Taken together, this study provides evidence that BMX modulates vascular endothelial cell remodeling and leads to the inhibition of tumor angiogenesis. These results also support the role of BMX as a potential drug candidate and warrant the clinical development in the treatment of cancer.  相似文献   

19.
Epidemiological studies have shown that arsenic exposure increases atherosclerosis, but the mechanisms underlying this relationship are unknown. Monocytes, macrophages and platelets play an important role in the initiation of atherosclerosis. Circulating monocytes and macrophages bind to the activated vascular endothelium and migrate into the sub-endothelium, where they become lipid-laden foam cells. This process can be facilitated by platelets, which favour monocyte recruitment to the lesion. Thus, we assessed the effects of low-to-moderate arsenic exposure on monocyte adhesion to endothelial cells, platelet activation and platelet-monocyte interactions. We observed that arsenic induces human monocyte adhesion to endothelial cells in vitro. These findings were confirmed ex vivo using a murine organ culture system at concentrations as low as 10 ppb. We found that both cell types need to be exposed to arsenic to maximize monocyte adhesion to the endothelium. This adhesion process is specific to monocyte/endothelium interactions. Hence, no effect of arsenic on platelet activation or platelet/leukocyte interaction was observed. We found that arsenic increases adhesion of mononuclear cells via increased CD29 binding to VCAM-1, an adhesion molecule found on activated endothelial cells. Similar results were observed in vivo, where arsenic-exposed mice exhibit increased VCAM-1 expression on endothelial cells and increased CD29 on circulating monocytes. Interestingly, expression of adhesion molecules and increased binding can be inhibited by antioxidants in vitro and in vivo. Together, these data suggest that arsenic might enhance atherosclerosis by increasing monocyte adhesion to endothelial cells, a process that is inhibited by antioxidants.  相似文献   

20.

Objectives

Stem cell preconditioning (PC) is a powerful approach in reducing cell death after transplantation. We hypothesized that PC human endothelial progenitor cells (hEPCs) with bradykinin (BK) enhance cell survival, inhibit apoptosis and repair the infarcted myocardium.

Methods

The hEPCs were preconditioned with or without BK. The hEPCs apoptosis induced by hypoxia along with serum deprivation was determined by annexin V-fluorescein isothiocyanate/ propidium iodide staining. Cleaved caspase-3, Akt and eNOS expressions were determined by Western blots. Caspase-3 activity and vascular endothelial growth factor (VEGF) levels were assessed in hEPCs. For in vivo studies, the survival and cardiomyocytes apoptosis of transplanted hEPCs were assessed using 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodi- carbocyanine,4-chlorobenzenesul-fonate salt labeled hEPCs and TUNEL staining. Infarct size and cardiac function were measured at 10 days after transplantation, and the survival of transplanted hEPCs were visualized using near-infrared optical imaging.

Results

In vitro data showed a marked suppression in cell apoptosis following BK PC. The PC reduced caspase-3 activation, increased the Akt, eNOS phosphorylation and VEGF levels. In vivo data in preconditioned group showed a robust cell anti-apoptosis, reduction in infarct size, and significant improvement in cardiac function. The effects of BK PC were abrogated by the B2 receptor antagonist HOE140, the Akt and eNOS antagonists LY294002 and L-NAME, respectively.

Conclusions

The activation of B2 receptor-dependent PI3K/Akt/eNOS pathway by BK PC promotes VEGF secretion, hEPC survival and inhibits apoptosis, thereby improving cardiac function in vivo. The BK PC hEPC transplantation for stem cell-based therapies is a novel approach that has potential for clinical used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号