首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleoside analogs are frequently used to label newly synthesized DNA. These analogs are toxic in many cells, with the exception of the budding yeast. We show that Schizosaccharomyces pombe behaves similarly to metazoans in response to analogs 5-bromo-2′-deoxyuridine (BrdU) and 5-ethynyl-2′-deoxyuridine (EdU). Incorporation causes DNA damage that activates the damage checkpoint kinase Chk1 and sensitizes cells to UV light and other DNA-damaging drugs. Replication checkpoint mutant cds1Δ shows increased DNA damage response after exposure. Finally, we demonstrate that the response to BrdU is influenced by the ribonucleotide reductase inhibitor, Spd1, suggesting that BrdU causes dNTP pool imbalance in fission yeast, as in metazoans. Consistent with this, we show that excess thymidine induces G1 arrest in wild-type fission yeast expressing thymidine kinase. Thus, fission yeast responds to nucleoside analogs similarly to mammalian cells, which has implications for their use in replication and damage research, as well as for dNTP metabolism.  相似文献   

2.
Hoxa5 is preferentially expressed in haematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs), and is more highly expressed in expanding HSCs. To date, little is known regarding the role of Hoxa5 in HSCs and downstream progenitor cells in vivo. In this study, we show that increased expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Hoxa5 differentially modifies the cell cycle of HSCs and lineage committed progenitor cells, depending on the cellular context. Hoxa5 drives HSCs, but not MPPs, through the cell cycle and arrests erythroid progenitor cells in G0 phase. Although the HSC pool shrinks after overexpression of Hoxa5, HSCs sustain the abilities of self-renewal and multipotency. In vivo, Hoxa5 has two effects on erythropoiesis: it causes a predominance of mature erythroid lineage cells and the partial apoptosis of erythroid progenitors. RNA-seq indicates that multiple biological processes, including erythrocyte homeostasis, cell metabolism, and apoptosis, are modified by Hoxa5. The results of this study indicate that Hoxa5 is a key regulator of the HSC cell cycle, and the inappropriate expression of Hoxa5 in lineage-committed progenitor cells leads to aberrant erythropoiesis.  相似文献   

3.
Hoxa5 is preferentially expressed in haematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs), and is more highly expressed in expanding HSCs. To date, little is known regarding the role of Hoxa5 in HSCs and downstream progenitor cells in vivo. In this study, we show that increased expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Hoxa5 differentially modifies the cell cycle of HSCs and lineage committed progenitor cells, depending on the cellular context. Hoxa5 drives HSCs, but not MPPs, through the cell cycle and arrests erythroid progenitor cells in G0 phase. Although the HSC pool shrinks after overexpression of Hoxa5, HSCs sustain the abilities of self-renewal and multipotency. In vivo, Hoxa5 has two effects on erythropoiesis: it causes a predominance of mature erythroid lineage cells and the partial apoptosis of erythroid progenitors. RNA-seq indicates that multiple biological processes, including erythrocyte homeostasis, cell metabolism, and apoptosis, are modified by Hoxa5. The results of this study indicate that Hoxa5 is a key regulator of the HSC cell cycle, and the inappropriate expression of Hoxa5 in lineage-committed progenitor cells leads to aberrant erythropoiesis.  相似文献   

4.
《Developmental cell》2022,57(14):1728-1741.e6
  1. Download : Download high-res image (169KB)
  2. Download : Download full-size image
  相似文献   

5.
Tissue trauma and hemorrhagic shock are common battlefield injuries that can induce hypoxia, inflammation, and/or anemia. Inflammation and hypoxia can initiate adaptive mechanisms, such as stress erythropoiesis in the spleen, to produce red blood cells and restore the oxygen supply. In a military context, mild hypobaric hypoxia—part of the environmental milieu during aeromedical evacuation or en route care—may influence adaptive mechanisms, such as stress erythropoiesis, and host defense. In the present study, healthy (control), muscle trauma, and polytrauma (muscle trauma and hemorrhagic shock) mice were exposed to normobaric normoxia or hypobaric hypoxia for ∼17.5 h to test the hypothesis that hypobaric hypoxia exposure influences splenic erythropoiesis and splenic inflammation after polytrauma. This hypothesis was partially supported. The polytrauma + hypobaric hypoxia group exhibited more splenic neutrophils, fewer total spleen cells, and fewer splenic proliferating cells than the polytrauma+normobaric normoxia group; however, no splenic erythroid cell differences were detected between the two polytrauma groups. We also compared splenic erythropoiesis and myeloid cell numbers among control, muscle trauma, and polytrauma groups. More reticulocytes at 1.7 days (40 h) post-trauma (dpt) and neutrophils at 4 dpt were produced in the muscle trauma mice than corresponding control mice. In contrast to muscle trauma, polytrauma led to a reduced red blood cell count and elevated serum erythropoietin levels at 1.7 dpt. There were more erythroid subsets and apoptotic reticulocytes in the polytrauma mice than muscle trauma mice at 4 and 8 dpt. At 14 dpt, the red blood cell count of the polytrauma + normobaric normoxia mice was 12% lower than that of the control + normobaric normoxia mice; however, no difference was observed between polytrauma + hypobaric hypoxia and control + hypobaric hypoxia mice. Our findings suggest muscle trauma alone induces stress erythropoiesis; in a polytrauma model, hypobaric hypoxia exposure may result in the dysregulation of splenic cells, requiring a treatment plan to ensure adequate immune functioning.  相似文献   

6.
Replication stress is a frequent and early event during tumorigenesis. Whereas the cellular responses to a persistent block of replication fork progression have been extensively studied, relatively little is known about how cells respond to low-intensity replication stress. However, transient replication fork perturbations are likely to occur even more frequently in tumor cells than a permanent replication arrest. We report here that transient, low intensity replication stress leads to a rapid activation of the DNA replication checkpoint but to a significantly delayed apoptotic response in a small but significant number of cells. This late apoptotic response was independent of p53 and we found evidence for cell death during mitosis in a proportion of cells. To further explore the role of p53 in the response to replication stress, we analyzed mouse embryonic fibroblasts (MEFs) deficient of p53 in comparison to wild-type or p63- or p73-deficient MEFs. We detected a significant increase of apoptosis and morphological signs of failed mitosis such as multinucleation in p53-deficient MEFs following replication stress, but not in wild-type or p63- or p73-deficient cells. Multinucleated p53-deficient MEFs frequently retained cyclin B1 expression indicating a persistently activated mitotic spindle checkpoint. Collectively, our results suggest that the cellular response to replication stress involves the mitotic spindle checkpoint in a proportion of cells. These findings imply that the mitotic spindle checkpoint may act in concert with DNA damage and cell-cycle checkpoints as an early anti-tumor barrier and provide a possible explanation for its frequent relaxation in human cancer.  相似文献   

7.
Replication factor C (RFC) is a heteropentameric sliding clamp loader protein essential for processive synthesis of DNA by eukaryotic DNA polymerases delta and epsilon. To study the interaction of RFC with 3' and 5' ends of the DNA primer, we have developed chemical photocrosslinking assay using a synthetic DNA gap and DNA primer-template structures. We have found that the radioactively labeled primers containing a photoreactive group at their 5' end could crosslink with the largest RFC subunit (RFC140) on primer-templates and DNA gap structures, but that 3' end photoreactive primers could only crosslink with RFC140 within the DNA gap structure. Addition of replication protein A (RPA) to the reaction mixture resulted in the crosslinking of RPA subunits and inhibited crosslinking of RFC140 using 3' but not 5' photoreactive primers present at the gap. The results suggest specific contacts between RFC140 and the 5' end of the DNA primer. Together with previous data, these experiments allow us to propose a model for the DNA polymerase switch during eukaryotic DNA replication.  相似文献   

8.
PKCalpha was found to be expressed (mRNA and protein) throughout the in vitro maturation of primary human erythroblasts but its activity (phosphorylation levels and nuclear localization) was consistently higher in cells derived from human neonatal rather than adult blood. Since the gamma/gamma + beta globin expression ratio represented the major difference between neonatal and adult erythroblasts (58 +/- 12 vs. 7 +/- 3, respectively), we tested the hypothesis that PKCalpha might affect gamma-globin expression by measuring the levels of (A)gamma- or beta-promoter-driven reporter activity in erythroid cells stably (GM979) or transiently (K562, primary adult and neonatal erythroblasts) transfected with a dual microLCRbetaprRluc(A)gammaprFluc reporter in the presence of transient expression of either the constitutively active (sPKCalpha) or catalytically inactive (iPKCalpha) PKCalpha. As further control, GM979 cells were incubated with the PKC inhibitor rottlerin (30 microM). In all the cells analyzed, sPKCalpha significantly increased (by two- to sixfold) the levels of luciferase activity driven by the (A)gamma-promoter and the (A)gamma-F/((A)gamma-F + 2beta-R) expression ratio. In GM979 cells, rottlerin inhibited (by 50%) the (A)gamma-driven luciferase activity and the (A)gamma-F/((A)gamma-F + 2beta-R) expression ratio. These results suggest that different PKC isoforms may exert ontogenetic-specific functions in erythropoiesis and that modulation of PKCalpha might affect the activity of (A)gamma-promoter-driven reporters.  相似文献   

9.
10.
11.

Background

Nucleotide metabolism is central to all biological systems, due to their essential role in genetic information and energy transfer, which in turn suggests its possible presence in the last common ancestor (LCA) of Bacteria, Archaea and Eukarya. In this context, elucidation of the contribution of the origin and diversification of de novo and salvage pathways of nucleotide metabolism will allow us to understand the links between the enzymatic steps associated with the LCA and the emergence of the first metabolic pathways.

Results

In this work, the taxonomical distribution of the enzymes associated with nucleotide metabolism was evaluated in 1,606 complete genomes. 151 sequence profiles associated with 120 enzymatic reactions were used. The evaluation was based on profile comparisons, using RPS-Blast. Organisms were clustered based on their taxonomical classifications, in order to obtain a normalized measure of the taxonomical distribution of enzymes according to the average of presence/absence of enzymes per genus, which in turn was used for the second step, to calculate the average presence/absence of enzymes per Clade.

Conclusion

From these analyses, it was suggested that divergence at the enzymatic level correlates with environmental changes and related modifications of the cell wall and membranes that took place during cell evolution. Specifically, the divergence of the 5-(carboxyamino) imidazole ribonucleotide mutase to phosphoribosylaminoimidazole carboxylase could be related to the emergence of multicellularity in eukaryotic cells. In addition, segments of salvage and de novo pathways were probably complementary in the LCA to the synthesis of purines and pyrimidines. We also suggest that a large portion of the pathway to inosine 5’-monophosphate (IMP) in purines could have been involved in thiamine synthesis or its derivatives in early stages of cellular evolution, correlating with the fact that these molecules may have played an active role in the protein-RNA world. The analysis presented here provides general observations concerning the adaptation of the enzymatic steps in the early stages of the emergence of life and the LCA.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-800) contains supplementary material, which is available to authorized users.  相似文献   

12.
TAR DNA‐binding protein 43 (TDP‐43) has emerged as an important contributor to amyotrophic lateral sclerosis and frontotemporal lobar degeneration. To understand the physiological roles of TDP‐43 in the complex translational regulation mechanisms, we exposed cultured cells to oxidative stress induced by sodium arsenite (ARS) for different periods of time, leading to non‐lethal or sublethal injury. Polysome profile analysis revealed that ARS‐induced stress caused the association of TDP‐43 with stalled ribosomes via binding to mRNA, which was not found under the steady‐state condition. When the cells were exposed to short‐term/non‐lethal stress, TDP‐43 associating with ribosomes localized to stress granules (SGs); this association was transient because it was immediately dissolved by the removal of the stress. In contrast, when the cells were exposed to long‐term/sublethal stress, TDP‐43 was excluded from SGs and shifted to the heavy fractions independent of any binding to mRNA. In these severely stressed cells, biochemical alterations of TDP‐43, such as increased insolubility and disulfide bond formation, were irreversible. TDP‐43 was finally phosphorylated via the ARS‐induced c‐jun N‐terminal kinase pathway. In TDP‐43‐silenced cells, stalled mRNA and poly (A)+ RNA stability was disturbed and cytotoxicity increased under sublethal stress. Thus, TDP‐43 associates with stalled ribosomes and contributes to cell survival during cellular stress.  相似文献   

13.
14.
The activities of 5'-methylthioadenosine (MTA) nucleosidase (EC 2.2.2.28) and 5-methylthioribose (MTR) kinase (EC 2.7.1.100) were related to changes in ethylene biosynthesis in tomato ( Lycopersicon esculentum Mill. cv. Rutgers) and cucumber ( Cucumis sativus Mill. cv. Poinsett 76) fruit following wounding and chemically induced stresses. Stress ethylene formation in wounded tomato and cucumber tissue continued to increase after wounding, reached its peak by 3h, and then declined. The activities of MTA nucleosidase and MTR kinase increased parallel to stress ethylene in both tissues. At peak ethylene formation, MTA and MTR kinase activities were 2- to 4-fold higher in wounded than in intact tissue. Wounded, mature-green tomato tissue treated with specific inhibitors of MTA nucleosidase and MTR kinase showed a significant reduction in the activities of these enzymes, which was concomitant with a decline in stress ethylene biosynthesis. When mature-green tomato discs were infiltrated with [14CH3] MTA and wounded, radioactive MTR and methionine were formed. Incubation of mature-green tomato discs with Cu2+ and Li+ in the presence of kinetin increased ethylene biosynthesis. MTA nucleosidase activity was higher than that of the control in the presence of Cu2+ but not in the presence of Li+, while MTR kinase activity was lower than that of the control in both Cu2+ and Li+ treatments. Data indicate that MTA nucleosidase and MTR kinase are required for wound-induced ethylene biosynthesis but not for chemical stress-induced ethylene by Cu2+ or Li+ treatments.  相似文献   

15.
Previously, we found that the conversion of hemoglobins (Hbs) from the larval to the adult type occurred within a single erythroid cell population in a salamander, Hynobius retardatus ("Hb switching" model), whereas the transition involves replacement of red-blood-cell (RBC) populations ("RBC replacement" model) in many amphibians (M. Yamaguchi, H. Takahashi, and M. Wakahara, 2000, Dev. Gene Evol. 210, 180-189). To further characterize the Hb transition, developmental changes in the erythropoietic sites have been intensively analyzed using larval- and adult-specific globin antibodies and globin and GATA-3 RNA probes. Cells of the ventral blood island (VBI) and the dorsolateral plate (DLP) in embryos differentiate in situ to erythroid cells that contain larval globin mRNA, suggesting that both the VBI and the DLP contribute to "primitive" erythropoiesis. In contrast, the expression pattern of the GATA-3 gene suggests that cells of the DLP may contribute to "definitive" hematopoiesis. In order to determine whether it is possible to define a definitive erythropoiesis in H. retardatus or not, further experiments were done: (1) when metamorphosing larvae were treated with phenylhydrazine to induce anemia and then bled at the postmetamorphic stage after recovery from the anemia, a precocious Hb transition was observed in these animals; (2) an RBC population expressing only adult Hb was confirmed by subtracting the number of RBCs expressing larval Hb from the total number of RBCs during metamorphosis. All these results support the existence of a definitive erythroid cell population that contributes only adult RBCs in this species.  相似文献   

16.
The nucleotide sequence of the right-hand terminal 3% of adenovirus type 5 (Ad5) DNA has been determined, using the chemical degradation technique developed by Maxam and Gilbert (1977). This region of the genome comprises the 1003 basepair long HindIII-I fragment and the first 75 nucleotides of the adjacent HindIII-F fragment, extending from the right-hand terminus to the sequences from which the main body of the mRNA of early region 4 is transcribed. One of the origins of adenovirus DNA replication is located within this part of the genome. The sequencing results are discussed in relation to several models proposed for the mechanism of replication of linear DNA molecules, which invariably depend on the presence of specific arrangements of nucleotides at the termini of those linear DNAs.  相似文献   

17.
Detailed knowledge of the pathways by which ghrelin and leptin signal to AMPK in hypothalamic neurons and lead to regulation of appetite and glucose homeostasis is central to the development of effective means to combat obesity. Here we identify CaMKK2 as a component of one of these pathways, show that it regulates hypothalamic production of the orexigenic hormone NPY, provide evidence that it functions as an AMPK kinase in the hypothalamus, and demonstrate that it forms a unique signaling complex with AMPK and β. Acute pharmacologic inhibition of CaMKK2 in wild-type mice, but not CaMKK2 null mice, inhibits appetite and promotes weight loss consistent with decreased NPY and AgRP mRNAs. Moreover, the loss of CaMKK2 protects mice from high-fat diet-induced obesity, insulin resistance, and glucose intolerance. These data underscore the potential of targeting CaMKK2 as a therapeutic intervention.  相似文献   

18.
When fractionated by reverse-phase high performance liquid chromatography (HPLC), the embryonic hemoglobin of the rainbow trout, Oncorhynchus mykiss, consisted of eight globins different from adult globins in terms of retention time. Amino acid sequences of the N-terminal regions of some globins were determined. In addition, four cDNA clones for embryonic globins from 10-day embryos were isolated (at 15 degrees C), sequenced and the amino acid sequences predicted. In comparison with the sequences of previously characterized globins, they corresponded to two alpha-type and two beta-type globins and therefore were named em.alpha-1, em.alpha-2, em.beta-1 and em.beta-2. The N-terminal 36 amino acids of one (E2) of the embryonic globins isolated by HPLC were identical to those of the sequence deduced from a cDNA, em.beta-2. The phylogenetic relationship between the embryonic globins and other globins previously reported was discussed. The present study is the first demonstration of amino acid sequences of embryonic globins in a teleost. To understand the initiation of erythropoiesis in the early development of the rainbow trout, histochemistry using o-dianisidine/hydrogen peroxide, immunohistochemistry using an antibody against embryonic hemoglobin, and northern blotting and whole embryo in situ hybridization using antisense RNA probe for em.beta-2 were performed. Embryonic globin mRNA, globin and hemoglobin appeared first in the anterior part of the intermediate cell mass (ICM) located in the median line beneath the notochord of embryos 6-7 days after fertilization at 15 degrees C (Vernier's stages 16-20). Shortly after that, the expression signal extended to the posterior part of the ICM and spread out laterally to blood islands on the posterior yolk sac. Thus, the initiation of erythropoiesis in the early embryo of rainbow trout is intraembryonic.  相似文献   

19.
The effects of different concentrations of exogenously supplied dThd on DNA replication were investigated in seedlings of Pisum sativum. Nascent DNA was labeled with either [3H]dThd or [3H]dAdo in the presence of 1·10?6, 1·10?5 or 1·10?4 M unlabeled dThd. The rate of DNA synthesis was determined by measuring the kinetics of radioactivity incorporation into trichloroacetic acid-precipitable material and the size of the nascent molecules was investigated using alkaline sucrose gradients. The results obtained showed that high concentrations of exogenously supplied dThd accelerated the joining of completed nascent replicons without affecting the rate of DNA synthesis. This observation strengthens the hypothesis that the dTTP pool size is one of the factors controlling the timing of nascent replicon maturation.  相似文献   

20.
Arsenic (As) and cadmium (Cd) are two of the most hazardous substances in the environment and have been implicated in a number of human diseases including cancer. Their mechanisms of toxicity and subsequent carcinogenesis are not understood. To identify the genes involved in As/Cd detoxification, we screened a random insertional mutagenesis library of Schizosaccharomyces pombe for mutants that are hypersensitive to As/Cd. Mutations were mapped to spc1 + ( sty1 +) and SPBC17G9.08c . Spc1 is a stress-activated protein kinase orthologous to human p38. A fragment of SPBC17G9.08c was previously identified as csx2 , a high-copy suppressor of cut6 that encodes an acetyl-CoA carboxylase involved in fatty acid biosynthesis. SPBC17G9.08c is a member of the centaurin ADP ribosylation factor GTPase activating protein family found in a variety of fungi, plants and metazoans, but not in Saccharomyces cerevisiae . Cnt5, so named because its closest human homolog is centaurin β-5, binds to phosphatidic acid and phosphatidyl serine in vitro . Microscopic localization of Cnt5-GFP indicates significant redistribution of Cnt5 from the cytoplasm to the cell membranes in response to As stress. These data suggest a model in which Cnt5 contributes to As/Cd resistance by maintaining membrane integrity or by modulating membrane trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号