首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yang W  Tempelman RJ 《Genetics》2012,190(4):1491-1501
Hierarchical mixed effects models have been demonstrated to be powerful for predicting genomic merit of livestock and plants, on the basis of high-density single-nucleotide polymorphism (SNP) marker panels, and their use is being increasingly advocated for genomic predictions in human health. Two particularly popular approaches, labeled BayesA and BayesB, are based on specifying all SNP-associated effects to be independent of each other. BayesB extends BayesA by allowing a large proportion of SNP markers to be associated with null effects. We further extend these two models to specify SNP effects as being spatially correlated due to the chromosomally proximal effects of causal variants. These two models, that we respectively dub as ante-BayesA and ante-BayesB, are based on a first-order nonstationary antedependence specification between SNP effects. In a simulation study involving 20 replicate data sets, each analyzed at six different SNP marker densities with average LD levels ranging from r(2) = 0.15 to 0.31, the antedependence methods had significantly (P < 0.01) higher accuracies than their corresponding classical counterparts at higher LD levels (r(2) > 0. 24) with differences exceeding 3%. A cross-validation study was also conducted on the heterogeneous stock mice data resource (http://mus.well.ox.ac.uk/mouse/HS/) using 6-week body weights as the phenotype. The antedependence methods increased cross-validation prediction accuracies by up to 3.6% compared to their classical counterparts (P < 0.001). Finally, we applied our method to other benchmark data sets and demonstrated that the antedependence methods were more accurate than their classical counterparts for genomic predictions, even for individuals several generations beyond the training data.  相似文献   

2.
Simultaneous analysis of correlated traits that change with time is an important issue in genetic analyses. Several methodologies have already been proposed for the genetic analysis of longitudinal data on single traits, in particular random regression and character process models. Although the latter proved, in most cases, to compare favourably to alternative approaches for analysis of single function-valued traits, they do not allow a straightforward extension to the multivariate case. In this paper, another methodology (structured antedependence models) is proposed, and methods are derived for the genetic analysis of two or more correlated function-valued traits. Multivariate analyses are presented of fertility and mortality in Drosophila and of milk, fat and protein yields in dairy cattle. These models offer a substantial flexibility for the correlation structure, even in the case of complex non-stationary patterns, and perform better than multivariate random regression models, with fewer parameters.  相似文献   

3.
Bayesian quantitative trait loci mapping for multiple traits   总被引:1,自引:0,他引:1       下载免费PDF全文
Banerjee S  Yandell BS  Yi N 《Genetics》2008,179(4):2275-2289
Most quantitative trait loci (QTL) mapping experiments typically collect phenotypic data on multiple correlated complex traits. However, there is a lack of a comprehensive genomewide mapping strategy for correlated traits in the literature. We develop Bayesian multiple-QTL mapping methods for correlated continuous traits using two multivariate models: one that assumes the same genetic model for all traits, the traditional multivariate model, and the other known as the seemingly unrelated regression (SUR) model that allows different genetic models for different traits. We develop computationally efficient Markov chain Monte Carlo (MCMC) algorithms for performing joint analysis. We conduct extensive simulation studies to assess the performance of the proposed methods and to compare with the conventional single-trait model. Our methods have been implemented in the freely available package R/qtlbim (http://www.qtlbim.org), which greatly facilitates the general usage of the Bayesian methodology for unraveling the genetic architecture of complex traits.  相似文献   

4.
We introduce a method for the analysis of multilocus, multitrait genetic data that provides an intuitive and precise characterization of genetic architecture. We show that it is possible to infer the magnitude and direction of causal relationships among multiple correlated phenotypes and illustrate the technique using body composition and bone density data from mouse intercross populations. Using these techniques we are able to distinguish genetic loci that affect adiposity from those that affect overall body size and thus reveal a shortcoming of standardized measures such as body mass index that are widely used in obesity research. The identification of causal networks sheds light on the nature of genetic heterogeneity and pleiotropy in complex genetic systems.  相似文献   

5.
Huang H  Eversley CD  Threadgill DW  Zou F 《Genetics》2007,176(4):2529-2540
A Bayesian methodology has been developed for multiple quantitative trait loci (QTL) mapping of complex binary traits that follow liability threshold models. Unlike most QTL mapping methods where only one or a few markers are used at a time, the proposed method utilizes all markers across the genome simultaneously. The outperformance of our Bayesian method over the traditional single-marker analysis and interval mapping has been illustrated via simulations and real data analysis to identify candidate loci associated with colorectal cancer.  相似文献   

6.
Without consideration of other linked QTLs responsible for dynamic trait, original functional mapping based on a single QTL model is not optimal for analyzing multiple dynamic trait loci. Despite that composite functional mapping incorporates the effects of genetic background outside the tested QTL in mapping model, the arbitrary choice of background markers also impact on the power of QTL detection. In this study, we proposed Bayesian functional mapping strategy that can simultaneously identify multiple QTL controlling developmental patterns of dynamic traits over the genome. Our proposed method fits the change of each QTL effect with the time by Legendre polynomial and takes the residual covariance structure into account using the first autoregressive equation. Also, Bayesian shrinkage estimation was employed to estimate the model parameters. Especially, we specify the gamma distribution as the prior for the first-order auto-regressive coefficient, which will guarantee the convergence of Bayesian sampling. Simulations showed that the proposed method could accurately estimate the QTL parameters and had a greater statistical power of QTL detection than the composite functional mapping. A real data analysis of leaf age growth in rice is used for the demonstration of our method. It shows that our Bayesian functional mapping can detect more QTLs as compared to composite functional mapping.  相似文献   

7.
Simulated data were used to determine the properties of multivariate prediction of breeding values for categorical and continuous traits using phenotypic, molecular genetic and pedigree information by mixed linear-threshold animal models via Gibbs sampling. Simulation parameters were chosen such that the data resembled situations encountered in Warmblood horse populations. Genetic evaluation was performed in the context of the radiographic findings in the equine limbs. The simulated pedigree comprised seven generations and 40 000 animals per generation. The simulated data included additive genetic values, residuals and fixed effects for one continuous trait and liabilities of four binary traits. For one of the binary traits, quantitative trait locus (QTL) effects and genetic markers were simulated, with three different scenarios with respect to recombination rate (r) between genetic markers and QTL and polymorphism information content (PIC) of genetic markers being studied: r = 0.00 and PIC = 0.90 (r0p9), r = 0.01 and PIC = 0.90 (r1p9), and r = 0.00 and PIC = 0.70 (r0p7). For each scenario, 10 replicates were sampled from the simulated horse population, and six different data sets were generated per replicate. Data sets differed in number and distribution of animals with trait records and the availability of genetic marker information. Breeding values were predicted via Gibbs sampling using a Bayesian mixed linear-threshold animal model with residual covariances fixed to zero and a proper prior for the genetic covariance matrix. Relative breeding values were used to investigate expected response to multi- and single-trait selection. In the sires with 10 or more offspring with trait information, correlations between true and predicted breeding values ranged between 0.89 and 0.94 for the continuous traits and between 0.39 and 0.77 for the binary traits. Proportions of successful identification of sires of average, favourable and unfavourable genetic value were 81% to 86% for the continuous trait and 57% to 74% for the binary traits in these sires. Expected decrease of prevalence of the QTL trait was 3% to 12% after multi-trait selection for all binary traits and 9% to 17% after single-trait selection for the QTL trait. The combined use of phenotype and genotype data was superior to the use of phenotype data alone. It was concluded that information on phenotypes and highly informative genetic markers should be used for prediction of breeding values in mixed linear-threshold animal models via Gibbs sampling to achieve maximum reduction in prevalences of binary traits.  相似文献   

8.

Background

Genomic prediction of breeding values from dense single nucleotide polymorphisms (SNP) genotypes is used for livestock and crop breeding, and can also be used to predict disease risk in humans. For some traits, the most accurate genomic predictions are achieved with non-linear estimates of SNP effects from Bayesian methods that treat SNP effects as random effects from a heavy tailed prior distribution. These Bayesian methods are usually implemented via Markov chain Monte Carlo (MCMC) schemes to sample from the posterior distribution of SNP effects, which is computationally expensive. Our aim was to develop an efficient expectation–maximisation algorithm (emBayesR) that gives similar estimates of SNP effects and accuracies of genomic prediction than the MCMC implementation of BayesR (a Bayesian method for genomic prediction), but with greatly reduced computation time.

Methods

emBayesR is an approximate EM algorithm that retains the BayesR model assumption with SNP effects sampled from a mixture of normal distributions with increasing variance. emBayesR differs from other proposed non-MCMC implementations of Bayesian methods for genomic prediction in that it estimates the effect of each SNP while allowing for the error associated with estimation of all other SNP effects. emBayesR was compared to BayesR using simulated data, and real dairy cattle data with 632 003 SNPs genotyped, to determine if the MCMC and the expectation-maximisation approaches give similar accuracies of genomic prediction.

Results

We were able to demonstrate that allowing for the error associated with estimation of other SNP effects when estimating the effect of each SNP in emBayesR improved the accuracy of genomic prediction over emBayesR without including this error correction, with both simulated and real data. When averaged over nine dairy traits, the accuracy of genomic prediction with emBayesR was only 0.5% lower than that from BayesR. However, emBayesR reduced computing time up to 8-fold compared to BayesR.

Conclusions

The emBayesR algorithm described here achieved similar accuracies of genomic prediction to BayesR for a range of simulated and real 630 K dairy SNP data. emBayesR needs less computing time than BayesR, which will allow it to be applied to larger datasets.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0082-4) contains supplementary material, which is available to authorized users.  相似文献   

9.
In clinical studies involving multiple variables, simultaneous tests are often considered where both the outcomes and hypotheses are correlated. This article proposes a multivariate mixture prior on treatment effects, that allows positive probability of zero effect for each hypothesis, correlations among effect sizes, correlations among binary outcomes of zero versus nonzero effect, and correlations among the observed test statistics (conditional on the effects). We develop a Bayesian multiple testing procedure, for the multivariate two-sample situation with unknown covariance structure, and obtain the posterior probabilities of no difference between treatment regimens for specific variables. Prior selection methods and robustness issues are discussed in the context of a clinical example.  相似文献   

10.
Genomic selection or genomic prediction (GP) has increasingly become an important molecular breeding technology for crop improvement. GP aims to utilise genome-wide marker data to predict genomic breeding value for traits of economic importance. Though GP studies have been widely conducted in various crop species such as wheat and maize, its application in cotton, an essential renewable textile fibre crop, is still significantly underdeveloped. We aim to develop a new GP-based breeding system that can improve the efficiency of our cotton breeding program. This article presents a GP study on cotton fibre quality and yield traits using 1385 breeding lines from the Commonwealth Scientific and Industrial Research Organisation (CSIRO, Australia) cotton breeding program which were genotyped using a high-density SNP chip that generated 12,296 informative SNPs. The aim of this study was twofold: (1) to identify the models and data sources (i.e. genomic and pedigree) that produce the highest prediction accuracies; and (2) to assess the effectiveness of GP as a selection tool in the CSIRO cotton breeding program. The prediction analyses were conducted under various scenarios using different Bayesian predictive models. Results highlighted that the model combining genomic and pedigree information resulted in the best cross validated prediction accuracies: 0.76 for fibre length, 0.65 for fibre strength, and 0.64 for lint yield. Overall, this work represents the largest scale genomic selection studies based on cotton breeding trial data. Prediction accuracies reported in our study indicate the potential of GP as a breeding tool for cotton. The study highlighted the importance of incorporating pedigree and environmental factors in GP models to optimise the prediction performance.Subject terms: Plant breeding, Genome  相似文献   

11.
Pleiotropy has played an important role in understanding quantitative traits. However, the extensiveness of this effect in the genome and its consequences for plant improvement have not been fully elucidated. The aim of this study was to identify pleiotropic quantitative trait loci (QTLs) in maize using Bayesian multiple interval mapping. Additionally, we sought to obtain a better understanding of the inheritance, extent and distribution of pleiotropic effects of several components in maize production. The design III procedure was used from a population derived from the cross of the inbred lines L-14-04B and L-08-05F. Two hundred and fifty plants were genotyped with 177 microsatellite markers and backcrossed to both parents giving rise to 500 backcrossed progenies, which were evaluated in six environments for grain yield and its components. The results of this study suggest that mapping isolated traits limits our understanding of the genetic architecture of quantitative traits. This architecture can be better understood by using pleiotropic networks that facilitate the visualization of the complexity of quantitative inheritance, and this characterization will help to develop new selection strategies. It was also possible to confront the idea that it is feasible to identify QTLs for complex traits such as grain yield, as pleiotropy acts prominently on its subtraits and as this "trait" can be broken down and predicted almost completely by the QTLs of its components. Additionally, pleiotropic QTLs do not necessarily signify pleiotropy of allelic interactions, and this indicates that the pervasive pleiotropy does not limit the genetic adaptability of plants.  相似文献   

12.
Complex traits important for humans are often correlated phenotypically and genetically. Joint mapping of quantitative-trait loci (QTLs) for multiple correlated traits plays an important role in unraveling the genetic architecture of complex traits. Compared with single-trait analysis, joint mapping addresses more questions and has advantages for power of QTL detection and precision of parameter estimation. Some statistical methods have been developed to map QTLs underlying multiple traits, most of which are based on maximum-likelihood methods. We develop here a multivariate version of the Bayes methodology for joint mapping of QTLs, using the Markov chain-Monte Carlo (MCMC) algorithm. We adopt a variance-components method to model complex traits in outbred populations (e.g., humans). The method is robust, can deal with an arbitrary number of alleles with arbitrary patterns of gene actions (such as additive and dominant), and allows for multiple phenotype data of various types in the joint analysis (e.g., multiple continuous traits and mixtures of continuous traits and discrete traits). Under a Bayesian framework, parameters--including the number of QTLs--are estimated on the basis of their marginal posterior samples, which are generated through two samplers, the Gibbs sampler and the reversible-jump MCMC. In addition, we calculate the Bayes factor related to each identified QTL, to test coincident linkage versus pleiotropy. The performance of our method is evaluated in simulations with full-sib families. The results show that our proposed Bayesian joint-mapping method performs well for mapping multiple QTLs in situations of either bivariate continuous traits or mixed data types. Compared with the analysis for each trait separately, Bayesian joint mapping improves statistical power, provides stronger evidence of QTL detection, and increases precision in estimation of parameter and QTL position. We also applied the proposed method to a set of real data and detected a coincident linkage responsible for determining bone mineral density and areal bone size of wrist in humans.  相似文献   

13.
MOTIVATION: In most quantitative trait locus (QTL) mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may affect the accuracy of QTL detection and lead to detection of spurious QTLs. To improve the robustness of QTL mapping methods, we replaced the normal distribution for residuals in multiple interacting QTL models with the normal/independent distributions that are a class of symmetric and long-tailed distributions and are able to accommodate residual outliers. Subsequently, we developed a Bayesian robust analysis strategy for dissecting genetic architecture of quantitative traits and for mapping genome-wide interacting QTLs in line crosses. RESULTS: Through computer simulations, we showed that our strategy had a similar power for QTL detection compared with traditional methods assuming normal-distributed traits, but had a substantially increased power for non-normal phenotypes. When this strategy was applied to a group of traits associated with physical/chemical characteristics and quality in rice, more main and epistatic QTLs were detected than traditional Bayesian model analyses under the normal assumption.  相似文献   

14.
We study a population genetics model of an organism with a genome of L(tot)loci that determine the values of T quantitative traits. Each trait is controlled by a subset of L loci assigned randomly from the genome. There is an optimum value for each trait, and stabilizing selection acts on the phenotype as a whole to maintain actual trait values close to their optima. The model contains pleiotropic effects (loci can affect more than one trait) and epistasis in fitness. We use adaptive walk simulations to find high-fitness genotypes and to study the way these genotypes are distributed in sequence space. We then simulate the evolution of haploid and diploid populations on these fitness landscapes and show that the genotypes of populations are able to drift through sequence space despite stabilizing selection on the phenotype. We study the way the rate of drift and the extent of the accessible region of sequence space is affected by mutation rate, selection strength, population size, recombination rate, and the parameters L and T that control the landscape shape. There are three regimes of the model. If LTL(tot), there are many small peaks that can be spread over a wide region of sequence space. Compensatory neutral mutations are important in the population dynamics in this case.  相似文献   

15.
Bayesian analyses for a multiple capture-recapture model   总被引:3,自引:0,他引:3  
SMITH  PHILIP J. 《Biometrika》1991,78(2):399-407
  相似文献   

16.
Bayesian methods are a popular choice for genomic prediction of genotypic values. The methodology is well established for traits with approximately Gaussian phenotypic distribution. However, numerous important traits are of dichotomous nature and the phenotypic counts observed follow a Binomial distribution. The standard Gaussian generalized linear models (GLM) are not statistically valid for this type of data. Therefore, we implemented Binomial GLM with logit link function for the BayesB and Bayesian GBLUP genomic prediction methods. We compared these models with their standard Gaussian counterparts using two experimental data sets from plant breeding, one on female fertility in wheat and one on haploid induction in maize, as well as a simulated data set. With the aid of the simulated data referring to a bi-parental population of doubled haploid lines, we further investigated the influence of training set size (N), number of independent Bernoulli trials for trait evaluation (n i ) and genetic architecture of the trait on genomic prediction accuracies and abilities in general and on the relative performance of our models. For BayesB, we in addition implemented finite mixture Binomial GLM to account for overdispersion. We found that prediction accuracies increased with increasing N and n i . For the simulated and experimental data sets, we found Binomial GLM to be superior to Gaussian models for small n i , but that for large n i Gaussian models might be used as ad hoc approximations. We further show with simulated and real data sets that accounting for overdispersion in Binomial data can markedly increase the prediction accuracy.  相似文献   

17.
Bayesian curve fitting using multivariate normal mixtures   总被引:1,自引:0,他引:1  
  相似文献   

18.
In this paper we describe various study designs and analytic techniques for testing the joint hypothesis that a genetic marker is both linked to and associated with a quantitative phenotype. Issues of power and sampling are addressed. The distinction between methods that explicitly examine association and those that infer association by examining the distribution of allelic transmissions from a heterozygous parent is examined. Extensions to multivariate, multiallelic, and multilocus situations are addressed. Recent approaches that combine variance-components-based linkage analyses with joint tests of linkage in the presence of association for disentanglement of the linkage and association and the application of such methods to fine mapping are discussed. Finally, new classes of joint tests of linkage and association that do not require samples of related individuals are described.  相似文献   

19.
General models of the evolution of cooperation, altruism and other social behaviours have focused almost entirely on single traits, whereas it is clear that social traits commonly interact. We develop a general kin-selection framework for the evolution of social behaviours in multiple dimensions. We show that whenever there are interactions among social traits new behaviours can emerge that are not predicted by one-dimensional analyses. For example, a prohibitively costly cooperative trait can ultimately be favoured owing to initial evolution in other (cheaper) social traits that in turn change the cost–benefit ratio of the original trait. To understand these behaviours, we use a two-dimensional stability criterion that can be viewed as an extension of Hamilton''s rule. Our principal example is the social dilemma posed by, first, the construction and, second, the exploitation of a shared public good. We find that, contrary to the separate one-dimensional analyses, evolutionary feedback between the two traits can cause an increase in the equilibrium level of selfish exploitation with increasing relatedness, while both social (production plus exploitation) and asocial (neither) strategies can be locally stable. Our results demonstrate the importance of emergent stability properties of multidimensional social dilemmas, as one-dimensional stability in all component dimensions can conceal multidimensional instability.  相似文献   

20.
The objectives of this study were to 1) compare four models for breeding value prediction using genomic or pedigree information and 2) evaluate the impact of fixed effects that account for family structure. Comparisons were made in a Nellore-Angus population comprising F2, F3 and half-siblings to embryo transfer F2 calves with records for overall temperament at weaning (TEMP; n = 769) and Warner-Bratzler shear force (WBSF; n = 387). After quality control, there were 34,913 whole genome SNP markers remaining. Bayesian methods employed were BayesB (π̃ = 0.995 or 0.997 for WBSF or TEMP, respectively) and BayesC (π = 0 and π̃), where π̃ is the ideal proportion of markers not included. Direct genomic values (DGV) from single trait Bayesian analyses were compared to conventional pedigree-based animal model breeding values. Numerically, BayesC procedures (using π̃) had the highest accuracy of all models for WBSF and TEMP (ρ̂ = 0.843 and 0.923, respectively), but BayesB had the least bias (regression of performance on prediction closest to 1, β̂y,x = 2.886 and 1.755, respectively). Accounting for family structure decreased accuracy and increased bias in prediction of DGV indicating a detrimental impact when used in these prediction methods that simultaneously fit many markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号