首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fission yeast temperature-sensitive mutants cut3-477 and cut14-208 fail to condense chromosomes but small portions of the chromosomes can separate along the spindle during mitosis, producing phi-shaped chromosomes. Septation and cell division occur in the absence of normal nuclear division, causing the cut phenotype. Fluorescence in situ hybridization demonstrated that the contraction of the chromosome arm during mitosis was defective. Mutant chromosomes are apparently not rigid enough to be transported poleward by the spindle. Loss of the cut3 protein by gene disruption fails to maintain the nuclear chromatin architecture even in interphase. Both cut3 and cut14 proteins contain a putative nucleoside triphosphate (NTP)-binding domain and belong to the same ubiquitous protein family which includes the budding yeast Smc1 protein. The cut3 mutant was suppressed by an increase in the cut14+ gene dosage. The cut3 protein, having the highest similarity to the mouse protein, is localized in the nucleus throughout the cell cycle. Plasmids carrying the DNA topoisomerase I gene partly suppressed the temperature sensitive phenotype of cut3-477, suggesting that the cut3 protein might be involved in chromosome DNA topology.  相似文献   

2.
Maintenance of Kaposi's sarcoma-associated herpesvirus (KSHV) latent infection depends on the viral episomes in the nucleus being distributed to daughter cells following cell division. The latency-associated nuclear antigen (LANA) is constitutively expressed in all KSHV-infected cells. LANA binds sequences in the terminal repeat regions of the KSHV genome and tethers the viral episomes to chromosomes. To better understand the mechanism of chromosomal tethering, we performed glutathione S-transferase (GST) affinity and yeast two-hybrid assays to identify LANA-interacting proteins with known chromosomal association. Two of the interactors were the methyl CpG binding protein MeCP2 and the 43-kDa protein DEK. The interactions of MeCP2 and DEK with LANA were confirmed by coimmunoprecipitation. The MeCP2-interacting domain was mapped to the previously described chromatin binding site in the N terminus of LANA, while the DEK-interacting domain mapped to LANA amino acids 986 to 1043 in the C terminus. LANA was unable to associate with mouse chromosomes in chromosome spreads of transfected NIH 3T3 cells. However, LANA was capable of targeting to mouse chromosomes in the presence of human MeCP2 or DEK. The data indicate that LANA is tethered to chromosomes through two independent chromatin binding domains that interact with different protein partners.  相似文献   

3.
The eukaryotic origin recognition complex (ORC) selects the genomic sites where prereplication complexes are assembled and DNA replication begins. In proliferating mammalian cells, ORC activity appears to be regulated by reducing the affinity of the Orc1 subunit for chromatin during S phase and then preventing reformation of a stable ORC-chromatin complex until mitosis is completed and a nuclear membrane is assembled. Here we show that part of the mechanism by which this is accomplished is the selective association of Orc1 with Cdk1 (Cdc2)/cyclin A during the G(2)/M phase of cell division. This association accounted for the appearance in M-phase cells of hyperphosphorylated Orc1 that was subsequently dephosphorylated during the M-to-G(1) transition. Moreover, inhibition of Cdk activity in metaphase cells resulted in rapid binding of Orc1 to chromatin. However, chromatin binding was not mediated through increased affinity of Orc1 for Orc2, suggesting that additional events are involved in the assembly of functional ORC-chromatin sites. These results reveal that the same cyclin-dependent protein kinase that initiates mitosis in mammalian cells also concomitantly inhibits assembly of functional ORC-chromatin sites.  相似文献   

4.
The metazoan nucleus is disassembled and re-built at every mitotic cell division. The nuclear envelope, including nuclear pore complexes, breaks down at the beginning of mitosis to accommodate the capture of massively condensed chromosomes by the spindle apparatus. At the end of mitosis, a nuclear envelope is newly formed around each set of segregating and de-condensing chromatin. We review the current understanding of the membrane restructuring events involved in the formation of the nuclear membrane sheets of the envelope, the mechanisms governing nuclear pore complex assembly and integration in the nascent nuclear membranes, and the regulated coordination of these events with chromatin de-condensation.  相似文献   

5.
DEK protein is an ubiquitous phosphorylated nuclear protein. Specific binding of DEK to DNA could change the topology of DNA and then affect the gene activity of the underlying DNA sequences. It is speculated that there might be some potential relationship between the stress reaction of cells and DEK proteins. The phosphorylation status of DEK protein is altered during death-receptor-mediated cell apoptosis. Both phosphorylation and poly(ADP-ribosyl)ation could promote the release of DEK from apoptotic nuclei to extracellular environment, and in this case DEK becomes a potential autoantigen of some autoimmune diseases. The available evidence powerfully suggests that DEK protein is closely relevant to apoptosis. The overexpression of DEK protein has dual function in cell apoptosis, in terms of inhibiting or triggering cell apoptosis. Contributed equally to this work Supported by the Science and Technology Foundation of Beijing Jiaotong University (Grant Nos. 2006RC035 and 2007XM047).  相似文献   

6.
Saccharomyces cerevisiae dbf4 and cdc7 cell cycle mutants block initiation of DNA synthesis (i.e., are iDS mutants) at 37 degrees C and arrest the cell cycle with a 1C DNA content. Surprisingly, certain dbf4 and cdc7 strains divide their chromatin at 37 degrees C. We found that the activation of the Cdc28 mitotic protein kinase and the Dbf2 kinase occurred with the correct relative timing with respect to each other and the observed division of the unreplicated chromatin. Furthermore, the division of unreplicated chromatin depended on a functional spindle. Therefore, the observed nuclear division resembled a normal mitosis, suggesting that S. cerevisiae commits to M phase in late G1 independently of S phase. Genetic analysis of dbf4 and cdc7 strains showed that the ability to restrain mitosis during a late G1 block depended on the genetic background of the strain concerned, since the dbf4 and cdc7 alleles examined showed the expected mitotic restraint in other backgrounds. This restraint was genetically dominant to lack of restraint, indicating that an active arrest mechanism, or checkpoint, was involved. However, none of the previously described mitotic checkpoint pathways were defective in the iDS strains that carry out mitosis without replicated DNA, therefore indicating that the checkpoint pathway that arrests mitosis in iDS mutants is novel. Thus, spontaneous strain differences have revealed that S. cerevisiae commits itself to mitosis in late G1 independently of entry into S phase and that a novel checkpoint mechanism can restrain mitosis if cells are blocked in late G1. We refer to this as the G1/M-phase checkpoint since it acts in G1 to restrain mitosis.  相似文献   

7.
The importance of nuclear DNA synthesis for the doubling, or reproduction, of centrosomes in cells that are not growth-limited, such as sea urchin eggs, has not been clearly defined. Studies of enucleated, fertilized eggs show that nuclear activities are not required at each cell cycle for the normal reproduction of the complete centrosome. However, other studies report that the inhibition of nuclear DNA synthesis in intact eggs by the drug aphidicolin prevents centrosome reproduction and entry into mitosis as seen by nuclear envelope breakdown. To resolve this paradox, we systematically characterized the effect of aphidicolin on cell division in eggs from three species of sea urchins. Eggs were continuously treated with 5 or 10 micrograms/ml aphidicolin starting 5 min after fertilization. This blocked total incorporation of 3H-thymidine into DNA by at least 90%, as previously reported. We found that the sperm aster always doubles prior to first mitosis. Over a period of several hours, the centrosomes reproduce in the normal 2-4-8-16 fashion, with a period that is longer and more variable than normal. In every culture, a variable percentage of the eggs undergoes nuclear envelope breakdown. Once broken down, the nuclear envelope never visibly reforms even though centrosomes continue to double. Fluorescent labeling of DNA revealed that the chromatin does not condense into discrete chromosomes. Whether or not the nuclear envelope breaks down, the chromatin appears as an amorphous mass of fibers stretched between first two and then four asters. Later, the nuclear envelope/chromatin loses its association with some or all centrosomes. Our results were the same for all eggs at both drug concentrations. Thus, nuclear DNA synthesis is not required for centrosome reproduction in sea urchin eggs.  相似文献   

8.
9.
10.
? The high mobility group (HMG)-box represents a DNA-binding domain that is found in various eukaryotic DNA-interacting proteins. Proteins that contain three copies of the HMG-box domain, termed 3 × HMG-box proteins, appear to be specific to plants. The Arabidopsis genome encodes two 3 × HMG-box proteins that were studied here. ? DNA interactions were examined using electrophoretic mobility shift assays, whereas expression, subcellular localization and chromosome association were mainly analysed by different types of fluorescence microscopy. ? The 3 × HMG-box proteins bind structure specifically to DNA, display DNA bending activity and, in addition to the three HMG-box domains, the basic N-terminal domain contributes to DNA binding. The expression of the two Arabidopsis genes encoding 3 × HMG-box proteins is linked to cell proliferation. In synchronized cells, expression is cell cycle dependent and peaks in cells undergoing mitosis. 3 × HMG-box proteins are excluded from the nuclei of interphase cells and localize to the cytosol, but, during mitosis, they associate with condensed chromosomes. The 3 × HMG-box2 protein generally associates with mitotic chromosomes, while 3 × HMG-box1 is detected specifically at 45S rDNA loci. ? In addition to mitotic chromosomes the 3 × HMG-box proteins associate with meiotic chromosomes, suggesting that they are involved in a general process of chromosome function related to cell division, such as chromosome condensation and/or segregation.  相似文献   

11.
A pulsed laser microbeam of wavelength 532 nm was used to produce visible small lesions in the nucleoplasm or in the cytoplasm of V79 Chinese hamster cells. Transmission electron microscopy (TEM) of microirradiated nuclei showed that the lesions were produced within the nucleus and comprised between 0.2 and 0.5% of the total chromatin. Serial sections above and below the lesion site did not reveal any detectable chromatin damage, indicating that a visible lesion was restricted to the focal point of the beam. Whereas cells microirradiated anywhere in the cytoplasm showed normal clonal growth with few exceptions, the cells containing nuclear lesions did not enter mitosis at the time of unirradiated controls. Instead they formed giant cells in a high percentage of cases (7299). The DNA content of these cells was considerably increased suggesting polyploidization. In some cases, division of giant cells was observed resulting in non-viable daughter cells containing micronuclei. Further evidence that the induction of giant cell formation depends on chromatin damage was obtained by microirradiation of chromosomes in anaphase. Here, giant cell formation was observed in the daughter cell which received microirradiated chromatin, whereas microirradiation of cytoplasm between the moving sets of chromosomes did not affect subsequent divisions of both daughter cells. Our data point out that loss of reproductive integrity and giant cell formation can be induced by damage at many sites of the chromosome complement.  相似文献   

12.
Specific interactions of chromatin with the nuclear envelope (NE) in early embryos of Drosophila melanogaster have been mapped and analyzed. Using fluorescence in situ hybridization, the three-dimensional positions of 42 DNA probes, primarily to chromosome 2L, have been mapped in nuclei of intact Drosophila embryos, revealing five euchromatic and two heterochromatic regions associated with the NE. These results predict that there are approximately 15 NE contacts per chromosome arm, which delimit large chromatin loops of approximately 1-2 Mb. These NE association sites do not strictly correlate with scaffold-attachment regions, heterochromatin, or binding sites of known chromatin proteins. Pairs of neighboring probes surrounding one NE association site were used to delimit the NE association site more precisely, suggesting that peripheral localization of a large stretch of chromatin is likely to result from NE association at a single discrete site. These NE interactions are not established until after telophase, by which time the nuclear envelope has reassembled around the chromosomes, and they are thus unlikely to be involved in binding of NE vesicles to chromosomes following mitosis. Analysis of positions of these probes also reveals that the interphase nucleus is strongly polarized in a Rabl configuration which, together with specific targeting to the NE or to the nuclear interior, results in each locus occupying a highly determined position within the nucleus.  相似文献   

13.
During mitosis, condensin is responsible for folding chromatin fibers into highly compact chromosomes, ensuring the faithful segregation of replicated chromosomes into daughter cells after each cell division. Our laboratory has unexpectedly found that condensin is capable of compacting DNA during the interphase: upon nutrient starvation, condensin is loaded to the rDNA array, leading to DNA condensation in this region. This subchromosomal DNA condensation appears to protect the integrity of the rDNA array. These observations provide the first microscopic evidence of DNA compaction by condensin outside mitosis. In addition, they show that condensin is also highly regulated during the interphase.  相似文献   

14.
15.
Fanconi anemia (FA) is a genetic disease characterized by congenital defects, bone marrow failure, and cancer susceptibility. Cells from patients with FA exhibit genomic instability and hypersensitivity to DNA cross linking agents such as mitomycin C. Despite the identification of seven complementation groups and the cloning of six genes, the function of the encoded gene products remains elusive. The FancA (Fanconi anemia complementation group A), FancC, and FancG proteins have been detected within a nuclear complex, but no change in level, binding, or localization has been reported as a result of drug treatment or cell cycle. We show that in immunofluorescence studies, FancA appears as a non-nucleolar nuclear protein that is excluded from condensed, mitotic chromosomes. Biochemical fractionation reveals that the FA proteins are found in nuclear matrix and chromatin and that treatment with mitomycin C results in increase of the FA proteins in nuclear matrix and chromatin fractions. This induction occurs in wild-type cells and mutant FA-D (Fanconi complementation group D) cells but not in mutant FA-A cells. Immunoprecipitation of FancA protein in chromatin demonstrates the coprecipitation of FancA, FancC, and FancG, showing that the FA proteins move together as a complex. Also, fractionation of mitotic cells confirms the lack of FA proteins in chromatin or the nuclear matrix. Furthermore, phosphorylation of FancG was found to be temporally correlated with exit of the FA complex from chromosomes at mitosis. Taken together, these findings suggest a role for FA proteins in chromatin and nuclear matrix.  相似文献   

16.
The small GTPase Ran has multiple roles during the cell division cycle, including nuclear transport, mitotic spindle assembly, and nuclear envelope formation. However, regulation of Ran during cell division is poorly understood. Ran-GTP is generated by the guanine nucleotide exchange factor RCC1, the localization of which to chromosomes is necessary for the fidelity of mitosis in human cells. Using photobleaching techniques, we show that the chromosomal interaction of human RCC1 fused to green fluorescent protein (GFP) changes during progression through mitosis by being highly dynamic during metaphase and more stable toward the end of mitosis. The interaction of RCC1 with chromosomes involves the interface of RCC1 with Ran and requires an N-terminal region containing a nuclear localization signal. We show that this region contains sites phosphorylated by mitotic protein kinases. One site, serine 11, is targeted by CDK1/cyclin B and is phosphorylated in mitotic human cells. Phosphorylation of the N-terminal region of RCC1 inhibits its binding to importin alpha/beta and maintains the mobility of RCC1 during metaphase. This mechanism may be important for the localized generation of Ran-GTP on chromatin after nuclear envelope breakdown and may play a role in the coordination of progression through mitosis.  相似文献   

17.
The distribution of the DEK protein in mammalian chromatin   总被引:3,自引:0,他引:3  
DEK is an abundant and ubiquitous chromatin protein. Here we investigate whether DEK is regularly distributed in the chromatin of human HeLa cells. We show that DEK appears to be excluded from the heterochromatic compartment. However, DEK seems to colocalize with a subfraction of chromatin bearing acetylated histone H4. We examined certain DNA sequences in specifically immunoprecipitated chromatin for four selected human genes. We found that most of the investigated gene sequences were moderately enriched in immunoprecipitated chromatin. In contrast, a promoter-proximal element of the human TOP1 gene was highly enriched in the chromatin immunoprecipitates. This enrichment was lost when cells were treated with alpha-amanitin showing that DEK binds to this particular site only when the TOP1 gene is actively expressed. Our conclusion is that DEK could serve as an architectural protein at the promoter or enhancer sites of a subfraction of human genes.  相似文献   

18.
We have identified a protein (p55) with a molecular weight of 55 kDa and a pI of 6.2, which was strongly increased in the nuclear matrix of rat liver cells during proliferative activation. This protein is highly insoluble since it could not be solubilized either by detergents or by alkaline extraction. We have obtained three partial amino acid sequences which revealed that p55 has a high homology with cytokeratins. Polyclonal antibodies raised against p55 were used to carry out Western blot and immunocytochemical studies which indicated that p55 was localized only in the nuclei, specifically in the nuclear matrix. Autoradiographic experiments revealed that not all the cells presenting an increase in p55 incorporated [3H]thymidine, indicating that this protein is not related to DNA replication. Immunocytochemical studies also revealed that during mitosis p55 is localized surrounding the chromosomes and associated with the mitotic apparatus, suggesting that p55 is involved in the separation of chromosomes during cell division.  相似文献   

19.
In order to maintain genomic integrity during mitosis, cells assemble the mitotic spindle to separate sister chromosomes to the two daughter cells. A variety of motor- and non motor-proteins are involved in the organization and regulation of this complex apparatus. DNA polymerase δ-interacting protein 38 (PDIP38) is a highly conserved protein and has so far been shown to be a cytoplasmic and nuclear protein. Cell cycle dependent nuclear localization and the interaction with DNA polymerase δ and proliferating cell nuclear antigen (PCNA) indicate a role for PDIP38 in DNA modification and/or proliferation. Here, we show for the first time that PDIP38 localizes to the mitotic spindle throughout mitosis. Using anti-PDIP38 antibody injections and siRNA silencing, we demonstrate that PDIP38 loss-of-function causes problems with spindle organization, aberrant chromosome segregation, and multinucleated cells. Taken together, the data indicate different roles for PDIP38 in safeguarding a proper cell division at various stages of the cell cycle, including DNA synthesis and repair, organization of the mitotic spindle and chromosome segregation.  相似文献   

20.
DEK is a nuclear phosphoprotein implicated in oncogenesis and autoimmunity and a major component of metazoan chromatin. The intracellular cues that control the binding of DEK to DNA and its pleiotropic functions in DNA- and RNA-dependent processes have remained mainly elusive so far. Our recent finding that the phosphorylation status of DEK is altered during death receptor-mediated apoptosis suggested a potential involvement of DEK in stress signaling. In this study, we show that in cells committed to die, a portion of the cellular DEK pool is extensively posttranslationally modified by phosphorylation and poly(ADP-ribosyl)ation. Through interference with DEK expression, we further show that DEK promotes the repair of DNA lesions and protects cells from genotoxic agents that typically trigger poly(ADP-ribose) polymerase activation. The posttranslational modification of DEK during apoptosis is accompanied by the removal of the protein from chromatin and its release into the extracellular space. Released modified DEK is recognized by autoantibodies present in the synovial fluids of patients affected by juvenile rheumatoid arthritis/juvenile idiopathic arthritis. These findings point to a crucial role of poly(ADP-ribosyl)ation in shaping DEK's autoantigenic properties and in its function as a promoter of cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号