首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A principal obstacle to completing maps and analyses of the human genome involves the genome’s “inaccessible” regions: sequences (often euchromatic and containing genes) that are isolated from the rest of the euchromatic genome by heterochromatin and other repeat-rich sequence. We describe a way to localize these sequences by using ancestry linkage disequilibrium in populations that derive ancestry from at least three continents, as is the case for Latinos. We used this approach to map the genomic locations of almost 20 megabases of sequence unlocalized or missing from the current human genome reference (NCBI Genome GRCh37)—a substantial fraction of the human genome’s remaining unmapped sequence. We show that the genomic locations of most sequences that originated from fosmids and larger clones can be admixture mapped in this way, by using publicly available whole-genome sequence data. Genome assembly efforts and future builds of the human genome reference will be strongly informed by this localization of genes and other euchromatic sequences that are embedded within highly repetitive pericentromeric regions.  相似文献   

2.
Sequence assembly of large and repeat-rich plant genomes has been challenging, requiring substantial computational resources and often several complementary sequence assembly and genome mapping approaches. The recent development of fast and accurate long-read sequencing by circular consensus sequencing (CCS) on the PacBio platform may greatly increase the scope of plant pan-genome projects. Here, we compare current long-read sequencing platforms regarding their ability to rapidly generate contiguous sequence assemblies in pan-genome studies of barley (Hordeum vulgare). Most long-read assemblies are clearly superior to the current barley reference sequence based on short-reads. Assemblies derived from accurate long reads excel in most metrics, but the CCS approach was the most cost-effective strategy for assembling tens of barley genomes. A downsampling analysis indicated that 20-fold CCS coverage can yield very good sequence assemblies, while even five-fold CCS data may capture the complete sequence of most genes. We present an updated reference genome assembly for barley with near-complete representation of the repeat-rich intergenic space. Long-read assembly can underpin the construction of accurate and complete sequences of multiple genomes of a species to build pan-genome infrastructures in Triticeae crops and their wild relatives.

A greatly improved reference genome sequence of barley was assembled from accurate long reads.  相似文献   

3.
MOTIVATION: Structural variations and in particular copy number variations (CNVs) have dramatic effects of disease and traits. Technologies for identifying CNVs have been an active area of research for over 10 years. The current generation of high-throughput sequencing techniques presents new opportunities for identification of CNVs. Methods that utilize these technologies map sequencing reads to a reference genome and look for signatures which might indicate the presence of a CNV. These methods work well when CNVs lie within unique genomic regions. However, the problem of CNV identification and reconstruction becomes much more challenging when CNVs are in repeat-rich regions, due to the multiple mapping positions of the reads. RESULTS: In this study, we propose an efficient algorithm to handle these multi-mapping reads such that the CNVs can be reconstructed with high accuracy even for repeat-rich regions. To our knowledge, this is the first attempt to both identify and reconstruct CNVs in repeat-rich regions. Our experiments show that our method is not only computationally efficient but also accurate.  相似文献   

4.
5.
6.
Genome segmentation facilitates reassortment and rapid evolution of influenza A virus. However, segmentation complicates particle assembly as virions must contain all eight vRNA species to be infectious. Specific packaging signals exist that extend into the coding regions of most if not all segments, but these RNA motifs are poorly defined. We measured codon variability in a large dataset of sequences to identify areas of low nucleotide sequence variation independent of amino acid conservation in each segment. Most clusters of codons showing very little synonymous variation were located at segment termini, consistent with previous experimental data mapping packaging signals. Certain internal regions of conservation, most notably in the PA gene, may however signify previously unidentified functions in the virus genome. To experimentally test the bioinformatics analysis, we introduced synonymous mutations into conserved codons within known packaging signals and measured incorporation of the mutant segment into virus particles. Surprisingly, in most cases, single nucleotide changes dramatically reduced segment packaging. Thus our analysis identifies cis-acting sequences in the influenza virus genome at the nucleotide level. Furthermore, we propose that strain-specific differences exist in certain packaging signals, most notably the haemagglutinin gene; this finding has major implications for the evolution of pandemic viruses.  相似文献   

7.
ABSTRACT: BACKGROUND: Eimeria is a genus of parasites in the same phylum (Apicomplexa) as human parasites such as Toxoplasma, Cryptosporidium and the malaria parasite Plasmodium. As an apicomplexan whose life-cycle involves a single host, Eimeria is a convenient model for understanding this group of organisms. Although the genomes of the Apicomplexa are diverse, that of Eimeria is unique in being composed of large alternating blocks of sequence with very different characteristics - an arrangement seen in no other organism. This arrangement has impeded efforts to fully sequence the genome of Eimeria, which remains the last of the major apicomplexans to be fully analyzed. In order to increase the value of the genome sequence data and aid in the effort to gain a better understanding of the Eimeria tenella genome, we constructed a whole genome map for the parasite. RESULTS: A total of 1245 contigs representing 70.0% of the whole genome assembly sequences (Wellcome Trust Sanger Institute) were selected and subjected to marker selection. Subsequently, 2482 HAPPY markers were developed and typed. Of these, 795 were considered as usable markers, and utilized in the construction of a HAPPY map. Markers developed from chromosomally-assigned genes were then integrated into the HAPPY map and this aided the assignment of a number of linkage groups to their respective chromosomes. BAC-end sequences and contigs from whole genome sequencing were also integrated to improve and validate the HAPPY map. This resulted in an integrated HAPPY map consisting of 60 linkage groups that covers approximately half of the estimated 60 Mb genome. Further analysis suggests that the segmental organization first seen in Chromosome 1 is present throughout the genome, with repeat-poor (P) regions alternating with repeat-rich (R) regions. Evidence of copy-number variation between strains was also uncovered. CONCLUSIONS: This paper describes the application of a whole genome mapping method to improve the assembly of the genome of E. tenella from shotgun data, and to help reveal its overall structure. A preliminary assessment of copy-number variation (extra or missing copies of genomic segments) between strains of E. tenella was also carried out. The emerging picture is of a very unusual genome architecture displaying inter-strain copy-number variation. We suggest that these features may be related to the known ability of this parasite to rapidly develop drug resistance.  相似文献   

8.
9.
Effective comparative mapping inference utilizing developing gene maps of animal species requires the inclusion of anchored reference loci that are homologous to genes mapped in the more "gene-dense" mouse and human maps. Nominated anchor loci, termed comparative anchor tagged sequences (CATS), have been ordered in the mouse linkage map, but due to the dearth of common polymorphisms among human coding genes have not been well represented in human linkage maps. We present here an ordered framework map of 314 comparative anchor markers in humans based on mapping analysis in the Genebridge 4 panel of radiation hybrid cell lines, plus empirically optimized CATS PCR primers which detect these markers. The ordering of these homologous gene markers in human and mouse maps provides a framework for comparative gene mapping of representative mammalian species.  相似文献   

10.
Rapid advances in sequencing technologies of second- and even third-generation made the whole genome sequencing a routine procedure. However, the methods for assembling of the obtained sequences and its results require special consideration. Modern assemblers are based on heuristic algorithms, which lead to fragmented genome assembly composed of scaffolds and contigs of different lengths, the order of which along the chromosome and belonging to a particular chromosome often remain unknown. In this regard, the resulting genome sequence can only be considered as a draft assembly. The principal improvement in the quality and reliability of a draft assembly can be achieved by targeted sequencing of the genome elements of different size, e.g., chromosomes, chromosomal regions, and DNA fragments cloned in different vectors, as well as using reference genome, optical mapping, and Hi-C technology. This approach, in addition to simplifying the assembly of the genome draft, will more accurately identify numerical and structural chromosomal variations and abnormalities of the genomes of the studied species. In this review, we discuss the key technologies for the genome sequencing and the de novo assembly, as well as different approaches to improve the quality of existing drafts of genome sequences.  相似文献   

11.
The human genome reference (HGR) completion marked the genomics era beginning, yet despite its utility universal application is limited by the small number of individuals used in its development. This is highlighted by the presence of high-quality sequence reads failing to map within the HGR. Sequences failing to map generally represent 2–5 % of total reads, which may harbor regions that would enhance our understanding of population variation, evolution, and disease. Alternatively, complete de novo assemblies can be created, but these effectively ignore the groundwork of the HGR. In an effort to find a middle ground, we developed a bioinformatic pipeline that maps paired-end reads to the HGR as separate single reads, exports unmappable reads, de novo assembles these reads per individual and then combines assemblies into a secondary reference assembly used for comparative analysis. Using 45 diverse 1000 Genomes Project individuals, we identified 351,361 contigs covering 195.5 Mb of sequence unincorporated in GRCh38. 30,879 contigs are represented in multiple individuals with ~40 % showing high sequence complexity. Genomic coordinates were generated for 99.9 %, with 52.5 % exhibiting high-quality mapping scores. Comparative genomic analyses with archaic humans and primates revealed significant sequence alignments and comparisons with model organism RefSeq gene datasets identified novel human genes. If incorporated, these sequences will expand the HGR, but more importantly our data highlight that with this method low coverage (~10–20×) next-generation sequencing can still be used to identify novel unmapped sequences to explore biological functions contributing to human phenotypic variation, disease and functionality for personal genomic medicine.  相似文献   

12.
Structural variations (SVs) contribute significantly to the variability of the human genome and extensive genomic rearrangements are a hallmark of cancer. While genomic DNA paired-end-tag (DNA-PET) sequencing is an attractive approach to identify genomic SVs, the current application of PET sequencing with short insert size DNA can be insufficient for the comprehensive mapping of SVs in low complexity and repeat-rich genomic regions. We employed a recently developed procedure to generate PET sequencing data using large DNA inserts of 10–20 kb and compared their characteristics with short insert (1 kb) libraries for their ability to identify SVs. Our results suggest that although short insert libraries bear an advantage in identifying small deletions, they do not provide significantly better breakpoint resolution. In contrast, large inserts are superior to short inserts in providing higher physical genome coverage for the same sequencing cost and achieve greater sensitivity, in practice, for the identification of several classes of SVs, such as copy number neutral and complex events. Furthermore, our results confirm that large insert libraries allow for the identification of SVs within repetitive sequences, which cannot be spanned by short inserts. This provides a key advantage in studying rearrangements in cancer, and we show how it can be used in a fusion-point-guided-concatenation algorithm to study focally amplified regions in cancer.  相似文献   

13.

Background

Most eukaryotic genomes include a substantial repeat-rich fraction termed heterochromatin, which is concentrated in centric and telomeric regions. The repetitive nature of heterochromatic sequence makes it difficult to assemble and analyze. To better understand the heterochromatic component of the Drosophila melanogaster genome, we characterized and annotated portions of a whole-genome shotgun sequence assembly.

Results

WGS3, an improved whole-genome shotgun assembly, includes 20.7 Mb of draft-quality sequence not represented in the Release 3 sequence spanning the euchromatin. We annotated this sequence using the methods employed in the re-annotation of the Release 3 euchromatic sequence. This analysis predicted 297 protein-coding genes and six non-protein-coding genes, including known heterochromatic genes, and regions of similarity to known transposable elements. Bacterial artificial chromosome (BAC)-based fluorescence in situ hybridization analysis was used to correlate the genomic sequence with the cytogenetic map in order to refine the genomic definition of the centric heterochromatin; on the basis of our cytological definition, the annotated Release 3 euchromatic sequence extends into the centric heterochromatin on each chromosome arm.

Conclusions

Whole-genome shotgun assembly produced a reliable draft-quality sequence of a significant part of the Drosophila heterochromatin. Annotation of this sequence defined the intron-exon structures of 30 known protein-coding genes and 267 protein-coding gene models. The cytogenetic mapping suggests that an additional 150 predicted genes are located in heterochromatin at the base of the Release 3 euchromatic sequence. Our analysis suggests strategies for improving the sequence and annotation of the heterochromatic portions of the Drosophila and other complex genomes.  相似文献   

14.
The mosquito Aedes aegypti transmits some of the most important human arboviruses, including dengue, yellow fever and chikungunya viruses. It has a large genome containing many repetitive sequences, which has resulted in the genome being poorly assembled — there are 4,758 scaffolds, few of which have been assigned to a chromosome. To allow the mapping of genes affecting disease transmission, we have improved the genome assembly by scoring a large number of SNPs in recombinant progeny from a cross between two strains of Ae. aegypti, and used these to generate a genetic map. This revealed a high rate of misassemblies in the current genome, where, for example, sequences from different chromosomes were found on the same scaffold. Once these were corrected, we were able to assign 60% of the genome sequence to chromosomes and approximately order the scaffolds along the chromosome. We found that there are very large regions of suppressed recombination around the centromeres, which can extend to as much as 47% of the chromosome. To illustrate the utility of this new genome assembly, we mapped a gene that makes Ae. aegypti resistant to the human parasite Brugia malayi, and generated a list of candidate genes that could be affecting the trait.  相似文献   

15.
《Gene》1998,221(1):GC65-GC110
A filter based on a set of unsupervised neural networks trained with a winner-take-all strategy discloses signals along the coding sequences of G-protein coupled receptors. By comparing with the existing experimental data it appears that these signals correlate with putative functional domains of the proteins. After protein alignment within subfamilies, signals cluster in protein regions which, according to the presently available experimental results, are described as possible functional domains of the folded proteins. The mapping procedure reveals characteristic regions in the coding sequences common and/or characteristic of the receptor subtype. This is particularly noticeable for the third cytoplasmic loop, which is likely to be involved in the molecular coupling of all the subfamilies with G-proteins. The results indicate that our mapping can highlight intrinsic representative features of the coding sequences which, in the case of G-protein coupled receptors, are characteristic of protein functional regions and suggest a possible application of the filter for predicting functional determinants in proteins starting from the coding sequence.  相似文献   

16.
The LOSS OF APOMEIOSIS (LOA) locus is one of two dominant loci known to control apomixis in the eudicot Hieracium praealtum. LOA stimulates the differentiation of somatic aposporous initial cells after the initiation of meiosis in ovules. Aposporous initial cells undergo nuclear proliferation close to sexual megaspores, forming unreduced aposporous embryo sacs, and the sexual program ceases. LOA-linked genetic markers were used to isolate 1.2 Mb of LOA-associated DNAs from H. praealtum. Physical mapping defined the genomic region essential for LOA function between two markers, flanking 400 kb of identified sequence and central unknown sequences. Cytogenetic and sequence analyses revealed that the LOA locus is located on a single chromosome near the tip of the long arm and surrounded by extensive, abundant complex repeat and transposon sequences. Chromosomal features and LOA-linked markers are conserved in aposporous Hieracium caespitosum and Hieracium piloselloides but absent in sexual Hieracium pilosella. Their absence in apomictic Hieracium aurantiacum suggests that meiotic avoidance may have evolved independently in aposporous subgenus Pilosella species. The structure of the hemizygous chromosomal region containing the LOA locus in the three Hieracium subgenus Pilosella species resembles that of the hemizygous apospory-specific genomic regions in monocot Pennisetum squamulatum and Cenchrus ciliaris. Analyses of partial DNA sequences at these loci show no obvious conservation, indicating that they are unlikely to share a common ancestral origin. This suggests convergent evolution of repeat-rich hemizygous chromosomal regions containing apospory loci in these monocot and eudicot species, which may be required for the function and maintenance of the trait.  相似文献   

17.
18.
Tozaki T  Swinburne J  Hirota K  Hasegawa T  Ishida N  Tobe T 《Gene》2007,392(1-2):181-186
Genetic maps are extremely important tools for tracing the genes that govern economically significant traits, and microsatellites are a significant component of these. In this study, we isolated 2346 novel horse microsatellites as resources for the construction of high-density horse genetic maps. Of these 2346 markers, 339 (14.5%) horse sequences showed sequence homology to DNA sequences in the human genome, demonstrating that microsatellites as type II markers are valuable resources for developing linkage maps and that they have a potential equal to that of type I markers for developing comparative maps. Of the 339 markers, 206 (60.8%) were assigned to horse chromosomes using the Animal Health Trust (AHT) full-sib reference family, and 195 (94.6%) of these localized to the expected syntenic locations on the human genome. These results confirmed the high level of accuracy of in silico mapping. Thus, the 339 markers that exhibited homology to the human genome increased the density of markers on the horse-human comparative map. The resulting comparative map will facilitate the use of horse microsatellites as genetic markers for the identification of quantitative trait loci (QTL) that have been mapped on the human genome. In addition, although the in silico and linkage mapping data did not agree for the other 11 (5.4%) of the assigned 206 markers, these may represent new putative regions of horse-human synteny.  相似文献   

19.
Ultraconserved elements are stretches of consecutive nucleotides that are perfectly conserved in multiple mammalian genomes. Although these sequences are identical in the reference human, mouse, and rat genomes, we identified numerous polymorphisms within these regions in the human population. To determine whether polymorphisms in ultraconserved elements affect fitness, we genotyped unrelated human DNA samples at loci within these sequences. For all single-nucleotide polymorphisms tested in ultraconserved regions, individuals homozygous for derived alleles (alleles that differ from the rodent reference genomes) were present, viable, and healthy. The distribution of allele frequencies in these samples argues against strong, ongoing selection as the force maintaining the conservation of these sequences. We then used two methods to determine the minimum level of selection required to generate these sequences. Despite the lack of fixed differences in these sequences between humans and rodents, the average level of selection on ultraconserved elements is less than that on essential genes. The strength of selection associated with ultraconserved elements suggests that mutations in these regions may have subtle phenotypic consequences that are not easily detected in the laboratory.  相似文献   

20.
Next-generation sequencing (NGS) technologies have enabled high-throughput and low-cost generation of sequence data; however, de novo genome assembly remains a great challenge, particularly for large genomes. NGS short reads are often insufficient to create large contigs that span repeat sequences and to facilitate unambiguous assembly. Plant genomes are notorious for containing high quantities of repetitive elements, which combined with huge genome sizes, makes accurate assembly of these large and complex genomes intractable thus far. Using two-color genome mapping of tiling bacterial artificial chromosomes (BAC) clones on nanochannel arrays, we completed high-confidence assembly of a 2.1-Mb, highly repetitive region in the large and complex genome of Aegilops tauschii, the D-genome donor of hexaploid wheat (Triticum aestivum). Genome mapping is based on direct visualization of sequence motifs on single DNA molecules hundreds of kilobases in length. With the genome map as a scaffold, we anchored unplaced sequence contigs, validated the initial draft assembly, and resolved instances of misassembly, some involving contigs <2 kb long, to dramatically improve the assembly from 75% to 95% complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号