首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee J  Shinohara T 《Cell research》2011,21(8):1164-1171
Germline stem (GS) cells were established from gonocytes and spermatogonia of postnatal mouse testes. GS cells proliferate in the presence of several kinds of cytokines, and a small percentage of GS cells also show spermatogonial stem cell (SSC) activity, i.e., they differentiate into sperm after being transplanted into infertile mouse testes without endogenous spermatogenesis. Interestingly, in GS cell culture, we also found that pluripotent stem cells (multipotent germline stem cells (mGS cells)) could be derived and these mGS cells do not have normal androgenetic genomic imprinting marks that are shown in GS cells, e.g., H19 hypermethylation. A new culture system for fetal male germ cells (embryonic GS (eGS) cells) has also been recently developed. Although these cells exhibited SSC potential, the offspring from cultured cells showed heritable imprinting defects in their DNA methylation patterns. In an attempt to understand the self-renewal machinery in SSCs, we transfected H-Ras and cylin D2 into GS cells, and successfully reconstructed the SSC self-renewal ability without using exogenous cytokines. Although these cells showed SSC activity in germ cell transplantation assays, we also found development of seminomatous tumors, possibly induced by excessive self-renewing signal. These stem cell culture systems are useful tools not only for understanding the mechanisms of self-renewal or epigenetic reprogramming but also for clarifying the mechanism of germ cell tumor development.  相似文献   

2.
Permanent lines of pluripotent stem cells can be obtained from humans and monkeys using different techniques and from different sources—inner cell mass of the blastocyst, primary germ cells, parthenogenetic oocytes, and mature spermatogonia—as well as by transgenic modification of various adult somatic cells. Despite different origin, all pluripotent lines demonstrate considerable similarity of the major biological properties: active self-renewal and differentiation into various somatic and germ cells in vitro and in vivo, similar gene expression profiles, and similar cell cycle structure. Ten years of intense studies on the stability of different human and monkey embryonic stem cells demonstrated that, irrespective of their origin, long-term in vitro cultures lead to the accumulation of chromosomal and gene mutations as well as epigenetic changes that can cause oncogenic transformation of cells. This review summarizes the research data on the genetic and epigenetic stability of different lines of pluripotent stem cells after long-term in vitro culture. These data were used to analyze possible factors of the genome and epigenome instability in pluripotent lines. The prospects of using pluripotent stem cells of different origin in cell therapy and pharmacological studies were considered.  相似文献   

3.
It is reported that adult multipotent stem cells can undergo spontaneous transformation after long-term in vitro culture. Understanding the molecular mechanisms involved in this spontaneous transformation process can help in the design of future therapeutic applications. By far, the transformation process of adult multipotent stem cell is not well understood. In this study, a tumorigenic cell line nominated TDMC1 was established from a clonal population of rat dermis-derived multipotent cells (DMCs) following spontaneous transformation in culture. The transformed cells could produce tumors with characteristics of fibrous histocytoma when they are inoculated subcutaneously into nude mice. The molecular profiles of the nontransformed DMCs and transformed cells were analyzed by a deoxyribonucleic acid microarray. Our results showed that the overactivation of the K-ras/mitogen-activated protein kinase kinase signaling pathway played an important role in the transformation process. These data may be helpful to explain, at least in part, the possible mechanism for the malignant transformation of adult multipotent cells.  相似文献   

4.
吴昭  成璐  肖磊 《生命科学》2009,(5):658-662
胚胎干细胞(embryonic stem cells,ESC)在人类遗传病学研究、疾病模型建立、器官再生以及动物物种改良和定向变异等方面的地位是其他类型的细胞不可取代的。但是,由于实验技术和体外培养条件的限制,除了小鼠、恒河猴和人之外,大鼠、猪、牛、羊等其他哺乳动物的ES细胞系被证明很难获得。先后有多个研究小组报道了他们利用新兴的诱导多能干细胞(induced pluripotent stem cells,iPS细胞)技术成功建立大鼠和猪的iPS细胞系的研究成果。迄今为止,这两个物种是在未成功建立ES细胞系之前利用iPS技术建立多能干细胞系的成功范例。这些研究对于那些还未建立ES细胞的物种建立多能干细胞系提供了一种新的方案,也将给这些物种的胚胎干细胞的建立、基因修饰动物的产生以及人类医疗事业的促进和发展带来新的希望。  相似文献   

5.
Normal mouse pluripotent stem cells were originally derived from the inner cell mass(ICM) of blastocysts and shown to be the in vitro equivalent of those pre-implantation embryonic cells, and thus were called embryonic stem cells(ESCs). More than a decade later, pluripotent cells were isolated from the ICM of human blastocysts. Despite being called human ESCs, these cells differ significantly from mouse ESCs, including different morphology and mechanisms of control of pluripotency, suggesting distinct embryonic origins of ESCs from the two species. Subsequently, mouse pluripotent stem cells were established from the ICMderived epiblast of post-implantation embryos. These mouse epiblast stem cells(Epi SCs) are morphological and epigenetically more similar to human ESCs. This raised the question of whether cells from the human ICM are in a more advanced differentiation stage than their murine counterpart, or whether the available culture conditions were not adequate to maintain those human cells in their in vivo state, leading to a transition into Epi SC-like cells in vitro. More recently, novel culture conditions allowed the conversion of human ESCs into mouse ESC-like cells called nave(or ground state) human ESCs, and the derivation of nave human ESCs from blastocysts. Here we will review the characteristics of each type of pluripotent stem cells, how(and whether) these relate to different stages of embryonic development, and discuss the potential implications of nave human ESCs in research and therapy.  相似文献   

6.
7.
p53 is well known as a "guardian of the genome" for differentiated cells,in which it induces cell cycle arrest and cell death after DNA damage and thus contributes to the maintenance of genomic stability.In addition to this tumor suppressor function for differentiated cells,p53 also plays an important role in stem cells.In this cell type,p53 not only ensures genomic integrity after genotoxic insults but also controls their proliferation and differentiation.Additionally,p53 provides an effective barrier for the generation of pluripotent stem celllike cells from terminally differentiated cells.In this review,we summarize our current knowledge about p53 activities in embryonic,adult and induced pluripotent stem cells.  相似文献   

8.
9.
胚胎干细胞作为一种具有多潜能和高度自我更新能力的种子细胞,己被广泛地应用于医学研究领域。在体外培养条件下,胚胎干细胞可被诱导分化为三个胚层来源的组织细胞,故被看作为最具有应用前景的种子细胞。近年来,对于在体外培养条件下如何维持胚胎干细胞的多能性即使其较长时期的处于未分化状态成为研究热点,其中一些天然存在或人工合成的小分子物质可通过作用于某些特定的靶信号通路,调控胚胎干细胞的分化命运。本文概述了几种小分子物质的最新研究进展,并对小分子物质在成体多分化潜能胚胎样干细胞分化调控方面的应用前景进行评述。  相似文献   

10.
Basic research on pluripotent stem cells is designed to enhance understanding of embryogenesis, whereas applied research is designed to develop novel therapies and prevent diseases. Attainment of these goals has been enhanced by the establishment of embryonic stem cell lines, the technological development of genomic reprogramming to generate induced-pluripotent stem cells, and improvements in vitro techniques to manipulate stem cells. This review summarizes the techniques required to generate neural cells from pluripotent stem cells. In particular, this review describes current research applications of a simple neural differentiation method, the neural stem sphere method, which we developed.  相似文献   

11.
Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity.  相似文献   

12.
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton''s jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials.  相似文献   

13.
14.
To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1–5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.  相似文献   

15.
多能性干细胞是一类具有体外无限自我复制和分化为体内多种细胞类型能力的多潜能细胞,是研究基因功能、建立疾病模型和促进再生医学领域发展的一种重要工具。自1981年小鼠胚胎干细胞建立以来,科学家们已经先后成功地建立了灵长类、人、大鼠的胚胎干细胞和小鼠、大鼠的上胚层干细胞等。但是,目前研究表明,维持人、灵长类胚胎干细胞的多能性信号通路与维持小鼠、大鼠胚胎干细胞的截然不同,而与维持小鼠、大鼠上胚层干细胞的信号通路比较类似。因此,该文对目前研究较多的维持小鼠胚胎干细胞、人胚胎干细胞和小鼠上胚层干细胞的多能性信号通路进行了综述,希望能够对其它物种的多能性干细胞研究提供有益的借鉴。  相似文献   

16.
Pluripotent stem cells have the capacity to divide indefinitely and to differentiate into all somatic cells and tissue lines. They can be genetically manipulated in vitro by knocking genes in or out, and therefore serve as an excellent tool for gene function studies and for the generation of models for some human diseases. Since 1981, when the first mouse embryonic stem cell (ESC) line was generated, many attempts have been made to generate pluripotent stem cell lines from other species. Comparative characterization of ESCs from different species would help us to understand differences and similarities in the signaling pathways involved in the maintenance of pluripotency and the initiation of differentiation, and would reveal whether the fundamental mechanism controlling self-renewal of pluripotent cells is conserved across different species. This report gives an overview of research into embryonic and induced pluripotent stem cells in the rabbit, an important nonrodent species with considerable merits as an animal model for specific diseases. A number of putative rabbit ESC and induced pluripotent stem cell lines have been described. All of them expressed stem cell-associated markers and maintained apparent pluripotency during multiple passages in vitro, but none have been convincingly proven to be fully pluripotent in vivo. Moreover, as in other domestic species, the markers currently used to characterize the putative rabbit ESCs are suboptimal because recent studies have revealed that they are not always specific to the pluripotent inner cell mass. Future validation of rabbit pluripotent stem cells would benefit greatly from a validated panel of molecular markers specific to pluripotent cells of the developing rabbit embryos. Using rabbit-specific pluripotency genes may improve the efficiency of somatic cell reprogramming for generating induced pluripotent stem cells and thereby overcome some of the challenges limiting the potential of this technology.  相似文献   

17.
Human embryonic stem cells (hESC) are able to maintain pluripotency in culture, to proliferate indefinitely and to differentiate into all somatic cell types. Due to these unique properties, hESC may become an exceptional source of tissues for transplantation and have a great potential for the therapy of incurable diseases. Here, we review new developments in the area of embryonic stem cells and discuss major challenges — standardization of protocols for cell derivation and cultivation, identification of specific molecular markers, development of new approaches for directed differentiation, etc. — which remain to be settled, prior to safe and successful clinical application of stem cells. We appraise several potential approaches in hESC-based therapy including derivation of autologous cells via therapeutic cloning (1), generation of immune tolerance to allogenic donor cells via hematopoetic chimerism (2), and development of the banks of hESC lines compatible with the main antigens and exhibiting equivalent pluripotency (3). In addition, we discuss briefly induced pluripotent cells, which are derived via genetic modification of autologous somatic cells and are analogous to ESC. Our analysis demonstrates that uncontrollable differentiation in vivo and teratogenic potential of hESC are critical limitations of their application in clinical practice. Therefore, the major approach in hESC therapy is derivation of a specific differentiated progeny, which has lower proliferative potential and immune privilege, yet poses fewer risks for organism. The review demonstrates that cell therapy is far more complex and resource-consuming process as compared with drug-based medicine and consequently pluripotent stem cell biology and technology still requires further investigation and development before these cells can be used in clinical practice.  相似文献   

18.
Cells resident in an organism that possess the dual capacity for self-renewal and differentiation into a spectrum of subtypes are referred to as stem cells. In the past decade, basic research performed on stem cells has shed light on the molecular pathways operating in vivo which can be harnessed in vitro for the establishment of cell lines mirroring the stem cells in the organism. The attractiveness of stem cells as in vitro models of organotypic differentiation and their potential application in a clinical context holds great promise and is only beginning to be exploited. Stem cells can be broadly grouped into two categories based on their origin from either the embryonic or the adult. Only the early embryo possesses truly pluripotent cells that can give rise to all the cell types present in the embryo proper and adult. The adult, on the other hand, possesses specialized, tissue- or organ-specific stem cell types, which can give rise to the differentiated cell types of that specific organ and have in some instances been shown to transdifferentiate. However, no stem cell obtained from an adult organism has yet been shown to exhibit developmental potential matching the breadth of that of stem cells obtained from embryos. This review focuses on the different types of stem cells that are resident in early stage mammalian embryos, detailing their derivation and propagation in addition to highlighting their developmental potential and opportunities for future applications.  相似文献   

19.
In mammals, DNA methylation and hydroxymethylation are specific epigenetic mechanisms that can contribute to the regulation of gene expression and cellular functions. DNA methylation is important for the function of embryonic stem cells and adult stem cells (such as haematopoietic stem cells, neural stem cells and germline stem cells), and changes in DNA methylation patterns are essential for successful nuclear reprogramming. In the past several years, the rediscovery of hydroxymethylation and the TET enzymes expanded our insights tremendously and uncovered more dynamic aspects of cytosine methylation regulation. Here, we review the current knowledge and highlight the most recent advances in DNA methylation and hydroxymethylation in embryonic stem cells, induced pluripotent stem cells and several well‐studied adult stems cells. Our current understanding of stem cell epigenetics and new advances in the field will undoubtedly stimulate further clinical applications of regenerative medicine in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Stem cells hold indefinite self-renewable capability that can be differentiated into all desired cell types.Based on their plasticity potential,they are divided into totipotent(morula stage cells),pluripotent(embryonic stem cells),multipotent(hematopoietic stem cells,multipotent adult progenitor stem cells,and mesenchymal stem cells[MSCs]),and unipotent(progenitor cells that differentiate into a single lineage)cells.Though bone marrow is the primary source of multipotent stem cells in adults,other tissues such as adipose tissues,placenta,amniotic fluid,umbilical cord blood,periodontal ligament,and dental pulp also harbor stem cells that can be used for regenerative therapy.In addition,induced pluripotent stem cells also exhibit fundamental properties of self-renewal and differentiation into specialized cells,and thus could be another source for regenerative medicine.Several diseases including neurodegenerative diseases,cardiovascular diseases,autoimmune diseases,virus infection(also coronavirus disease 2019)have limited success with conventional medicine,and stem cell transplantation is assumed to be the best therapy to treat these disorders.Importantly,MSCs,are by far the best for regenerative medicine due to their limited immune modulation and adequate tissue repair.Moreover,MSCs have the potential to migrate towards the damaged area,which is regulated by various factors and signaling processes.Recent studies have shown that extracellular calcium(Ca2+)promotes the proliferation of MSCs,and thus can assist in transplantation therapy.Ca2+signaling is a highly adaptable intracellular signal that contains several components such as cell-surface receptors,Ca2+channels/pumps/exchangers,Ca2+buffers,and Ca2+sensors,which together are essential for the appropriate functioning of stem cells and thus modulate their proliferative and regenerative capacity,which will be discussed in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号