首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porcine reproductive and respiratory syndrome (PRRS) is a swine infectious disease causing major economic problems on the intensive pig industry. This virus has been reported worldwide in domestic pigs and there is evidence of PRRS virus (PRRSV) infection in wild boar (Sus scrofa). Nonetheless, the epidemiological role of wild boar and extensively kept domestic pigs remains unclear. The aim of this study was to determine the occurrence of PRRS in wild boar and Iberian pigs in the dehesa ecosystem of the Castile-La Mancha region of Spain, which boasts one of the most important free-roaming porcine livestock and hunting industries in the country. Using geo-spatial analysis of literature data, we first explored the relationship between domestic pig density and PRRS occurrence in wild boar in Europe. Results revealed that PRRS occurrence in wild boar may be influenced, albeit not significantly, by domestic pig density. Next, we analyzed sera from 294 wild boar and 80 Iberian pigs by indirect enzyme-linked immunosorbent assay for PRRSV antibodies. The sera and 27 wild boar tissue samples were analyzed by two real-time RT-PCR assays, targeting the most conserved genes of the PRRSV genome, ORF1 and ORF7. Seven wild boar (2.4 %) and one Iberian pig (1.3 %) were seropositive, while none of the animals tested positive for PRRSV by RT-PCR. Our results confirm the limited spread of PRRSV in free-roaming Iberian pigs and wild boar living in mutual contact. Further studies would be necessary to address whether this low seroprevalence found in these animals reflects transmission from intensively kept pigs or the independent circulation of specific strains in free-roaming pigs.  相似文献   

2.
Nucleotide sequences of mitochondrial DNA (mtDNA) cytochrome B gene (1140 bp) and control region (707 bp) were used to determine the phylogenetic relationships among 51 pig samples representing ancient and current varieties of Iberian pigs (26), Spanish wild boars (seven) and other domestic pigs (18) of cosmopolitan (Duroc, Large White, Landrace, Pietrain and Meishan) and local (Spotted Black Jabugo, Basque and Mangalitza) breeds. A neighbour-joining tree constructed from pairwise distances provide evidence of the European origin of both Iberian pigs and Spanish wild boars. The introgression of Asian mtDNA haplotypes in the genetic pool of the Iberian breed seems unlikely. Four estimates of sequence divergence between European and Asian clades were calculated from the two main domains of the D-loop region and the synonymous and nonsynonymous nucleotide substitutions in the cytochrome B gene. The time since the divergence of pig ancestors was estimated at about 600,000 years before present.  相似文献   

3.
Current evidence suggests that pigs were first domesticated in Eastern Anatolia during the ninth millennium cal BC before dispersing into Europe with Early Neolithic farmers from the beginning of the seventh millennium. Recent ancient DNA (aDNA) research also indicates the incorporation of European wild boar into domestic stock during the Neolithization process. In order to establish the timing of the arrival of domestic pigs into Europe, and to test hypotheses regarding the role European wild boar played in the domestication process, we combined a geometric morphometric analysis (allowing us to combine tooth size and shape) of 449 Romanian ancient teeth with aDNA analysis. Our results firstly substantiate claims that the first domestic pigs in Romania possessed the same mtDNA signatures found in Neolithic pigs in west and central Anatolia. Second, we identified a significant proportion of individuals with large molars whose tooth shape matched that of archaeological (likely) domestic pigs. These large ‘domestic shape’ specimens were present from the outset of the Romanian Neolithic (6100–5500 cal BC) through to later prehistory, suggesting a long history of admixture between introduced domestic pigs and local wild boar. Finally, we confirmed a turnover in mitochondrial lineages found in domestic pigs, possibly coincident with human migration into Anatolia and the Levant that occurred in later prehistory.  相似文献   

4.
The domestic pig originates from the Eurasian wild boar (Sus scrofa). We have sequenced mitochondrial DNA and nuclear genes from wild and domestic pigs from Asia and Europe. Clear evidence was obtained for domestication to have occurred independently from wild boar subspecies in Europe and Asia. The time since divergence of the ancestral forms was estimated at approximately 500,000 years, well before domestication approximately 9,000 years ago. Historical records indicate that Asian pigs were introduced into Europe during the 18th and early 19th centuries. We found molecular evidence for this introgression and the data indicated a hybrid origin of some major "European" pig breeds. The study is an advance in pig genetics and has important implications for the maintenance and utilization of genetic diversity in this livestock species.  相似文献   

5.
Aim We focus on the biogeographical role of the Balkan Peninsula as a glacial refugium and source of northward post‐glacial dispersal for many European taxa. Specifically, we analysed the genetic structure and variation of wild boar (Sus scrofa) samples primarily from Greece, a region that has repeatedly served as a glacial refugium within the Balkan Peninsula. Location Continental Greece, the Aegean island of Samos and Bulgaria. Methods We analysed wild boar samples from 18 localities. Samples from common domestic breeds were also examined to take into account interactions between wild and domesticated animals. Phylogenetic analyses were carried out on a 637‐bp fragment of the mitochondrial DNA control region in 200 wild boar and 27 domestic pigs. The sequences were also compared with 791 Eurasian wild boar and domestic pig D‐loop sequences obtained from GenBank. Results Ninety‐four haplotypes were identified in the European wild boar data set, of which 68 were found in the Balkan samples and assigned to two previously described clades: the E1 European and Near Eastern clades. All of the continental samples clustered in the E1 clade and the samples from Samos fell into the Near Eastern clade, consistent with the island’s proximity to Asia Minor. Intriguingly, 62 novel haplotypes were identified and are found exclusively in the Balkans. Only six haplotypes were shared between wild boar and domestic pigs. Main conclusions Our data reveal numerous novel and geographically restricted haplotypes in wild boar populations, suggesting the presence of separate refugia in the Balkans. Our analyses support the hypothesis of a post‐glacial wild boar expansion consistent with the leading edge model, north and west from modern day Greece, and suggest little maternal introgression of Near Eastern and domestic haplotypes into wild Balkan populations.  相似文献   

6.
6个中国猪地方品种和3个瑞典猪DNA分子系统发育相关关系   总被引:12,自引:0,他引:12  
线粒体DNA遗传多样性用于评价6个中国地方猪种和3个瑞典家猪系统发育关系。采用PCR和序列分析方法得到了来自9个品种140头猪的线粒体中控制区440bp和细胞色素b基因798bp核苷酸序列。系统发育分析结果表明:6个中国地方猪种起源于亚洲野猪。中国地方猪种和欧洲野猪的线粒体DNA核苷酸序列变异发生在413000-875000年以前,而亚洲紧猪的变异仅发生在7000-156000上以前,由于2000年以前或18世纪初中国猪种导入欧洲家猪,因此瑞典家猪既属于欧洲类也属于亚洲类。  相似文献   

7.
The European wild boar is an important game species, subjected to local extinctions and translocations in the past, and currently enormously and worryingly expanding in some areas where management is urgently required. Understanding the relative roles of ancient and recent events in shaping the genetic structure of this species is therefore not only an interesting scientific issue, but it represents also the basis for addressing future management strategies. In addition, several pig breeds descend from the European wild boar, but the geographical location of the domestication area(s) and the possible introgression of pig genomes into wild populations are still open questions. Here, we analysed the genetic variation in different wild boar populations in Europe. Ten polymorphic microsatellites were typed in 252 wild boars and the mtDNA control region was sequenced in a subset of 145 individuals. Some samples from different pig breeds were also analysed. Our results, which were obtained considering also 612 published mtDNA sequences, suggest that (i) most populations are similarly differentiated, but the major discontinuity is found along the Alps; (ii) except for the Italian populations, European wild boars show the signature of a postglacial demographic expansion; (iii) Italian populations seem to preserve a high proportion of preglaciation diversity; (iv) the demographic decline which occurred in some areas in the last few centuries did not produce a noticeable reduction of genetic variation; (v) signs of human-mediated gene flow among populations are weak, although in some regions the effects of translocations are detectable and a low degree of pig introgression can be identified; (vi) the hypothesis of an independent domestication centre in Italy is not supported by our data, which in turn confirm that Central European wild boar might have represented an important source for domestic breeds. We can therefore conclude that recent human activities had a limited effect on the wild boar genetic structure. It follows that areas with high variation and differentiation represent natural reservoirs of genetic diversity to be protected avoiding translocations. In this context controlling some populations by hunting is not expected to affect significantly genetic variation in this species.  相似文献   

8.
Iberian pigs and wild boars are the source of highly priced meat and dry-cured products. Iberian maternal origin is mandatory for labeled Iberian products, making necessary the authentication of their maternal breed origin. Discrimination between wild and domestic pig maternal origin may be useful to distinguish labeled wild boar meat obtained from hunting or farming. In order to detect useful polymorphisms to trace Iberian, Duroc and wild boar maternal lineages, we herein investigated the complete porcine mitochondrial DNA (mtDNA) using three complementary approaches. Near-complete mtDNA sequences (16989 bp), excluding the minisatellite present in the displacement loop region (D-loop), were successfully determined in six Iberian pigs, two Duroc and six European wild boars. To complete the mtDNA analysis, the D-loop minisatellite region was also analyzed in the same set of samples by amplification and capillary electrophoresis detection. Finally, the frequencies of Asian and European Cytochrome B (Cyt B) haplotypes were estimated in Iberian (n = 96) and Duroc (n = 125) breeds. Comparison of near-complete mtDNA sequences revealed a total of 57 substitutions and two Indels. Out of them, 32 polymorphisms were potential Iberian markers, 10 potential Duroc markers and 16 potential wild boar markers. Fourteen potential markers (five Iberian and nine Duroc), were selected to be genotyped in 96 Iberian and 91 Duroc samples. Five wild boar potential markers were selected and tested in samples of wild boars (73) and domestic pigs including: 96 Iberian, 16 Duroc, 16 Large White and 16 Landrace. Genotyping results showed three linked markers (m.7998C>T, m.9111T>C, m.14719A>G) absent in Duroc and present in Iberian pigs with a frequency 0.72. Six markers (m.8158C>T, m.8297T>C, m.9230G>A, m.11859A>G, m.13955T>C, m.16933T>C), three of them linked, were absent in Iberian pigs and present in Duroc with a joint frequency of almost 0.50. Finally three linked markers (m.7188G>A, m.9224T>C, m.15823A>G) were solely detected in wild boars with a frequency 0.22. The D-loop minisatellite results showed overlapping ranges of fragment sizes and suggested heteroplasmy, a result that nullify the use of this region for the development of breed diagnostic markers. The Cyt B haplotype results showed the presence of European haplotypes in Iberian while one of the Asian haplotypes was detected in Duroc with a frequency 0.22, linked to the Duroc marker m.9230G>A. Our results are valuable to resolve the problems of Iberian and wild boar maternal origin determination but additional markers are required to achieve totally useful genetic tests.  相似文献   

9.
The near-complete pig mtDNA genome sequence (15,997 bp) was determined from two domestic pigs (one Chinese Meishan and one Swedish Landrace) and two European wild boars. The sequences were analyzed together with a previously published sequence representing a Swedish domestic pig. The sequences formed three distinct clades, denoted A, E1, and E2, with considerable sequence divergence between them (0.8–1.2%). The results confirm our previous study (based on the sequence of the cytochrome B gene and the control region only) and provide compelling evidence that domestication of pigs must have occurred from both an Asian and a European subspecies of the wild boar. We estimated the time since the divergence of clade A (found in Chinese Meishan pigs) and E1 (found in European domestic pigs) at about 900,000 years before present, long before domestication about 9000 years ago. The pattern of nucleotide substitutions among the sequences was in good agreement with previous interspecific comparisons of mammalian mtDNA; the lowest substitution rates were observed at nonsynonymous sites in protein-coding genes, in the tRNA and rRNA genes, while the highest rates were observed at synonymous sites and in the control region. The presence of Asian clade A in some major European breeds (Large White and Landrace) most likely reflects the documented introgression of Asian germplasm into European stocks during the 18th and 19th centuries. The coexistence of such divergent mtDNA haplotypes for 100+ generations is expected to lead to the presence of recombinant haplotypes if paternal transmission and recombination occur at a low frequency. We found no evidence of such recombination events in the limited sample studied so far. Received: 19 April 2000; Accepted: 15 November 2000  相似文献   

10.
Throughout its distribution across Eurasia, domestic pig (Sus scrofa) populations have acquired differences through natural and artificial selection, and have often interbred. We resequenced 80 Eurasian pigs from nine different Asian and European breeds; we identify 42,288 reliable SNPs on the Y chromosome in a panel of 103 males, among which 96.1% are newly detected. Based on these new data, we elucidate the evolutionary history of pigs through the lens of the Y chromosome. We identify two highly divergent haplogroups: one present only in Asia and one fixed in Europe but present in some Asian populations. Analyzing the European haplotypes present in Asian populations, we find evidence of three independent waves of introgression from Europe to Asia in last 200 years, agreeing well with the literature and historical records. The diverse European lineages were brought in China by humans and left significant imprints not only on the autosomes but also on the Y chromosome of geographically and genetically distinct Chinese pig breeds. We also find a general excess of European ancestry on Y chromosomes relative to autosomes in Chinese pigs, an observation that cannot be explained solely by sex-biased migration and genetic drift. The European Y haplotype is associated with leaner meat production, and we hypothesize that the European Y chromosome increased in frequency in Chinese populations due to artificial selection. We find evidence of Y chromosomal gene flow between Sumatran wild boar and Chinese pigs. Our results demonstrate how human-mediated admixture and selection shaped the distribution of modern swine Y chromosomes.  相似文献   

11.
Hybridization between wild boar (Sus scrofa) and domestic pig occurred in the past and still occurs today, having great evolutionary and management implications. In fact, genetic introgression from the domestic form may alter traits like behavior, reproduction rate, and immunology in wild populations, with likely demographic impacts. Thus, it is crucial to understand under what conditions hybridization occurs in S. scrofa. Captive crosses with domestic pigs (released or escaped) have been suggested to constitute the major source of the spread of domestic genes into wild boar populations. However, to date, few studies have assessed the degree of admixture in farmed animals in comparison to the surrounding wild populations. With this purpose, we analyzed microsatellite loci in wild boar sampled in breeding stations and in the local wild population in two Italian regions (Sardinia and Piedmont). Both captive populations had lower allelic richness than the corresponding wild population, but a similar expected heterozygosity. In Piedmont, introgression from the domestic form into the wild population seems to be extremely low, while there are significant signs of admixture in the sampled breeding stations. In Sardinia, instead, the captive sample did not differ significantly from the wild population, which showed moderate signs of introgression. We conclude that hybridization in nature seems to play the key role in Sardinia, while intentional hybridization in captivity is the major source of introgression in Piedmont. Our findings emphasize the need for a routine genetic monitoring of wild boar captive populations, coupled with reference data on the neighboring wild populations.  相似文献   

12.
We completed phylogenetic analysis of the major non-coding region of the mitochondrial DNA (mtDNA) from 159 animals of eight Euro-American and six East Asian domesticated pig breeds and 164 Japanese and five European wild boars. A total of 62 mtDNA haplotypes were detected. Alignment of these regions revealed nucleotide variations (including gaps) at 73 positions, including 58 sites with transition nucleotide substitutions, and two transversion substitutions. Phylogenetic analysis of the sequences could not organize domestic pig breeds into discrete clusters. In addition, many of the haplotypes found in members of diverged clustering groups were found primarily in Euro-American pig breeds, indicating extensive introgression of Asian domestic pigs into European breeds. Furthermore, phylogenetic analysis allocated the DNA sequences of non-coding regions into two different groups, and the deepest branchpoint of this porcine phylogeny corresponded to 86 000-136 000 years before present. This time of divergence would predate the historical period when the pig is thought to have been domesticated from the wild boar.  相似文献   

13.
The Eurasian wild boar (Sus scrofa Linnaeus, 1758) was introduced into Argentina at the beginning of the twentieth century when individuals from Europe were taken to La Pampa province for hunting purposes. Starting from there, a dispersal process began due to the invasive characteristics of the species and to human-mediated translocations. The main objective of this study was to characterize for the first time, the phylogenetic relationships among wild boars from Argentina with those from Uruguay, Europe, Asia, and the Near East, along with diverse domestic pig breeds in order to corroborate the historical information about the origin of the local populations. To this end, we used mitochondrial Control Region and Cytochrome b sequences from sampled Argentinian wild boars and retrieved from GenBank. The results showed that the majority of the Argentinian wild boar populations descend from European lineages, in particular of the E1 clade, according to the historical records. Remarkably, the population of El Palmar National Park had Asian origin that could be attributed to hybridization with local domestic pigs or to unrecorded translocations. Finally, genetic diversity in Argentinian populations was lower than in Europe and Uruguay meaning that wild boar in Argentina is still under the influence of founder effect and has experienced minor genetic introgression from domestic pigs, representing in this sense a reservoir of the original wild boar genetic variability.  相似文献   

14.
Rates of hybridization between wild and domesticated animals appear to be increasing worldwide. Recent results suggest that genetic introgression from domestic swine into European wild boar is much more common in local populations than expected, based on pan-European studies. Thus, we screened the genetic purity of 265 free-living wild boars from two hunting areas in Poland by genotyping the melanocortin receptor 1 gene (MC1R) for polymorphism. Unexpectedly, high numbers of individuals with domestic genes (24%) were identified. This suggests that mixed ancestry may be common in Polish wild boar. Among admixed individuals, backcrosses with domestic pig and/or introgressed wild boars were detected (2%). Multiple commercial domestic pig breeds are possibly involved in the introgression observed in the study populations. In addition, the absence of significant differences in the frequency of wild-type allele among two hunting areas suggests high dispersal of individuals and gene flow among populations. We conclude that further study is needed to better understand the mechanisms and sources of introgression in wild boars in Poland.  相似文献   

15.
Four European wild pigs and 27 domestic pigs were studied; three Landrace, 12 village pigs from Papua New Guinea, two Chinese pigs Meishan and 10 Creole pigs from the French Antilles. The R-banding patterns were identical for all domestic breeds despite their different history and geographical divergence. The European wild pigs showed a similar R-banding pattern and a centric fusion between pairs 15 and 17 (2n = 36). The nucleolar organizers (NORs) in the European wild pig and the four domestic breeds were localized on the secondary constriction of chromosomes 8 and 10. All animals exhibited in the majority of metaphases two NORs on both chromosomes 10. In some animals. the NORs were expressed only in one of the homologs of chromosome 8. The Chinese pigs had a high amount of silver precipitates on two homologs of chromosome 8. This study confirms several previous reports on the polymorphism of NOR patterns in different domestic pig breeds.  相似文献   

16.
The lack of a Near Eastern genetic signature in modern European porcine breeds indicates that, although domestic pigs from the Fertile Crescent entered Europe during the Neolithic, they were completely replaced by their European counterparts in a short window of time. Whilst the absence of such genetic signature has been convincingly demonstrated at the mitochondrial level, variation at the autosomal genomes of European and Near Eastern Sus scrofa has not been compared yet. Herewith, we have explored the genetic relationships among 43 wild boar from Europe (N = 21), Near East (N = 19) and Korea (N = 3), and 40 Iberian (N = 16), Canarian (N = 4) and Mangalitza (N = 20) pigs by using a high throughput SNP genotyping platform. After data filtering, 37,167 autosomal SNPs were used to perform population genetics analyses. A multidimensional scaling plot based on genome-wide identity-by-state pairwise distances inferred with PLINK showed that Near Eastern and European wild boar populations are genetically differentiated. Maximum likelihood trees built with TreeMix supported this conclusion i.e. an early population split between Near Eastern and European Sus scrofa was observed. Moreover, analysis of the data with Structure evidenced that the sampled Iberian, Canarian and Mangalitza pigs did not carry any autosomal signature compatible with a Near Eastern ancestry, a finding that agrees well with previous mitochondrial studies.  相似文献   

17.
Mitochondrial DNA (mtDNA) of six breeds of native domestic pigs from Yunnan province, southwest China, and two wild boars obtained from Sichuan, China, and Vietnam was analyzed using 20 restriction endonucleases that recognize six nucleotides. Restriction maps were made by double-digestion methods and polymorphic sites were located on the map. According to their mtDNA restriction types, all the breeds were classified into six groups. Genetic distances among groups were calculated to define their phylogenetic relationships. The relationship between the Sichuan wild boar and domestic pigs is close, while the Vietnamese wild boar is relatively far from them, so the domestic pigs in southwest China are likely to have originated from a wild pig which distributed in west China. We compare our results with previous reports in literature and discuss the relationship among Chinese pigs, Japanese pigs, and European pigs. The mtDNA cleavage pattern of the Mingguang pig digested byEcoRV was identical to that of Duroc; mutations at theEcoRI site, detected in the mtDNA of two Dahe pigs, are the same as in the Vietnamese wild boar, suggesting that mutational hot spots exist in the mtDNA of pigs.  相似文献   

18.
Autochthonous pig breeds are usually reared in extensive or semi‐extensive production systems that might facilitate contact with wild boars and, thus, reciprocal genetic exchanges. In this study, we analysed variants in the melanocortin 1 receptor (MC1R) gene (which cause different coat colour phenotypes) and in the nuclear receptor subfamily 6 group A member 1 (NR6A1) gene (associated with increased vertebral number) in 712 pigs of 12 local pig breeds raised in Italy (Apulo‐Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano and Sarda) and south‐eastern European countries (Kr?kopolje from Slovenia, Black Slavonian and Turopolje from Croatia, Mangalitsa and Moravka from Serbia and East Balkan Swine from Bulgaria) and compared the data with the genetic variability at these loci investigated in 229 wild boars from populations spread in the same macro‐geographic areas. None of the autochthonous pig breeds or wild boar populations were fixed for one allele at both loci. Domestic and wild‐type alleles at these two genes were present in both domestic and wild populations. Findings of the distribution of MC1R alleles might be useful for tracing back the complex genetic history of autochthonous breeds. Altogether, these results indirectly demonstrate that bidirectional introgression of wild and domestic alleles is derived and affected by the human and naturally driven evolutionary forces that are shaping the Sus scrofa genome: autochthonous breeds are experiencing a sort of ‘de‐domestication’ process, and wild resources are challenged by a ‘domestication’ drift. Both need to be further investigated and managed.  相似文献   

19.
Linkage disequilibrium decay and haplotype block structure in the pig   总被引:3,自引:0,他引:3  
Linkage disequilibrium (LD) may reveal much about domestication and breed history. An investigation was conducted, to analyze the extent of LD, haploblock partitioning, and haplotype diversity within haploblocks across several pig breeds from China and Europe and in European wild boar. In total, 371 single-nucleotide-polymorphisms located in three genomic regions were genotyped. The extent of LD differed significantly between European and Chinese breeds, extending up to 2 cM in Europe and up to 0.05 cM in China. In European breeds, LD extended over large haploblocks up to 400 kb, whereas in Chinese breeds the extent of LD was smaller and generally did not exceed 10 kb. The European wild boar showed an intermediate level of LD between Chinese and European breeds. In Europe, the extent of LD also differed according to genomic region. Chinese breeds showed a higher level of haplotype diversity and shared high levels of frequent haplotypes with Large White, Landrace, and Duroc. The extent of LD differs between both centers of pig domestication, being higher in Europe. Two hypotheses can explain these findings. First, the European ancestral stock had a higher level of LD. Second, modern breeding programs increased the extent of LD in Europe and caused differences of LD between genomic regions. Large White, Landrace, and Duroc showed evidence of past introgression from Chinese breeds.  相似文献   

20.
R. Qiao  X. Li  X. Han  K. Wang  G. Lv  G. Ren  X. Li 《Animal genetics》2019,50(3):262-265
To investigate the population structure and genetic diversity of Henan indigenous pig breeds, samples from a total of 78 pigs of 11 breeds were collected, including four pig populations from Henan Province, three Western commercial breeds, three Chinese native pig breeds from other provinces and one Asian wild boar. The genotyping datasets were obtained by genotyping‐by‐sequencing technology. We found a high degree of polymorphism and rapid linkage disequilibrium decay in Henan pigs. A neighbor‐joining tree, principal component analysis and structure analysis revealed that the Huainan and Erhualian pigs were clustered together and that the Queshan black pigs were clearly grouped together but that the Nanyang and Yuxi pigs were extensively admixed with Western pigs. In addition, heterozygosity values might indicate that Henan indigenous pigs, especially the Queshan black and Huainan pigs, were subjected to little selection during domestication. The results presented here indicate that Henan pig breeds were admixed from Western breeds, especially Nanyang and Yuxi pigs. Therefore, establishment of purification and rejuvenation systems to implement conservation strategies is urgent. In addition, it is also necessary to accelerate genetic resources improvement and utilization using modern breeding technologies, such as genomic selection and genome‐wide association studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号