首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《农业工程》2022,42(4):398-406
The present study sought to identify the potential distribution range of critically endangered Gymnocladus assamicus in Arunachal Pradesh based on published data and field collection. We used the Maxent model to estimate the range of distribution and the result was then compared with three other models, i.e., the Generalized Linear Model (GLM), the Bioclim and the Random Forest model to assess the species' habitat suitability. A total of 23 different environmental variables were used, including bioclimatic ones, monthly minimum and maximum temperature, monthly precipitation and elevation data. The Maxent output listed 12 variables explaining 99.9% variation in the model. In comparison, Maxent showed the maximum region under habitat suitability criteria (1884.48 km2), followed by Random Forest (70.73 km2) and Bioclim (11.62 km2) model. Except for the Maxent model, suitable habitats predicted by other models are highly restricted within and across the study species' current distribution range. The average model prediction shows an expanded distribution range for the species up to Tawang which is the closest district of currently known distribution of the species in the state. Thus, the present study recognizes the importance of the geographic range of G. assamicus, a critically endangered species with very limited spatial distribution range and also provides some specific details to explore possible habitats for the species in new areas of potential occurrence in Arunachal Pradesh, India.  相似文献   

2.
The re-emergence of Gymnodinum catenatum blooms after a 10 year hiatus of absence initiated the present investigation. This study aims to evaluate the exposure of small pelagic fishes to paralytic shellfish toxins (PST) during blooms of G. catenatum. Sardines (Sardina pilchardus) were selected as a representative fish species. In order to assess toxin availability to fish, both intracellular PSTs (toxin retained within the algal cells) and extracellular PSTs (toxin found in seawater outside algal cells) were quantified, as well as toxin levels within three fish tissue matrices (viscera, muscle and brain). During the study period, the highest cell densities of G. catenatum reached 2.5 × 104 cells l−1 and intracellular PST levels ranged from 3.4 to 398 ng STXeq l−1 as detected via an enzyme linked immunosorbent assay (ELISA). Measurable extracellular PSTs were also detected in seawater (0.2–1.1 μg STXeq l−1) for the first time in Atlantic waters. The PST profile in G. catenatum was determined via high performance liquid chromatography with fluorescence detection (HPLC-FLD) and consisted mostly of sulfocarbamoyl (C1+2, B1) and decarbamoyl (dcSTX, dcGTX2+3, dcNEO) toxins. The observed profile was similar to that reported previously in G. catenatum blooms in this region before the 10-year hiatus. Sardines, planktivorous fish that ingest a large number of phytoplankton cells, were found to contain PSTs in the viscera, reaching a maximum of 531 μg STXeq kg−1. PSTs were not detected in corresponding muscle or brain tissues. The PST profile characterized in sardine samples consisted of the same sulfocarbamoyl and decarbamoyl toxins found in the algal prey with minor differences in relative abundance of each toxin. Overall, the data suggest that significant biotransformation of PSTs does not occur in sardines. Therefore, planktivorous fish may be a good tracer for the occurrence of offshore G. catenatum blooms and the associated PSTs produced by these algae.  相似文献   

3.
张博鑫  李崇林  左小康  那晓东 《生态学报》2024,44(12):5194-5205
目前全球变暖趋势的加剧对丹顶鹤等大型濒危水禽的栖息地造成了严重的威胁。由于监测方法和技术手段的限制,丹顶鹤在迁徙路线上潜在生境的分布范围尚不清楚,气候变化对丹顶鹤迁徙路线生境适宜性的影响机理有待进一步研究。基于138个丹顶鹤样本分布信息和19种环境变量数据,利用 BIOMOD2 软件包构建了丹顶鹤潜在生境评价的组合模型,对丹顶鹤在亚洲东部秋季迁徙路线上的生境适宜性进行数值模拟,并预测SSP1.2-6气候背景下2021-2040年、2041-2060年、2061-2080年、2081-2100年四个不同阶段的丹顶鹤潜在生境范围的变化趋势。研究结果表明:与单模型的模拟结果相比,集成9种单模型的BIOMOD2组合模型预测精度更高。集成模型的重要性分析表明,气温日较差是丹顶鹤生境适宜性变化的最重要的影响因子。受气候变化的影响2021-2040年、2041-2060年、2061-2080年、2081-2100年丹顶鹤潜在生境的面积将分别减少到2.60×105km2、2.58×105km2、2.75×105km2、2.56×105km2,迁徙路线上胶东半岛和环渤海地区适栖生境面积减少的最为显著。本研究对于迁徙路线上珍稀水禽潜在适宜生境的模拟及全球变化背景下珍稀水禽栖息地的保育和修复具有重要意义。  相似文献   

4.
The dynamics of Dinophysis acuminata and its associated diarrhetic shellfish poisoning (DSP) toxins, okadaic acid (OA) and dinophysistoxin-1 (DTX1) as well as pectenotoxins (PTXs), were investigated within plankton and shellfish in Northport Bay, NY, USA, over a four year period (2008–2011). Over the course of the study, Dinophysis bloom densities ranged from ~104 to 106 cells L−1 and exceeded 106 L−1 in 2011 when levels of total OA, total DTX1, and PTX in the water column were 188, 86, and 2900 pg mL−1, respectively, with the majority of the DSP toxins present as esters. These cell densities exceed – by two orders of magnitude – those previously reported within thousands of samples collected from NY waters from 1971 to 1986. The bloom species was positively identified as D. acuminata via scanning electron microscopy and genetic sequencing (cox1 gene). The cox1 gene sequence from the D. acuminata populations in Northport Bay was 100% identical to D. acuminata from Narragansett Bay, RI, USA and formed a strongly supported phylogenetic cluster (posterior probability = 1) that included D. acuminata and Dinophysis ovum from systems along the North Atlantic Ocean. Shellfish collected from Northport Bay during the 2011 bloom had DSP toxin levels (1245 ng g−1 total OA congeners) far exceeding the USFDA action level (160 ng g−1 total OA of shellfish tissue) representing the first such occurrence on the East Coast of the U.S. D. acuminata blooms co-occurred with paralytic shellfish poisoning (PSP) causing blooms of Alexandrium fundyense during late spring each year of the study. D. acuminata cell abundances were significantly correlated with levels of total phytoplankton biomass and Mesodinium spp., suggesting food web interactions may influence the dynamics of these blooms. Given that little is known regarding the combined effects of DSP and PSP toxins on human health and the concurrent accumulation and depuration of these toxins in shellfish, these blooms represent a novel managerial challenge.  相似文献   

5.
The chain-forming dinoflagellate Gynmodinium catenatum Grahamcauses recurrent outbreaks of paralytic shellfish poisoning(PSP) in the Galician Rias Bajas (northwest Spain). A sedimentsurvey in Ria de Vigo in April 1986 indicated that the highestconcentrations of cysts of this species were located in themiddle sections of the ria, with maximum abundance of 310 cystscm–3. The effects of temperature, growth medium compositionand irradiance on the germination of laboratory-produced restingcysts were investigated. Newly formed cysts required very littletime for maturation, as excystment was possible within 2 weeksof encystment. Growth media did not affect germination success.In contrast, the excystment rate was retarded signifiantly indarkness. Germination was also strongly affected by temperature,with {small tilde}75% excystment success at 22–28°Cand little or no germination below 11°C after 1 month ofincubation. In culture, the optimum growth rate of vegetativecells was between 22 and 28°C, the highest rate being 0.53divisions day–1 at 24°C. Growth did not occur at temperatures< 11°C or >30°C. These results are important withrespect to the different hypotheses proposed to explain theinitiation of G.catenatum blooms in the Galician Rias Bajasand Northern Portugal. The pattern of G.catenatum bloom developmentalong this coast has been related to seasonal upwelling in thearea, with major blooms occurring during the autumn as warmeroffshore surface water is transported towards the coast whenupwelling relaxes. The landward transport of established offshorepopulations of G.catenatum with the warm surface layer remainsa viable explanation for the observed blooms within the rias,but alternatively, our data suggest that cysts within the riascan provide the inoculum population at times conducive to growthand bloom formation. Even though newly formed G.catenatum cystshave a very short maturation time and can germinate in darknessacross a wide temperature range, bloom development will be significantonly during the late summer and early autumn, since in othermonths light levels at the sediment surface and temperaturesthroughout the water column are too low for significant germinationor growth.  相似文献   

6.
7.
Paulo Vale 《Biophysics》2013,58(4):554-567
Cyclic outbreaks of accumulation of paralytic shellfish poisoning (PSP) toxins in mussels attributed to Gymnodinium catenatum blooms displayed several of the highest inter-annual maxima coincidental with the minima of the 11-year solar sunspot number (SSN) cycle. The monthly distribution of PSP was associated with low levels of the solar radio flux, a more quantitative approach than SSN for fluctuations in solar activity. Comparison between monthly distribution of PSP and other commons biotoxins (okadaic acid, dinophysistoxin-2, and amnesic shellfish poisoning toxins) demonstrated that only PSP was significantly associated with low levels of radio flux (p < 0.01). PSP occurrence suggests a prior decline in solar activity to be required as a trigger, similarly to a photoperiodic signal. The seasonal frequency increased towards autumn during the study period, which might be related to the progressive atmospheric cutoff of deleterious radiation associated with the seasonal change in solar declination, and might play an additional role in seasonal signal-triggering. PSP distribution was also associated with low levels of the geomagnetic index Aa. Comparison between monthly distributions of PSP and other common biotoxins also demonstrated that only PSP was significantly associated with low levels of the Aa index (p < 0.01). In some years of SSN minima, no significant PSP outbreaks in mussels were detected. This was attributed to a steady rise in geomagnetic activity that could disrupt the triggering signal. Global distribution patterns show that hotspots for G. catenatum blooms are regions with deficient crustal magnetic anomalies. In addition to the variable magnetic field mostly of solar origin, static fields related to magnetized rocks in the crust and upper mantle might play a role in restricting worldwide geographic distribution.  相似文献   

8.
Four Gymnodinium species have previously been reported to produce microreticulate cysts. Worldwide, Gymnodinium catenatum strains are conservative in terms of larger subunit (LSU) rDNA and internal transcribed spacer region (ITS) sequences, but only limited information on the molecular sequences of other species is available. In the present study, we explored the diversity of Gymnodinium by incubating microreticulate cysts collected from the Yellow Sea off China. A total of 18 strains of Gymnodinium, from three species, were established. Two of these were identified as Gymnodinium catenatum and Gymnodinium microreticulatum, and the third was described as a new species, Gymnodinium inusitatum. Motile cells of G. inusitatum are similar to those of Gymnodinium trapeziforme, but they only share 82.52% similarity in LSU sequences. Cysts of G. inusitatum are polygonal in shape, with its microreticulate wall composed of approximately 14 concave sections. G. microreticulatum strains differ from each other at 69 positions (88.00% similarity) in terms of ITS sequences, whereas all G. catenatum strains share identical ITS sequences and belonged to the global populations. Phylogenetic analyses, based on LSU sequences, revealed that Gymnodinium species that produce microreticulate cysts are monophyletic. Nevertheless, the genus as a whole appears to be polyphyletic. Paralytic shellfish toxins (PSTs) were found in all G. catenatum strains tested (dominated by 11-hydroxysulfate benzoate analogs and N-sulfocarmaboyl analogs) but not in any of the G. microreticulatum and G. inusitatum strains. Our results support the premise that cyst morphology is taxonomically informative and is a potential feature for subdividing the genus Gymnodinium.  相似文献   

9.
Blooms of the toxic dinoflagellate Gymnodinium catenatum (acausative organism of paralytic shellfish poisoning) in theDerwent and Huon estuaries of southern Tasmania, Australia,are predictable, annually recurrent events in the period Januaryto June (late summer to early winter). However, their spatialdistribution, duration and magnitude exhibit significant interannualvariability. High shellfish toxicities in 1986, 1991 and 1993(>8000 µ.g paralytic shellfish poisoning per 100 gshellfish meat) also coincided with the greatest spatial extentof shellfish toxicity (up to 35 shellfish farms closed for periodsup to 6 months). An exploratory analysis of the results of ashellfish toxin monitoring programme conducted from 1986 to1994, and of available hydrological and meteorological datafor the region, indicates that a significant G.catenatum bloomin Tasmanian waters can only develop within a permissive seasonalwater temperature window (>14°C at the time of bloominitiation) requiring a rainfall event as a trigger (Huon Riverdischarge, measured at Frying Pan Creek, must exceed 100 000megalitres over a 3-week period) and a calm stable water columnfor sustained development (windspeed <5 m s–1 for periodsof 5 days or more). Once established, dinoflagellate populationsare subject to disturbance by turbulence caused by high windstress;this explains the incidence in some years of multiple shellfishtoxicity peaks. In winter months declining water temperatures(<10°C) and increasing windstress are responsible forthe termination of seasonal dinoflagellate blooms.  相似文献   

10.
The phytoplankton species Gymnodinium catenatum is responsible for major worldwide losses in aquaculture due to shellfish toxicity. On the West coast of the Iberian Peninsula, toxic blooms have been reported since the mid-1970s. While the recent geographical spread of this species into Australasia has been attributed to human-mediated introduction, its origin in the Northeast Atlantic is still under debate. Gymnodinium catenatum forms a highly resistant resting stage (cyst) that can be preserved in coastal sediments, building-up an historical record of the species. Similar cyst types (termed microreticulate) are produced by other non-toxic Gymnodinium species that often co-occur with G. catenatum. We analysed the cyst record of microreticulate species in dated sediment cores from the West Iberian shelf covering the past ca. 150 years. Three distinct morphotypes were identified on the basis of cyst diameter and paracingulum reticulation. These were attributed to G. catenatum (35.6–53.3 μm), G. nolleri (23.1–36.4 μm), and G. microreticulatum (20.5–34.3 μm). Our results indicate that G. catenatum is new to the NE Atlantic, where it appeared by 1,889 ± 10, expanding northwards along the West Iberian coast. The earliest record is from the southernmost sample, while in the central Portuguese shelf the species appears in sediments dated to 1,933 ± 3, and in the North, off Oporto, in 1,951 ± 4. On the basis of the cyst record and toxic bloom reports, we reconstruct the invasive pathway of G. catenatum in the NE Atlantic. Although human-mediated introduction cannot be discarded, the available evidence points towards natural range expansion, possibly from NW Africa.  相似文献   

11.
In August and September 2001, Kuwait Bay, a semi-enclosed embayment of the Arabian Gulf, experienced a massive fish kill involving over >2500 metric tons of wild mullet (Liza klunzingeri), due to the bacterium Streptococcus agalactiae. In the Bay, this event was preceded by a small fish kill (100–1000 dead fish per day) of gilthead sea bream (Sparus auratus) in aquaculture net pens associated with a bloom of the dinoflagellate Ceratium furca. Sea bream were found to be culture positive for S. agalactiae, but did not show any visible signs of disease. Unusually warm temperatures (up to 35 °C) and calm conditions prevailed during this period. As the wild fish kill progressed, various harmful algae were observed, including Gymnodinium catenatum, Gyrodinium impudicum, and Pyrodinium bahamense var. compressum. Cell numbers of G. catenatum and G. impudicum exceeded 106 l−1 in some locations. All fish tested below the limits of detection for paralytic shellfish poisoning (PSP) and brevetoxins. Clams (Circe callipyga) were positive for PSP but at levels below regulatory limits. Nutrient concentrations, both inorganic and organic, were highly variable with time and from site to site, reflecting inputs from sewage outfalls, the aquaculture operations, a high biomass of decomposing fish, and other sources. It is hypothesized that many factors contributed to the initial outbreak of the bacterial disease, including unusual warm and calm conditions. The same factors, as well as enriched nutrient conditions, also apparently were conducive to the subsequent HAB outbreaks. The detection of PSP, while below regulatory limits, warrants further monitoring to protect human health.  相似文献   

12.
《Harmful algae》2003,2(2):89-99
Harmful algal blooms (HABs) have posed a serious threat to the aquaculture and fisheries industries in recent years, especially in Asia. During 1998 there were several particularly serious blooms in the coastal waters of south China, which caused a serious damage to aquaculture. We report a massive dinoflagellate bloom near the mouth of Pearl River in November 1998 with analyses of data from both in situ sea water measurements and satellites. A multi-parameter environmental mapping system was used to obtain real-time measurements of water quality properties and wind data through the algal bloom area, which allow us to compare water measurements from inside and outside of the bloom areas. This bloom with high concentrations of algal cells was evident as a series of red colored parallel bands of surface water that were 100–300 m long and 10–30 m wide with a total area of about 20–30 km2 by visual. The algal density reached 3.8×107 cells l−1 and the surface chlorophyll-a (Chl-a) concentration was high. The algal species has been identified as Gymnodinium cf. catenatum Graham. The water column in the bloom area was stratified, where the surface temperature was 24–25 °C, the salinity was 18–20%, and the northern wind was about 3–4 m s−1 in the bloom area. The SeaWiFS image has shown high Chl-a area coinciding with the bloom area. The sea surface temperature (SST) image of the Pearl River estuary combined with the in situ measurements indicated that the bloom occurred along a mixing front between cooler lower salinity river water and warmer higher saline South China Sea (SCS) water.  相似文献   

13.
Gymnodinium catenatum, a dinoflagellate species with a global distribution, is known to produce paralytic shellfish poisoning (PSP) toxins. The profile of toxins of G. catenatum is commonly dominated by sulfocarbamoyl analogs including the C3 + 4 and GTX6, which to date has no commercial certified reference materials necessary for their quantification via chemical methods, such as liquid chromatography. The aim of this study was to assess the presence of C3 + 4 and GTX6 and their contribution to shellfish toxicity. C3 + 4 and GTX6 were indirectly quantified via pre-column oxidation liquid chromatography with fluorescence detection after hydrolysis conversion into their carbamate analogs. Analyses were carried out in mussel samples collected over a bloom of G. catenatum (>63 × 103 cells l−1) in Aveiro lagoon, NW Portuguese coast. Concentration levels of sulfocarbamoyl toxin analogs were two orders of magnitude higher than decarbamoyl toxins, which were in turn one order of magnitude higher than carbamoyl toxins. Among the sulfocarbamoyl toxins, C1 + 2 were clearly the dominant compounds, followed by C3 + 4 and GTX6. The least abundant sulfocarbamoyl toxin was GTX5. The most important compounds in terms of contribution for sample toxicity were C1 + 2, which justified 26% of the PSP toxicity. The lesser abundant dcSTX constitutes the second most important compound with similar % of toxicity to C1 + 2, C3 + 4 and GTX6 were responsible for approximately 11% and 13%, respectively. The median of the sum of C3 + 4 and GTX6 was 27%. These levels reached a maximum of 60% as was determined for the sample collected closest to the G. catenatum bloom. This study highlights the importance of these low potency PSP toxin analogs to shellfish toxicity. Hydrolysis conversion of C3 + 4 and GTX6 is recommended for determination of PSP toxicity when LC detection methods are used for PSP testing in samples exposed to G. catenatum.  相似文献   

14.
Fjordic coastlines provide an ideal protected environment for both finfish and shellfish aquaculture operations. This study reports the results of a cruise to the Scottish Clyde Sea, and associated fjordic sea lochs, that coincided with blooms of the diarrhetic shellfish toxin producing dinoflagellate Dinophysis acuta and the diatom genus Chaetoceros, that can generate finfish mortalities. Unusually, D. acuta reached one order of magnitude higher cell abundance in the water column (2840 cells L−1) than the more common Dinophysis acuminata (200 cells L−1) and was linked with elevated shellfish toxicity (maximum 601 ± 237 μg OA eq/kg shellfish flesh) which caused shellfish harvesting closures in the region. Significant correlations between D. acuta abundance and that of Mesodinium rubrum were also observed across the cruise transect potentially supporting bloom formation of the mixotrophic D. acuta. Significant spatial variability in phytoplankton that was related to physical characteristics of the water column was observed, with a temperature-driven frontal region at the mouth of Loch Fyne being important in the development of the D. acuta, but not the Chaetoceros bloom. The front also provided important protection to the aquaculture located within the loch, with neither of the blooms encroaching within it. Analysis based on a particle-tracking model confirms the importance of the front to cell transport and shows significant inter-annual differences in advection within the region, that are important to the harmful algal bloom risk therein.  相似文献   

15.
The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01) and grown with: 1) complex bacterial communities derived from each of the two parent cultures; 2) simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3) a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell) of clonal offspring (134–197 fmol STX cell−1) was similar to the parent cultures (169–206 fmol STX cell−1), however cultures grown with single bacterial types contained less toxin (134–146 fmol STX cell−1) than offspring or parent cultures grown with more complex mixed bacterial communities (152–176 fmol STX cell−1). Specific toxin production rate (fmol STX day−1) was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell−1 day−1) did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX production of dinoflagellates. In G. catenatum the mechanism appears likely to be due to bacterial effects on dinoflagellate physiology rather than bacterial biotransformation of PST toxins.  相似文献   

16.
为了解滇黄精(Polygonatum kingianum)的适宜生长区,运用Maxent模型模拟其潜在分布区,探讨其引种栽培的适宜气候条件。结果表明,预测模型的AUC值为0.974~0.980,表明模型具有良好的预测能力。滇黄精主要适生区位于我国西南地区,适生面积约81.34×10~4 km~2,占全国适生区面积的88.24%。云南的高度适生区面积最大(19.96×10~4 km~2);四川次之(5.49×10~4 km~2)。75%的高度适生区分布于海拔2 492 m以下的地区,3 400 m以上的地区不适宜于滇黄精生长。最冷月最低温度、7月最低温度、5-8月太阳辐射、最干月降水量、4月和9-11月平均降水量是限制滇黄精分布的主要气候变量。因此,海拔1 400~2 100 m的亚热带地区是滇黄精最适宜的生长区。  相似文献   

17.
苍鹭(Ardea cinerea)是松嫩平原湿地的常见鸟种,松嫩平原也是苍鹭重要的栖息地。为了了解苍鹭潜在栖息地的适宜性分布,利用GPS/GSM卫星跟踪技术,结合遥感影像和地理信息系统,应用Maxent模型对松嫩平原苍鹭秋季潜在的栖息地进行了评价,并对其适宜性分布进行了分析。结果显示:水源距离和绿度指数是影响松嫩平原苍鹭秋季栖息地适宜性的重要环境变量;松嫩平原内苍鹭适宜栖息地面积为2761.06 km2(占研究区域的1.24%),主要分布在大庆(756.86 km2,占适宜栖息地面积的27.41%)、白城(537.14 km2,占适宜栖息地面积的19.45%)、齐齐哈尔(439.43 km2,占适宜栖息地面积的15.92%)等地市行政区,以大庆市杜尔伯特蒙古族自治县(429.90 km2,占适宜栖息地面积的15.57%)、白城市镇赉县(334.92 km2,占适宜栖息地面积的12.13%)、大庆市肇源县(185.54 km2,占适宜栖息地面积的6.72%)等县级行政区为主;其中,15.79%的适宜栖息地依次受到莫莫格保护区(10.34%)、扎龙保护区(3.47%)、向海保护区(0.67%)、查干湖保护区(0.54%)、大布苏保护区(0.41%)、乌裕尔河保护区(0.36%)等国家级自然保护区的保护。建议对未受到保护的零星小面积栖息地给与更多关注。  相似文献   

18.
Paralytic shellfish poisoning toxin profiles of dinoflagellate cultures of Gymnodinium catenatum Graham from the Yellow and South Seas in Korea were investigated by high performance liquid chromatography fluorometric detection. Strains from the Yellow Sea had predominantly carbamate toxins, while strains from Sujeongri and Chindong in the South Sea contained the N‐sulfocarbamoyl toxins, Cl,2, as major components including the presence of GTX5 and dcSTX in some strains. Toxin profiles from St. Deukryang Bay strains (South Sea) showed both characteristics of those in the South Sea and those in the Yellow Sea. Thirty strains could be divided into three groups based on cluster analysis of toxin compositions. Group I (Yellow Sea strains) was distinguished from Group II (Sujeongri and Chindong strains) by the absence of GTX5 and dcSTX. Group III comprised Deukryang Bay strains. In conclusion, the Yellow Sea and the South Sea were found to have different dinoflagellate populations with different toxin compositions.  相似文献   

19.
Between the years 1933–2001, 460 red tide events were found in China's coastal water. The scope of red tide occurrence has extended over all the coastal provinces of China, and the three major areas with high red tide frequency are the Bohai sea, the sea area near the Shengsi Archipelago and Huaniaoshan Island on the outer side of the Changjiang River estuary and the Hangzhou Bay, and the coastal waters on the east side of the Zhujiang River estuary from Hong Kong to East Guangdong. In the past 20 years, the frequency of red tides has been tending upwards. The years of 1988–1990 and 1998–2001 saw the most serious red tides along China's coastal waters, with the latter period as the peak. The average area of a single red tide, i.e., the scale of red tides, is expanding every year, and in 2001 rose to about 500 km2. Every year, China's red tides occur from south to north, with those in the South China Sea occurring from March to May, those in the East China Sea from April to August and those in the Bohai and Huanghai Seas from May to September.  相似文献   

20.
Toxin‐producing blooms of dinoflagellates in the genus Alexandrium have plagued the inhabitants of the Salish Sea for centuries. Yet the environmental conditions that promote accelerated growth of this organism, a producer of paralytic shellfish toxins, is lacking. This study quantitatively determined the growth response of two Alexandrium isolates to a range of temperatures and salinities, factors that will strongly respond to future climate change scenarios. An empirical equation, derived from observed growth rates describing the temperature and salinity dependence of growth, was used to hindcast bloom risk. Hindcasting was achieved by comparing predicted growth rates, calculated from in situ temperature and salinity data from Quartermaster Harbor, with corresponding Alexandrium cell counts and shellfish toxin data. The greatest bloom risk, defined at μ >0.25 d?1, generally occurred from April through November annually; however, growth rates rarely fell below 0.10 d?1. Except for a few occasions, Alexandrium cells were only observed during the periods of highest bloom risk and paralytic shellfish toxins above the regulatory limit always fell within the periods of predicted bloom occurrence. While acknowledging that Alexandrium growth rates are affected by other abiotic and biotic factors, such as grazing pressure and nutrient availability, the use of this empirical growth function to predict higher risk time frames for blooms and toxic shellfish within the Salish Sea provides the groundwork for a more comprehensive biological model of Alexandrium bloom dynamics in the region and will enhance our ability to forecast blooms in the Salish Sea under future climate change scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号