首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim

To explore the roles of C-X-C chemokine receptor type 4 (CXCR4) in spinal processing of neuropathic pain at the central nervous system (CNS).

Methods

Peripheral neuropathic pain (PNP) induced by partial sciatic nerve ligation (pSNL) model was assessed in mice. Effects of a single intrathecal (central) administration of AMD3100 (intrathecal AMD3100), a CXCR4 antagonist, on pain behavior and pain-related spinal pathways and molecules in the L3-L5 spinal cord segment was studied compare to saline treatment.

Results

Rotarod test showed that intrathecal AMD3100 did not impair mice motor function. In pSNL-induced mice, intrathecal AMD3100 delayed the development of mechanical allodynia and reversed the established mechanical allodynia in a dose-dependent way. Moreover, intrathecal AMD3100 downregulated the activation of JNK1 and p38 pathways and the protein expression of p65 as assessed by western blotting. Real-time PCR test also demonstrated that substance P mRNA was decreased, while adrenomedullin and intercellular adhesion molecule mRNA was increased following AMD3100 treatment.

Conclusion

Our results suggest that central (spinal) CXCR4 is involved in the development and maintenance of PNP and the regulation of multiple spinal molecular events under pain condition, implicating that CXCR4 would potentially be a therapeutic target for chronic neuropathic pain.  相似文献   

2.
探讨AMD3100对apoE-/-小鼠骨髓内皮祖细胞的动员作用及其增殖、迁移和黏附的影响.12只8周龄雄性apoE-/-小鼠随机分为AMD3100组(2.5 mg/(kg·2d))和对照组(PBS 0.1 ml/2d),高脂高胆固醇饲料喂养12周后,差速贴壁法结合微孔法分离培养小鼠骨髓细胞,免疫荧光鉴定CD133/VEGFR-2双阳性细胞为内皮祖细胞;MTT比色法、Transwell、黏附试验分别检测细胞的增殖、迁移和黏附能力;通过计数典型内皮祖细胞克隆形成单位,观察次级集落单位的大小及细胞密度,检测各组内皮祖细胞的克隆形成能力;RT-PCR和Western blot检测内皮祖细胞上CXCR4 mRNA和蛋白质表达水平.与对照组比较,AMD3100组骨髓源性内皮祖细胞的增殖、迁移、黏附和克隆形成能力均显著低于对照组,其CXCR4mRNA和蛋白质表达均显著低于对照组.结果表明:持续注射AMD3100可抑制骨髓源内皮祖细胞的增殖、迁移、黏附和克隆形成能力,并下调CXCR4的表达.  相似文献   

3.
4.
Low intensity pulsed ultrasound (LIPUS) has been proven effective in promoting fracture healing but the underlying mechanisms are not fully depicted. We examined the effect of LIPUS on the recruitment of mesenchymal stem cells (MSCs) and the pivotal role of stromal cell-derived factor-1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4) pathway in response to LIPUS stimulation, which are essential factors in bone fracture healing. For in vitro study, isolated rat MSCs were divided into control or LIPUS group. LIPUS treatment was given 20 minutes/day at 37°C for 3 days. Control group received sham LIPUS treatment. After treatment, intracellular CXCR4 mRNA, SDF-1 mRNA and secreted SDF-1 protein levels were quantified, and MSCs migration was evaluated with or without blocking SDF-1/CXCR4 pathway by AMD3100. For in vivo study, fractured 8-week-old young rats received intracardiac administration of MSCs were assigned to LIPUS treatment, LIPUS+AMD3100 treatment or vehicle control group. The migration of transplanted MSC to the fracture site was investigated by ex vivo fluorescent imaging. SDF-1 protein levels at fracture site and in serum were examined. Fracture healing parameters, including callus morphology, micro-architecture of the callus and biomechanical properties of the healing bone were investigated. The in vitro results showed that LIPUS upregulated SDF-1 and CXCR4 expressions in MSCs, and elevated SDF-1 protein level in the conditioned medium. MSCs migration was promoted by LIPUS and partially inhibited by AMD3100. In vivo study demonstrated that LIPUS promoted MSCs migration to the fracture site, which was associated with an increase of local and serum SDF-1 level, the changes in callus formation, and the improvement of callus microarchitecture and mechanical properties; whereas the blockade of SDF-1/CXCR4 signaling attenuated the LIPUS effects on the fractured bones. These results suggested SDF-1 mediated MSCs migration might be one of the crucial mechanisms through which LIPUS exerted influence on fracture healing.  相似文献   

5.

Background

The effects of atorvastatin on SDF-1α expression under acute myocardial infarction (AMI) are still unclear. Therefore, our present study is to investigate the roles and mechanisms of atorvastatin treatment on SDF-1α expression in rats with AMI.

Methods

Male Sprague–Dawley rats were underwent permanent coronary artery ligation and randomly assigned into four groups as follow: blank control (B), atorvastatin (A), atorvastatin plus L-NAME (A+L-NAME), and atorvastatin plus AMD3100 (A+AMD3100). Rats underwent similar procedure but without ligation were used as group sham operated (S). Atorvastatin (10mg/Kg/d body weight) was administrated by gavage to rats in three atorvastatin treated groups, and L-NAME (40mg/Kg/d body weight) or AMD3100 (5mg/Kg/d body weight) was given to group A+L-NAME or A+AMD3100, respectively.

Results

Comparing with group B, NO production, SDF-1α and CXCR4 expression were significantly up-regulated in three atorvastatin treated groups at the seventh day. However, the increments of SDF-1α and CXCR4 expression in group A+L-NAME were reduced when NO production was inhibited by L-NAME. Anti-inflammatory and anti-apoptotic effects of atorvastatin were offset either by decrease of SDF-1α and CXCR4 expression (by L-NAME) or blockage of SDF-1α coupling with CXCR4 (by AMD3100). Expression of STAT3, a cardioprotective factor mediating SDF-1α/CXCR4 axis induced cardiac protection, was up-regulated most significantly in group A. The effects of atorvastatin therapy on cardiac function were also abrogated either when SDF-1α and CXCR4 expression was diminished or the coupling of SDF-1α with CXCR4 was blocked.

Conclusion

SDF-1α upregulation by atorvastatin in rats with AMI was, at least partially, via the eNOS/NO dependent pathway, and SDF-1α upregulation and SDF-1α coupling with CXCR4 conferred anti-inflammatory and anti-apoptotic effects under AMI setting which we speculated that ultimately contributed to cardiac function improvement.  相似文献   

6.

Introduction

This study was performed to evaluate the attenuation of osteoarthritic (OA) pathogenesis via disruption of the stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) signaling with AMD3100 in a guinea pig OA model.

Methods

OA chondrocytes and cartilage explants were incubated with SDF-1, siRNA CXCR4, or anti-CXCR4 antibody before treatment with SDF-1. Matrix metalloproteases (MMPs) mRNA and protein levels were measured with real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The 35 9-month-old male Hartley guinea pigs (0.88 kg ± 0.21 kg) were divided into three groups: AMD-treated group (n = 13); OA group (n = 11); and sham group (n = 11). At 3 months after treatment, knee joints, synovial fluid, and serum were collected for histologic and biochemical analysis. The severity of cartilage damage was assessed by using the modified Mankin score. The levels of SDF-1, glycosaminoglycans (GAGs), MMP-1, MMP-13, and interleukin-1 (IL-1β) were quantified with ELISA.

Results

SDF-1 infiltrated cartilage and decreased proteoglycan staining. Increased glycosaminoglycans and MMP-13 activity were found in the culture media in response to SDF-1 treatment. Disrupting the interaction between SDF-1 and CXCR4 with siRNA CXCR4 or CXCR4 antibody attenuated the effect of SDF-1. Safranin-O staining revealed less cartilage damage in the AMD3100-treated animals with the lowest Mankin score compared with the control animals. The levels of SDF-1, GAG, MMP1, MMP-13, and IL-1β were much lower in the synovial fluid of the AMD3100 group than in that of control group.

Conclusions

The binding of SDF-1 to CXCR4 induces OA cartilage degeneration. The catabolic processes can be disrupted by pharmacologic blockade of SDF-1/CXCR4 signaling. Together, these findings raise the possibility that disruption of the SDF-1/CXCR4 signaling can be used as a therapeutic approach to attenuate cartilage degeneration.  相似文献   

7.

Background

A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process.

Methodology/Principal Findings

The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process.

Conclusions/Significance

CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation.  相似文献   

8.
Chemokine CXCL12 and receptor CXCR4 have emerged as promising therapeutic targets for ovarian cancer, a disease that continues to have a dismal prognosis. CXCL12-CXCR4 signaling drives proliferation, survival, and invasion of ovarian cancer cells, leading to tumor growth and metastasis. Pleiotropic effects of CXCR4 in multiple key steps in ovarian cancer suggest that blocking this pathway will improve outcomes for patients with this disease. To quantify CXCL12-CXCR4 signaling in cell-based assays and living mouse models of ovarian cancer, we developed a click beetle red luciferase complementation reporter that detects activation of CXCR4 based on recruitment of the cytosolic adapter protein β-arrestin 2. Both in two-dimensional and three-dimensional cell cultures, we established that bioluminescence from this reporter measures CXCL12-dependent activation of CXCR4 and inhibition of this pathway with AMD3100, a clinically-approved small molecule that blocks CXCL12-CXCR4 binding. We used this imaging system to quantify CXCL12-CXCR4 signaling in a mouse model of metastatic ovarian cancer and showed that treatment with AMD3100 interrupted this pathway in vivo. Combination therapy with AMD3100 and cisplatin significantly decreased tumor burden in mice, although differences in overall survival were not significantly greater than treatment with either agent as monotherapy. These studies establish a molecular imaging reporter system for analyzing CXCL12-CXCR4 signaling in ovarian cancer, which can be used to investigate biology and therapeutic targeting of this pathway in cell-based assays and living mice.  相似文献   

9.
A functional linkage of the structurally unrelated receptors HER2 and CXCR4 has been suggested for breast cancer but has not been evaluated for esophageal carcinoma. The inhibition of HER2 leads to a reduction of primary tumor growth and metastases in an orthotopic model of esophageal carcinoma. The chemokine receptor CXCR4 has been implicated in metastatic dissemination of various tumors and correlates with poor survival in esophageal carcinoma. The aim of this study was to investigate a correlation between the expression levels of HER2 and CXCR4 and to evaluate the involvemnent of CXCR4-expression in HER2-positive esophageal carcinoma. The effects of HER2-inhibition with trastuzumab and of CXCR4-inhibition with AMD3100 on primary tumor growth, metastatic homing, and receptor expression were evaluated in vitro and in an orthotopic model of metastatic esophageal carcinoma using MRI for imaging. The clinical relevance of HER2- and CXCR4-expression was examined in esophageal carcinoma patients. A significant correlation of HER2- and CXCR4-expression in primary tumor and metastases exists in the orthotopic model. Trastuzumab and AMD3100 treatment led to a significant reduction of primary tumor growth, metastases and micrometastases. HER2-expression was significantly elevated under AMD3100 treatment in the primary tumor and particularly in the metastases. The positive correlation between HER2- and CXCR4-expression was validated in esophageal cancer patients. The correlation of CXCR4- and HER2-expression and the elevation of HER2-expression and reduction of metastases through CXCR4-inhibition suggest a possible functional linkage and a role in tumor dissemination in HER2-positive esophageal carcinoma.  相似文献   

10.
Ovarian cancer (OC) is a lethal gynecologic tumor, which brings its mortality to the head. CXCL12 and its receptor chemokine receptor 4 ( CXCR4) have been found to be highly expressed in OC and contribute to the disease progression by affecting tumor cell proliferation and invasion. Here, in this study, we aim to explore whether the blockade of CXCL12–CXCR4 axis with AMD3100 (a selective CXCR4 antagonist) has effects on the progression of OC. On the basis of the gene expression omnibus database of OC gene expression chips, the OC differentially expressed genes were screened by microarray analysis. OC (nonmetastatic and metastatic) and normal ovarian tissues were collected to determine the expressions of CXCL12 and CXCR4. A series of AMD3100, shRNA against CXCR4, and pCNS-CXCR4 were introduced to treat CAOV3 cells with the highest CXCR4 was assessed. Cell viability, apoptosis, migration, and invasion were all evaluated. The microarray analysis screened out the differential expression of CXCL12–CXCR4 in OC. CXCL12 and CXCR4 expressions were increased in OC tissues, particularly in the metastatic OC tissues. Downregulation of CXCR4 by AMD3100 or shRNA was observed to have a critical role in inhibiting cell proliferation, migration, and invasion of the CAOV3 OC cell line while promoting cell apoptosis. Overexpressed CXCR4 brought significantly promoting effects on the proliferation and invasiveness of OC cells. These results reinforce that the blockade of CXCL12–CXCR4 axis with AMD3100 inhibits the growth of OC cells. The antitumor role of the inhibition of CXCL12–CXCR4 axis offers a preclinical validation of CXCL12–CXCR4 axis as a therapeutic target in OC.  相似文献   

11.
Mimicking the events of menstruation in the murine uterus   总被引:6,自引:0,他引:6  
Menstruation and endometrial regeneration occur during every normal reproductive cycle in women and some Old World primates. Many of the cellular and molecular events of menstruation have been identified by correlative or in vitro studies, but the lack of a convenient model for menstruation in a laboratory animal has restricted functional studies. In this study, a mouse model for menstruation first described by Finn in the 1980s has been modified for use in a commonly used inbred strain of mouse. A decidual stimulus was applied into the uterine lumen of appropriately primed mice and leukocyte numbers and apoptosis were examined over time following progesterone withdrawal. Endometrial tissue breakdown was initiated after 12-16 h, and by 24 h, the entire decidual zone had been shed. Re-epithelialization was nearly complete by 36 h and the endometrium was fully restored by 48 h. Leukocyte numbers increased significantly in the basal zone by 12 h after progesterone withdrawal, preceding stromal destruction. Stromal apoptosis was detected by TUNEL staining at 0 and 12 h but decreased by 16 h after progesterone withdrawal. This mouse model thus mimics many of the events of human menstruation and has the potential to assist in elucidation of the functional roles of a variety of factors thought to be important in both menstruation and endometrial repair.  相似文献   

12.
13.
The interaction between stromal cell-derived factor-1 (SDF-1) with CXCR4 chemokine receptors plays an important role in hematopoiesis following hematopoietic stem cell transplantation. We examined the efficacy of post transplant administration of a specific CXCR4 antagonist (AMD3100) in improving animal survival and in enhancing donor hematopoietic cell engraftment using a congeneic mouse transplantation model. AMD3100 was administered subcutaneously at 5 mg/kg body weight 3 times a week beginning at day +2 post-transplant. Post-transplant administration of AMD3100 significantly improves animal survival. AMD3100 reduces pro-inflammatory cytokine/chemokine production. Furthermore, post transplant administration of AMD3100 selectively enhances donor cell engraftment and promotes recovery of all donor cell lineages (myeloid cells, T and B lymphocytes, erythrocytes and platelets). This enhancement results from a combined effect of increased marrow niche availability and greater cell division induced by AMD3100. Our studies shed new lights into the biological roles of SDF-1/CXCR4 interaction in hematopoietic stem cell engraftment following transplantation and in transplant-related mortality. Our results indicate that AMD3100 provides a novel approach for enhancing hematological recovery following transplantation, and will likely benefit patients undergoing transplantation.  相似文献   

14.
Although curcumin shows anti-proliferative and anti-inflammatory activities in various cancers, the effect of curcumin on cellular migration in endometrial adenocarcinoma cells remains to be understood. The current investigation was aimed to explore the anti-proliferative and anti-migratory effects of curcumin and its mechanism of action in endometrial cancer cells. Our in-vitro and in-vivo experimental studies showed that curcumin inhibited the proliferation of endometrial cancer cells and suppressed the tumor growth in Ishikawa xenograft mouse model. Curcumin induced ROS-mediated apoptosis in endometrial cancer cells. Curcumin suppressed the migration rate of Ishikawa and Hec-1B cells as analyzed by scratch wound assay. In transwell migration studies, knock down of Slit-2 reversed the anti-migratory effect of curcumin in these cell lines. Curcumin significantly up-regulated the expression of Slit-2 in Ishikawa, Hec-1B and primary endometrial cancer cells while it down-regulated the expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 which in turn, suppressed the expression of matrix metallopeptidases (MMP) 2 and 9, thus attenuating the migration of endometrial cancer cells. In summary, we have demonstrated that curcumin has inhibitory effect on cellular migration via Slit-2 mediated down-regulation of CXCR4, SDF-1, and MMP2/MMP9 in endometrial carcinoma cells. These findings helped explore the role of Slit-2 in endometrial cancer cells.  相似文献   

15.
探索CXCR4阻断剂AMD3100促进apoE-/-小鼠动脉粥样硬化病变的分子机制.36只8周龄雄性apoE-/-小鼠随机分为三组:普食组、高脂组和AMD3100组.ELISA法测血清基质细胞衍生因子1α(SDF-1α)水平,采用氧化酶法测定apoE-/-小鼠血清中三酰甘油(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C)含量.HE染色检测apoE-/-小鼠主动脉根部横切面动脉粥样硬化病变.免疫组织化学检测小鼠胸主动脉CXCR4表达.RT-PCR和Western blot分别检测小鼠动脉组织TNF-α、NF-κB mRNA和蛋白质表达.AMD3100组小鼠主动脉根部横截面的动脉粥样硬化病变较高脂组严重,AMD3100组小鼠胸腹主动脉炎症因子TNF-α、NF-κB的mRNA水平和蛋白质表达增高,但血脂TG、TC、HDL-C和LDL-C含量与高脂组均无显著性差异.AMD3100组小鼠外周血SDF-1α水平和动脉壁CXCR4表达低于高脂组.结果表明:AMD3100通过上调炎性因子表达及下调SDF-1/CXCR4 轴促进apoE-/-小鼠动脉粥样硬化病变.  相似文献   

16.
Guo Y  He B  Xu X  Wang J 《PloS one》2011,6(2):e16840
In our previous study, menstrual-like changes in mouse were provoked through the pharmacologic withdrawal of progesterone with mifepristone following induction of decidualization. However, mouse is not a natural menstruation animal, and the menstruation model using external stimuli may not truly reflect the occurrence and development of the human menstrual process. Therefore, we established a model of menstruation based on human endometrial xenotransplantation. In this model, human endometrial tissues were transplanted subcutaneously into SCID mice that were ovarectomized and supplemented with estrogen and progestogen by silastic implants with a scheme imitating the endocrinological milieu of human menstrual cycle. Morphology, hormone levels, and expression of vimentin and cytokeratin markers were evaluated to confirm the menstrual-like changes in this model. With 28 days of hormone treatment, transplanted human endometrium survived and underwent proliferation, differentiation and disintegration, similar to human endometrium in vivo. Human CD45+ cells showed a peak of increase 28 days post-transplantation. Three days after progesterone withdrawal, mouse CD45+ cells increased rapidly in number and were significantly greater than human CD45+ cell counts. Mouse CD31+ blood vascular-like structures were detected in both transplanted and host tissues. After progesterone withdrawal, the expression levels of matrix metalloproteinases (MMP) 1, 2, and 9 were increased. In summary, we successfully established a human endometrial xenotransplantation model in SCID mice, based on the results of menstrual-like changes in which MMP-1, 2 and 9 are involved. We showed that leukocytes are originated from in situ proliferation in human xenografts and involved in the occurrence of menstruation. This model will help to further understand the occurrence, growth, and differentiation of the endometrium and the underlying mechanisms of menstruation.  相似文献   

17.
Stromal cell-derived factor 1 (CXCL12) is an angiogenic chemokine that is believed to act solely via its cognate receptor CXCR4. Evidence is now provided for the existence of a different CXCL12 binding and signaling receptor on endothelial cells. Bovine aortic endothelial cells (BAECs) strongly expressed CXCR4 and exhibited high binding capacity for fluorescently labeled CXCL12. However, CXCL12 binding was not correlated with the CXCR4 expression level and was virtually unaffected by the specific CXCR4 antagonists AMD3100 or T22. Similar observations were made in endothelial cells of mouse and human origin. Also, AMD3100 failed to block CXCL12 internalization and CXCL12-induced intracellular signal transduction via extracellular signal-regulated kinases 1/2 in BAECs. In contrast, CXCL12 binding and signaling were almost completely inhibited by the CXCR4 antagonist in T-lymphoid SupT1 cells. Together, our data point to the existence of an additional receptor through which CXCL12 exerts its biological effects in endothelial cells.  相似文献   

18.
Mouse skin melanocytes originate from the neural crest and subsequently invade the epidermis and migrate into the hair follicles (HF) where they proliferate and differentiate. Here we demonstrate a role for the chemokine SDF-1/CXCL12 and its receptor CXCR4 in regulating the migration and positioning of melanoblasts during HF formation and cycling. CXCR4 expression by melanoblasts was upregulated during the anagen phase of the HF cycle. CXCR4-expressing cells in the HF also expressed the stem cell markers nestin and LEX, the neural crest marker SOX10 and the cell proliferation marker PCNA. SDF-1 was widely expressed along the path taken by migrating CXCR4-expressing cells in the outer root sheath (ORS), suggesting that SDF-1-mediated signaling might be required for the migration of CXCR4 cells. Skin sections from CXCR4-deficient mice, and skin explants treated with the CXCR4 antagonist AMD3100, contained melanoblasts abnormally concentrated in the epidermis, consistent with a defect in their migration. SDF-1 acted as a chemoattractant for FACS-sorted cells isolated from the anagen skin of CXCR4–EGFP transgenic mice in vitro, and AMD3100 inhibited the SDF-1-induced migratory response. Together, these data demonstrate an important role for SDF-1/CXCR4 signaling in directing the migration and positioning of melanoblasts in the HF.  相似文献   

19.
20.
Stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) have been found to be tightly correlated with the progression of prostate cancer (PC). In this study, we investigated the effects of an SDF-1α/CXCR4 inhibitor, AMD3100, on cell progression and metastasis potential of human PC cells. Human PC cell lines (LNCaP, PC3, and DU145) were cultured to detect SDF-1α/CXCR4, which showed higher SDF-1α and CXCR4 expression than the normal human prostate epithelial cell line, RWPE-1. AMD3100 was confirmed to be an inhibitor of SDF-1α, and to detect the effect of SDF-1α/CXCR4 inhibition on PC, PC cells were treated with AMD3100 or/and CXCR4 siRNA. The results suggested that inhibition of the SDF-1α/CXCR4 pathway could promote the E-cadherin level but inhibit the levels of invasion and migration of vimentin, N-cadherin and α5β1 integrin. Finally, tumor formation in nude mice was conducted, and the cell experiment results were verfied. These data show that AMD3100 suppresses epithelial–mesenchymal transition and migration of PC cells by inhibiting the SDF-1α/CXCR4 signaling pathway, which provides a clinical target in the treatment of PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号